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Abstract 

Self-interactions Proteins (SIPs) is important for their biological activity owing to the inherent interaction amongst 
their secondary structures or domains. However, due to the limitations of experimental Self-interactions detection, 
one major challenge in the study of prediction SIPs is how to exploit computational approaches for SIPs detection 
based on evolutionary information contained protein sequence. In the work, we presented a novel computational 
approach named WELM–LAG, which combined the Weighed-Extreme Learning Machine (WELM) classifier with 
Local Average Group (LAG) to predict SIPs based on protein sequence. The major improvement of our method lies in 
presenting an effective feature extraction method used to represent candidate Self-interactions proteins by exploring 
the evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix (PSSM); and then 
employing a reliable and robust WELM classifier to carry out classification. In addition, the Principal Component Analy‑
sis (PCA) approach is used to reduce the impact of noise. The WELM–LAG method gave very high average accuracies 
of 92.94 and 96.74% on yeast and human datasets, respectively. Meanwhile, we compared it with the state-of-the-art 
support vector machine (SVM) classifier and other existing methods on human and yeast datasets, respectively. Com‑
parative results indicated that our approach is very promising and may provide a cost-effective alternative for predict‑
ing SIPs. In addition, we developed a freely available web server called WELM-LAG-SIPs to predict SIPs. The web server 
is available at http://219.219.62.123:8888/WELMLAG/.
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Background
All the time, protein–protein interactions (PPIs) play an 
important role in biological activity. However, a crucial 
problem regarding Self-interactions Proteins (SIPs) is 
whether proteins can interact with their partners. SIPs is 
a special type of PPIs and are those in which more than 
two copies of the protein can mutual effect. Two SIP 
partners are the same copies of the protein and can be 
represented by the same gene. This can lead to the for-
mation of homo-oligomer. In recent years, many studies 
have found that SIPs play a key role in the evolution of 

protein interaction networks (PINs) and cellular func-
tions [1]. Therefore, it is much crucial that whether a 
protein can self-interact for the elucidation of its func-
tions. Knowledge of SIPs can also provide a better under-
standing of the regulation of protein function and disease 
mechanisms. Many researches have demonstrated that 
homo-oligomerization is an essential function for bio-
logical activity and play an important role in a wide 
range of biological processes, for example, signal trans-
duction, gene expression regulation, enzyme activation 
and immune response [2–6]. However, owing to SIPs is 
a special type of protein–protein interactions, PPIs is 
still much important in a wide range of biological pro-
cesses. Previous researchers have discovered that SIPs 
can variously extend the function diversity of proteins 
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without increasing the size of genome. In addition, it is 
much useful for SIPs that can also strengthen the stability 
and prevent the denaturation of a given protein through 
decreasing its surface area [7]. As a result, developing a 
robust and effective computational approach based on 
protein sequence to detect SIPs has become more and 
more important.

Many previous studies have focused on predicting PPIs 
by developing computational methods. For example, Li 
et  al. [8] proposed a novel computational approach for 
detecting PPIs, which uses discriminative vector machine 
(DVM) classifier to combine with physicochemical and 
evolutionary-based feature extraction methods. Jia et al. 
[9] developed an feature extraction method based on 
the physicochemical descriptors and employed the Ran-
dom Forests classifier to carry out classification, which 
yielded good experimental results. Yang et  al. [10] pre-
sented a new method based on protein sequence, which 
used local protein sequence descriptors as a novel rep-
resentation and employed the k-nearest neighbors clas-
sifier to execute classification. Guo et  al. [11] employed 
the SVM classifier to combine with autocorrelation fea-
ture extraction approach to identify PPIs. Ming et  al. 
[12] used a sequence-based correlation coefficient (CC) 
transformation and also adopted the SVM classifier to 
predict PPIs. These methods usually focused on explor-
ing the correlational information contained protein pairs, 
such as, coevolution, co-localization and co-expression. 
Nevertheless, this information is not enough for predict-
ing SIPs. Furthermore, the datasets of prediction PPIs 
do not contain the PPIs between the same partners. For 
these reasons, these computational methods are not 
used to identify SIPs. In the previous study, Liu et al. [1] 
proposed a method for constructing a prediction model 
known as SLIPPER to predict SIPs, which can integrate 
multiple representative known properties. To the best 
of our knowledge, some studies about PPI have been 
reported very recently that may be also relevant to SIPs 
[13–15]. However the method has an obviously drawback 
since it cannot deal with the proteins not covering the 
current human interatomic. Because of the limitations of 
the aforementioned approaches, one major challenge in 
the study of prediction SIPs is how to exploit automated 
methods for SIPs detection.

