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Abstract 

GPU acceleration is useful in solving complex chemical information problems. Identifying unknown structures from 
the mass spectra of natural product mixtures has been a desirable yet unresolved issue in metabolomics. However, 
this elucidation process has been hampered by complex experimental data and the inability of instruments to 
completely separate different compounds. Fortunately, with current high-resolution mass spectrometry, one feasible 
strategy is to define this problem as extending a scaffold database with sidechains of different probabilities to match 
the high-resolution mass obtained from a high-resolution mass spectrum. By introducing a dynamic programming 
(DP) algorithm, it is possible to solve this NP-complete problem in pseudo-polynomial time. However, the running 
time of the DP algorithm grows by orders of magnitude as the number of mass decimal digits increases, thus limit‑
ing the boost in structural prediction capabilities. By harnessing the heavily parallel architecture of modern GPUs, we 
designed a “compute unified device architecture” (CUDA)-based GPU-accelerated mixture elucidator (G.A.M.E.) that 
considerably improves the performance of the DP, allowing up to five decimal digits for input mass data. As exempli‑
fied by four testing datasets with verified constitutions from natural products, G.A.M.E. allows for efficient and auto‑
matic structural elucidation of unknown mixtures for practical procedures.
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Background
Mass spectrometry (MS) is one of the most widely used 
analytical methods for identifying the components of 
unknown mixtures or natural products. Elucidation 
of chemical structures, especially from natural prod-
ucts, is important to identify potential drug candidates 
with fewer adverse effects and structural novelty for 
drug discovery [1]. Mass spectra indicate the mass-to-
charge ratio of each component, and the amplitude of 
each peak roughly represents the relative abundance of 
the molecule. However, additional techniques such as 
nuclear magnetic resonance (NMR) [2], a time-consum-
ing and complex procedure, are needed to fully identify 
each component in the mixture. Furthermore, MS itself 
cannot elucidate the structure of a partially or com-
pletely unknown compound [3–5]. Therefore, successful 

structure elucidation of unknown compounds depends 
on the development of advanced computational tools for 
analyzing mass spectral data [6].

Several NMR-based expert systems have been devel-
oped to facilitate automated structure elucidation [7–
15]. This type of computer-aided structure elucidation 
(CASE) approach suffers from the complex and time-
consuming nature of NMR experiments, which usually 
involve multiple runs of different 2D NMR [16]. Moreo-
ver, the required NMR protocols may differ for different 
compounds, especially those with few hydrogen atoms 
or a diverse array of heteroatoms [14]. Additionally, the 
limited sensitivity of NMR relative to vibrational spec-
troscopy and mass spectroscopy further limits the devel-
opment of high-throughput automated CASE expert 
systems [17, 18]. Recently, Harn et al. [19] have developed 
a new CASE method (NP-StructurePredictor) that can 
efficiently and accurately predict individual components 
in a mixture (The detailed method of NP-StructurePre-
dictor is included in the Additional file 1); this approach 
is based on a model generated by referencing a collection 
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of 226,949 natural products. NP-StructurePredictor 
divides each compound into a major scaffold and its side-
chains. The relationship between each scaffold is initially 
constructed, and the probabilities of each sidechain on 
different possible scaffolds are evaluated. The model then 
takes the input seed scaffolds provided by users to match 
scaffolds in the model and automatically generates a list 
of most probable matching compounds sorted on the 
basis of evaluated probabilities for a given mass peak. The 
list is populated by combining possible sidechains at each 
position of the scaffold and evaluating the probability of 
the resulting compounds by using the natural products 
database (NPDB) probability data. Only the resulting 
compounds whose weight corresponds to the mass peak 
are retained. Experiments involving real test cases have 
shown that NP-StructurePredictor can correctly predict 
most of the compounds in mixtures, but it does so in a 
computationally inefficient manner.