In the work, we developed a novel computational 
approach termed WELM–LAG to predict SIPs by only 
using protein sequence information. The WELM–LAG 
method used a newly feature extraction method called 
Local Average Group that can capture evolutionary infor-
mation from PSSM and employed an effective and robust 
classifier called the Weighed-Extreme Learning Machine 
to execute classification. The major improvement of our 

approach lies in adopting an effective feature extraction 
approach to represent candidate self-interacting proteins 
by exploring the evolutionary information embedded in 
PSI-BLAST-constructed position specific scoring matrix 
(PSSM); and then it also employs a reliable and robust 
WELM classifier to carry out classification. The proposed 
method was carried out on human and yeast datasets, 
respectively, which achieved very excellent prediction 
accuracies of 96.74 and 92.94%. At the same time, we 
also compared our method with the SVM classifier and 
other existing approaches on human and yeast datasets. 
The experimental results proved that our WELM–LAG 
model can extract the hidden key information beyond the 
sequence itself and obtain much better prediction results 
than previous method. It is proved that the WELM–LAG 
method is fit for SIPs detection and can execute incred-
ibly well for identifying SIPs.

Methods
Dataset
There are 20,199 curated human protein sequences in 
the UniProt database [16]. The PPI data can be obtained 
from diversity resources, including DIP [17], BioGRID 
[18], IntAct [19], InnateDB [20] and MatrixDB [21]. In 
the paper, we constructed the PPIs data that only contains 
the same two interaction protein sequence and whose 
interaction type was defined as ‘direct interaction’ in rel-
evant databases. Consequence, we acquired 2994 human 
Self-interactions protein sequences. For assessing the pre-
diction performance of the proposed approach, the experi-
ment datasets were constructed, which contains three 
steps [22]: (1) the protein sequences whose length less than 
50 residues and longer than 5000 residues were removed 
from the whole human proteome;(2) in order to construct 
the positive dataset, we selected the SIP data that must 
satisfy one of the following conditions: (a) it has been 
detected for the Self-interactions by one small-scale exper-
iment or at least two types of large-scale experiments; 
(b) Self-interactions Protein data have been defined as 
homooligomer (including homodimer and homodimers) 
in UniProt; (c) it has been reported by at least two publi-
cations for the Self-interactions;(3) to construct the nega-
tive dataset, all kinds of SIPs contained the whole human 
proteome (including proteins annotated as ‘direct interac-
tion’ and more extensive ‘physical association’) and Uni-
Prot database. As a result, the resulting experiment human 
dataset contained 15,938 non-SIPs as negatives and 1441 
SIPs as positives [22]. In addition, for further demonstrat-
ing the prediction performance of WELM-LAG, we also 
constructed yeast dataset, which contained 5511 negative 
and 710 positive protein sequences [22] by using the same 
strategy mentioned above.
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Feature extraction method
In the work, we used Position Specific Scoring Matrix 
(PSSM) to predict SIPs. In the experiment, each pro-
tein sequence was converted into a PSSM through 
employing Position Specific Iterated BLAST (PSI-
BLAST) [23]. Each PSSM can be defined a L× 20 matrix 
P =

{

Piji : 1 = 1 . . .L, j = 1 . . . 20
}

, where P represents 
the length of a given sequence, 20 are the number of 20 
amino acids, and Pij represents the score of the jth amino 
acid in the ith position for a given protein sequence, where 
Pij can be expressed as Pij =

∑20
k=1m(i, k)× n

(

j, k
)

, 
where m(i, k) represents the appearing frequency of the 
kth amino acid at position i of the probe, and n

(

j, k
)

 is 
the score of Dayhoff’s mutation matrix between jth and 
kth amino acids. Thus, a high score cab be obtained for a 
good conserved position, while a weakly conserved posi-
tion only gets a low score.

In the study, in order to obtain highly and widely 
homologous protein sequences, PSI_BLAST’s e-value 
parameter was set to 0.001. Meanwhile, three iterations 
were selected. However, one major challenge in the 
machine learning-based methods is how to extract useful 
informative features. In the work, since each PSSM has 
different length of amino acids. As a result, each PSSM 
cannot be directly converted into a feature vector, which 
will result in different length of feature vectors. For solv-
ing this question, Local Average Group (LAG) approach 
is employed to create feature vectors. The Local Average 
Group is described as follows: a Group consists of 5% of 
the length of a given sequence. As a result, regardless of 
protein sequence’s length, we divided each PSSM of a 
given sequence into 20 Groups. Thus, each Group con-
tains 20 features derived from the 20 columns of PSSMs. 
Related mathematical formula represented as follows:

where P represents the length of a given protein 
sequence, P/20 is 5% of the length of a given sequence, 
which represents the length of the jth group. The 
Mat

(

k + (i − 1)× P
20 , j

)

 represents a 1  ×  20 vector 
captured from PSSM matrix at the ith position in the jth 
group. Thus, each PSSM was divided into 20 groups 
and expressed as a 400-dimensional feature vector. The 
theoretical basis of LAG is that the residue conserva-
tion tendencies are similar and the locations of domains 
are closely related to the length of protein sequence in 
the same family [24]. In our application, each protein 
sequence was transformed into a 400 dimensional feature 
vector through employing LAG method.

(1)

LAG(F) = 20

P

P
20
∑

k=1

Mat

(

k + (i − 1)× P

20
, j

)

i = 1, . . . , 20; j = 1, . . . , 20; P = j + 20× (i− 1),

In the study, in order to improve prediction accuracy, 
the dimensionality of feature vectors was reduced from 
400 to 300 through employing the PCA method. This can 
reduce the influence of noise. In addition, for assessing 
the efficient of the proposed feature extraction method, 
we compared it with other four methods by using the 
SVM classifier on yeast datasets of PPIs (the yeast data-
set contains 11,188 protein pairs): Global encoding (GE) 
[25], auto covariance (AC) [26], auto cross covariance 
(ACC) [26] and local protein sequence descriptors (LD) 
[27]. It can be seen from Table  1, the proposed feature 
extraction method yielded obviously better prediction 
accuracy compared to other existing methods by using 
the same classifier.

In the paper, the feature extraction method based on 
Local Average Group combining with PCA employed to 
capture key feature information and the robust WELM 
classifier is used to execute classification. The flow of the 
proposed WELM–LAG method for predicting SIPs is 
displayed in Fig. 1.

Weighed‑extreme learning machine
The unweight Extreme learning machine can randomly 
generate the hidden node, which is a main characteristic 

Table 1  Comparison of  predicting accuracy between  our 
feature extraction method and  other methods on  yeast 
dataset

Prediction model Ac (%)

AC + SVM 87.36

ACC + SVM 89.33

GE + SVM 91.73

LD + SVM 88.56

Our method (SVM + LAG) 93.21

Fig. 1  The flow chart of WELM–LAG method
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that distinguishes from tradition neural network learning 
algorithms [28]. That is to say, it can randomly assign the 
parameters contained the hidden nodes for independent 
of the training samples. We expressed the hidden layer 
output as a row vector F(X) = [f1(m) . . . fL(m)], where m 
is the input sample, L represents the number of hidden 
nodes [28]. Assume that there are training sample sets 
{mi, pi}, the model of single-hidden layer feed forward 
networks (SLFN) [29] can be defined as follow:

where F represents the hidden layer output matrix, β is 
the output weight and P represents the target vector.

The minimal norm along with the least square solution 
can be analytically determined by employing Moore–
Penrose ‘‘generalized’’ inverse F̂

As is displayed in two formulas above that a positive 
value IC is added to the diagonal of FFP or FPF  in order 
for better generalization performance. Users can select 
one of the two formulas above according to the number 
of training sets.

For the Weighted Extreme learning machine, for 
maximizing the marginal distance and minimizing the 
weighted cumulative error with regards to each sample, 
the optimization problem can be defined as follows [28]:

where

where f(mi) represents the feature mapping vector con-
tained hidden layer with respect to mi, and β is the output 
weight vector connecting the hidden layer and the output 
layer. For a binary classifier, there is only one node in the 

(2)Fβ = P

(3)F =











f1(m1)

.

.

.
fL(mn)











(4)when n < L : β = F̂ ÷ P = FT

(

I

C
+ FFT

)−1

P

(5)when L < n : β = F̂ ÷ P =
(

I

C
+ FPF

)−1

FPP

(6)
Minimizing: ||Fβ − P||2||β||, where P = [p1, . . . pn]

LPELM = 1

2
||β||2 + CW

1

2

n
∑

i=1

||∂i||2,

subject to: f (mi) β = p
p
i − ∂

p
i , i = 1 . . . n

output layer. Here ∂i represents the training error of sam-
ple mi. It is caused by the difference of the desired output 
Pi and the actual output f (mi) β [28].