The computational problem defined in the NP-Struc-
turePredictor system has been formally proven to be 
NP-complete; it constitutes a chemical substituent core 
combinatorial problem (CSCCP) [20]. Because of the 
NP-completeness of CSCCPs, the branch and bound 
strategy used in NP-StructurePredictor lead to long run-
ning time for complex scaffolds. To resolve this issue, Su 
has developed a dynamic programming (DP) algorithm 
[20] to increase computational efficiency (the detailed 
method of DP algorithm is included in the Additional 
file 1). Although the DP algorithm allowed optimization 
of the NP-complete problem into pseudo-polynomial 
time, the search for optimal solutions can still be com-
pleted in exponential time complexity in the worst-case 
scenario. Each additional decimal digit of mass in the DP 
algorithm increases the running time tenfold. For exam-
ple, the required computational time in the challenging 
case of C. chinensis would exceed 1  month if the num-
ber of decimal digits was set to 5. For high-resolution 
LC–MS experiments, the unreasonable execution time 
required to elucidate unknown chemical structures based 
on the DP strategy is still not functional in many cases.

To overcome the computational bottleneck of automat-
ically identifying chemical components of mixtures with 
the DP algorithm, hardware acceleration via graphical 
processing units (GPUs) can be directly used to substan-
tially improve the time performance. Indeed, the use of 
GPUs has recently attracted broad attention in the field 
of computer science. GPUs are not merely specialized 
video rendering devices to assist in accelerating the visu-
alization of 3D graphics; they can also be used as a pro-
gramming interface to support high-performance parallel 
computing [21]. The traditional CPU-based algorithm is 
no longer an effective way to solve extremely computa-
tionally demanding tasks [22]. A modern GPU contains 

thousands of efficient threads that can simultaneously 
perform multitasking optimization. Consequently, GPU 
methods are faster than conventional CPU methods and 
can provide an increase of one or two orders of magni-
tude [23]. Most importantly, the CUDA programming 
toolkit released by NVIDIA facilitates the development 
of software parallelism via GPUs. CUDA is an exten-
sion of the standard C/C++-like programming language, 
allowing researchers to implement and explore the paral-
lel computing ability of GPUs. An increasing number of 
applications for GPU computing have been developed in 
different fields of cheminformatics, including free energy 
calculations [24], molecular docking [25, 26], molecular 
dynamics simulations [27, 28], high-throughput screen-
ing [29], similarity searching [30], and classification [31]. 
Therefore, the use of massively GPU parallel architecture 
is a feasible way to minimize the effects of NP-complete-
ness complexity in CSCCP.

In this study, we present a GPU-accelerated algorithm, 
the GPU-accelerated mixture elucidator (G.A.M.E.), that 
can efficiently promote performance improvements of 
DP algorithms used to resolve chemical structures in the 
mass spectra of an unknown mixture. G.A.M.E. is a novel 
GPU-accelerated method implemented by the CUDA 
toolkit on NVIDIA cards that uses the heavily parallel 
architecture of modern GPUs. This method significantly 
decreases the computational time when five decimal dig-
its of mass are required, thus allowing for efficient and 
automatic structure elucidation in practical cases. All 
datasets and source code of G.A.M.E. are available on 
GitHub at https://github.com/CMDM-Lab/GAME.

Methods
The system architecture of G.A.M.E. is identical to the 
DP algorithm in previous study other than the GPU 
parallel programming in G.A.M.E. The system utilized 
molecular weights calculated from a list of m/z values 
obtained through LC–MS experiments as input informa-
tion to predict chemical structures matching the input 
molecular weights in a mixture. Furthermore, possible 
scaffold structures of the mixture can be provided to 
the system to accelerate the prediction processes. When 
possible scaffolds cannot be provided, G.A.M.E. is able 
to apply all scaffolds collected in our database to search 
for suitable candidates. After such prediction by the GPU 
searching algorithm, a list of possible candidates in mix-
tures and their relative rankings will be provided. In the 
previous studies, four Chinese herb mixtures with veri-
fied structures were used to validate the accuracy of the 
NP-StructurePredictor system. Since G.A.M.E. is a new 
GPU programming version of the previous system with 
the same architecture, we will only focus on the improved 
time performance of the system in this study.