According to KKT theorem, the equivalent dual opti-
mization problem with respect to (9) is

where ai is the constant factor of sample mi in the lin-
ear combination to form the final decision function, In 
addition, by making the partial derivatives, the Karush–
Kuhn–Tucker (KKT) [30] optimality conditions are 
obtained [28]

Two versions of solutions of β can be derived from (10) 
regarding left pseudo-inverse or right pseudo-inverse. 
When the presented data has a small size, right pseudo-
inverse is recommended because it involves the inverse 
of an N  ×  N matrix. Otherwise, left pseudo-inverse 
is more suitable since it is much easier to compute the 
matrix inversion of size L × L when L is much smaller 
than N:

Inspired from work of [31] and the definition of a ker-
nel [31], the output function in terms of kernel is natu-
rally derived from the N × N version:

(7)

LDELM = 1

2
||β||2 + CW

1

2

n
∑

i=1

∂2i −
n

∑

i=1

ai(f (mi)β − pi + ∂i)

(8)
∅LDELM

∅β = 0 → β =
n

∑

i=1

aif (xi)
P = FPε

(9)
∅LDELM

∅∂i
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(10)
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C
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Performance evaluation
In the study, we employed the following measures to 
evaluate the prediction performance of the Weighed-
Extreme Learning Machine. The definition is shown as 
follows:

Ac, Sn, Sp, Pe and MCC represent Accuracy, Sensi-
tivity, specificity, Precision and Matthews’s Correlation 
Coefficient, respectively. In the above formula, TP repre-
sents the number of true positives, FP is the count of false 
positives, TN represents the number of true negatives 
and FN represents the count of false negatives. In addi-
tion, for assessing the performance of the proposed clas-
sifier, we also constructed the Receiver Operating Curve 
(ROC) in the experiment.

Results and discussion
Performance of the proposed method
Using the proposed approach we performed the experi-
ment yeast and human dataset, respectively. In order to 
prevent the over-fitting to affect the experimental results 
of the proposed approach, the experimental datasets 
were divided into the training datasets and independent 
test datasets, respectively. More specifically, 1/6 of the 
human datasets was selected as independent test datasets 
and the remaining human datasets selected as training 
datasets. The same strategy was also applied for the yeast 
dataset. In addition, for a fair comparison, we used five-
fold cross-validation tests to assess the prediction per-
formance of the proposed method in the experiment. At 
the same time, for ensuring fairness, several parameters 
of the WELM classifier were optimized in the experiment 
by using the grid search method. Here, we selected the 
‘tribas’ function as the kernel function and set up Num-
ber of Hidden Neurons =  5000 and C =  100. The pre-
diction results of the proposed approach on yeast and 
human dataset are displayed in Tables 2 and 3.

As observed from Table 2 that the proposed approach 
achieved good prediction results on yeast dataset, whose 

Ac = TP + TN

TP + FP + TN + FN

Sn = TP

TP + TN

Sp = TN

FP + TN

Pe = TP

FP + TP

MCC = (TP × TN )− (FP × FN )√
(TP + FN )× (TN + FP)× (TP + FP)× (TN + FN )

average accuracies of five experiments are above 92% 
and average Sensitivity, Precision, and MCC of 69.25, 
69.25, and 67.65% respectively. Similarly, an interesting 
phenomenon from Table 3 is that the average Accuracy 
obtained is above of 96% on human dataset and aver-
age Sensitivity, Precision, and MCC of 83.70, 83.00, and 
80.74% were also obtained respectively.

As displayed from Tables  2 and 3 that the proposed 
approach produced very good experimental results for 
predicting SIPs, owing to the correct choice of classifi-
ers and feature extraction methods. A major advantage 
of using PSSM is to combine LAG and PCA as feature 
extraction methods and to employ the robust WELM 
classifier. This may be attributed to the following three 
reasons: (1) it is an obvious advantage that PSSM not 
only expresses the order information but also retains 
enough prior information. This make PSSM play a key 
role for improving the predicting accuracy. (2) For the 
sake of Local Average Group (LAG) can extract the local 
texture feature, the candidate self-interacting proteins 
can be represented by exploring the evolutionary infor-
mation embedded in PSI-BLAST-constructed PSSM. 
This makes it possible to discover patterns of the entire 
sequences. In addition, for reducing the influence of 
noise and guaranteeing the integrity of feature vector 
information, the dimension of each LAG feature vec-
tor was reduced from 400 to 300 through employing 
PCA method. (3) The robust WELM classifier is used 

Table 2  Five-fold cross-validation results shown using our 
proposed method on yeast

Testing set Ac (%) Sn (%) Pe (%) MCC (%)

1 92.28 68.00 68.20 66.42

2 92.36 62.84 69.92 64.86

3 93.89 72.39 71.32 70.36

4 93.41 67.65 70.77 67.77

5 92.77 75.35 66.05 68.81

Average 92.94 ± 0.70 69.25 ± 4.80 69.25 ± 2.14 67.65 ± 0.02

Table 3  Five-fold cross-validation results shown using our 
proposed method on human

Testing set Ac (%) Sn (%) Pe (%) MCC (%)

1 96.83 84.03 79.08 80.42

2 96.91 81.94 81.13 80.43

3 96.72 84.95 78.64 80.58

4 96.75 84.28 79.25 80.68

5 96.58 83.28 81.91 81.60

Average 96.74 ± 0.10 83.70 ± 1.15 80.00 ± 1.43 80.74 ± 0.091
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to calculate the classification rates. As a result, the sam-
ple information extracted by using the proposed feature 
extraction method is very suitable for identifying SIPs 
and the WELM classifier plays an important role for 
improving prediction accuracy.

Comparison with the SVM‑based method
It is noted that good experimental results have been 
obtained through using the proposed approach. How-
ever, to better assess the prediction performance of the 
WELM classifier, we compared the prediction perfor-
mance of the WELM classifier with the SVM classifier 
by using the LAG feature extraction approach on yeast 
and human datasets. In the experiment, the LIBSVM tool 
[32] was employed to carry out classification. The RBF 
kernel parameters of the SVM were optimized by using 
the grid search method, where c is 0.001 and g is 0.3 and 
other parameters takes the default value.

The prediction results for WELM and SVM classifiers 
were presented in Tables  4 and 5 on yeast and human 
datasets, respectively. Meanwhile, the comparison of 
ROC Curves between WELM and SVM were shown in 
Figs. 2 and 3 on yeast and human datasets, respectively. 
It can be seen from Table 4 that the SVM classifier gave 
89.73% average Accuracy on yeast datasets. However, 
the WELM classifier achieved 92.94% average Accuracy. 

Similarly, as displayed in Table 5, 96.74% average Accu-
racy is obtained by the proposed WELM classifier and 
93.36% average Accuracy is achieved by the SVM classi-
fier on human dataset. These prediction results further 
demonstrated that the prediction performance of WELM 
classifier is significantly better than the SVM classifier. 
At the same time, it can be found from Figs. 2 and 3, the 
ROC curves of WELM classifier are also significantly bet-
ter than the SVM classifier. This may be attributed to the 
reason: The WELM classifier pays attention to the sam-
ples which imply the imbalanced class distribution rela-
tive to unweight ELM. In the process of WELM classifier 
classification, the minority class samples are assigned 
with larger weight, which make the information of imbal-
anced class distribution is well perceived [28]. After 
weighting scheme is applied, WELM classifier can push 
the separating boundary from the minority class towards 
the majority class [28] As a result, the WELM classifier 
can be generalized to cost sensitive learning by assigning 
different weight [28]. In the study, the proposed predic-
tion model obtained good prediction results. This further 
demonstrated that the WELM classifier is robust and 

Table 4  Five-fold cross-validation results shown by  using 
our proposed method on yeast

Testing set Ac (%) Sn (%) Pe (%) MCC (%)

SVM + PSSM + LAG

 1 89.15 21.33 65.31 37.20

 2 89.63 20.27 73.17 37.84

 3 90.51 13.43 81.10 33.44

 4 90.11 15.44 72.41 32.96

 5 89.28 28.87 64.06 42.83

 Average 89.73 ± 0.57 19.87 ± 6.01 71.19 ± 6.85 36.85 ± 0.04

Table 5  Five-fold cross-validation results shown by  using 
our proposed method on human

Testing set Ac (%) Sn (%) Pe (%) MCC (%)

SVM + PSSM + LAG

 1 93.32 23.26 85.90 43.64

 2 93.06 22.07 89.19 43.15

 3 93.47 24.57 88.75 45.50

 4 93.70 26.14 74.19 43.49

 5 93.25 23.59 93.42 45.52

 Average 93.36 ± 0.24 23.92 ± 1.53 93.54 ± 4.25 44.26 ± 0.012

Fig. 2  Comparison of ROC curves performed between WELM and 
SVM on yeast dataset

Fig. 3  Comparison of ROC curves performed between WELM and 
SVM on human dataset
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effective in imbalanced data environment. Thus, all of 
these proved that the proposed prediction method might 
become useful tools for predicting SIPs, as well as other 
bioinformatics tasks.

Comparison with other methods
In the study, in order to further verify the prediction per-
formance of the proposed approach, the comparison of 
prediction performance between the proposed predic-
tion method called WELM–LAG and three existing SIP 
predictor SLIPPER [1], CRS [22], SPAR [22] and three 
PPI predictors DXECPPI [33], PPIevo [34] and LocFuse 
[35] based on the human and yeast datasets are given. 
These comparison results were shown in Tables 6 and 7 
on yeast and human datasets. It can be observed from 
Table 6 that the average prediction accuracy obtained by 
the proposed approach is obviously better than other six 
methods on yeast dataset. Similarity, we can find from 
Table  7 that the prediction accuracy of our approach is 
also significantly higher than six different methods on 
human dataset. These comparison results further proved 
that the proposed prediction method called as WELM–
LAG is robust and efficient relative to current existing 
approaches. Owing to the use of a robust classifier and 
an effectively feature extraction method, our prediction 
approach obtained good prediction results. This makes 

the proposed method become a useful tool for predicting 
SIPs.

Conclusion
In the work, we developed a novel computational 
approach termed WELM–LAG to predict SIPs by only 
using protein sequence information. The WELM–LAG 
method used a newly feature extraction method called 
Local Average Group (LAG) that can capture evolution-
ary information from PSSM and employed an effec-
tive and robust classifier called the Weighed-Extreme 
Learning Machine (WELM) to execute classification. 
The major improvement of our approach lies in adopt-
ing an effective feature extraction approach to repre-
sent candidate self-interactions proteins by exploring 
the evolutionary information embedded in PSI-BLAST-
constructed position specific scoring matrix (PSSM); and 
then it also employs a reliable and robust WELM classi-
fier to carry out classification. The proposed method was 
carried out on human and yeast datasets, respectively, 
which achieved very excellent prediction accuracies of 
96.74 and 92.94%. At the same time, we also compared 
our method with the SVM classifier and other existing 
approaches on human and yeast datasets. The experi-
mental results proved that our WELM–LAG model can 
extract the hidden key information beyond the sequence 
itself and obtain much better prediction results than pre-
vious method. It is proved that the WELM–LAG method 
is fit for SIPs detection and can execute incredibly well 
for identifying Sips. In addition, the link address (https://
github.com/ajysjm/WELM_SIP_Prediction) provided 
the datasets and source code that can be downloaded by 
users. We also developed a freely available web server 
called WELM-LAG-SIPs to predict SIPs. The web server 
is available at http://219.219.62.123:8888/WELMLAG/.
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Table 6  Comparison of  predicting performance 
between our method and other methods on yeast dataset

Model Ac (%) Sp (%) Sn (%) MCC

SLIPPER [1] 71.90 72.18 69.72 0.2842

DXECPPI [33] 87.46 94.93 29.44 0.2825

PPIevo [34] 66.28 87.46 60.14 0.1801

LocFuse [35] 66.66 68.10 55.49 0.1577

CRS [22] 72.69 74.37 59.58 0.2368

SPAR [22] 76.96 80.02 53.24 0.2484

Proposed method 92.94 69.25 69.25 0.6765

Table 7  Comparison of  predicting performance 
between our method and other methods on human data-
set

Model Ac (%) Sp (%) Sn (%) MCC

SLIPPER [1] 91.10 95.06 47.26 0.4197

DXECPPI [33] 30.90 25.83 87.08 0.0825

PPIevo [34] 78.04 25.82 87.83 0.2082

LocFuse [35] 80.66 80.50 50.83 0.2026

CRS [22] 91.54 96.72 34.17 0.3633

SPAR [22] 92.09 97.40 33.33 0.3836

Proposed method 96.74 80.00 83.70 0.8074

https://github.com/ajysjm/WELM_SIP_Prediction
https://github.com/ajysjm/WELM_SIP_Prediction
http://219.219.62.123:8888/WELMLAG/
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