https://github.com/CMDM-Lab/GAME
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Datasets
The G.A.M.E. algorithm searches for possible compounds 
matching the input molecular weights by expanding a 
seed scaffold with suitable sidechains. For comparing 
the feasibility and processing time between G.A.M.E. 
and its original CPU version, a natural product database 
(NPDB) was built from curating all of the known struc-
tures from the Dictionary of Natural Products (DNP) 
[32], the “ZINC natural products” subset of ZINC [33], 
and the Traditional Chinese Medicine Database [34]. The 
scaffolds are the remaining core structures after all termi-
nal side chains have been deleted. Then, a total of 83,242 
scaffold files were generated from the collected 243,130 
natural products in the NPDB. The side chains excluded 
from the natural products were separated curated as our 
side chain database. Furthermore, we also analyzed pos-
sible sets of atoms (positions) on each scaffold structure 
that can be linked by the side chains, and evaluated link-
ing probabilities of the sidechains to the scaffold. The 
possible sets of positions on the scaffold were defined as 
configuration of scaffolds, and were denoted by Nr in this 
study. G.A.M.E. uses the configurations of the selected 
scaffold by linking possible side chains to elucidate suit-
able chemical structures corresponding to the input 
molecular weights of a mixture. All datasets are available 
on GitHub at https://doi.org/10.5281/zenodo.237579. 
After dataset curation, only 26,641 scaffold files are suit-
able for the following test with wmax =  500, with total 
configuration number of 51,562.

In addition, for comparisons with the CPU DP algo-
rithm in real study cases, verified constitutions from four 
natural products (Cuscuta chinensis, Ophiopogon japoni-
cus, Polygonum multiflorum and Angelica sp.) obtained 
from the Natural Product Laboratory of Taiwan Medi-
cal and the Pharmaceutical Industry Technology and 
Development Center were used as testing datasets. The 
numbers of verified constitutions in the Cuscuta chinen-
sis, Ophiopogon japonicus, Polygonum multiflorum, and 
Angelica sp. datasets were 5, 7, 7, and 45, respectively; 
the corresponding molecular ranges were from 286.24 to 
478.41, from 328.32 to 370.36, from 270.24 to 578.53 and 
from 162.03 to 574.29, respectively.

GPU configuration
Computations were performed on an ASUS® ESC4000 
G2 Server with two Intel® Xeon E5-2630 v2 processors 
(3.10 GHz) running under CentOS 6.7. We used Python 
2.7 and CUDA 7.5 in combination with PyCuda 2017.1. 
Our graphic card was an NVIDIA® Tesla K40c with a 
compute capability of 3.5, equipped with 15 streaming 
multiprocessors of 192 cores each, 11,439  MB of global 
memory and 49 kB of shared memory. The computational 

resources were provided by Computer and Networking 
Center, National Taiwan University.

Problem definitions
Before introducing the GPU algorithm in later sections, 
we first defined notations used in the algorithms, and 
illustrated the problem of structural elucidation in this 
section.

Input data notations (n, wmin, wmax, D, R, K, h, W, P)
The algorithm takes as input nine parameters: six scalars 
and three matrices. They are defined as follows: n ∈ ℕ,  
wmin ∈ ℝ+, wmax ∈ ℝ+ (wmax  ≥  wmin), D ∈ ℕ, R ∈ ℕ, 
K = {k0, …, kn−1} ∈ ℕn, h = max(K), W = {ws,j}(s,j)∈[|0,n|]×[|

0,h−1|] ⊂ (ℝ+)h×n and P = {ps,j}(s,j)∈[|0,n|]×[|0,h−1|] ⊂ [0,1]h×n.  
Moreover, we define ∀s∈[|0,n|], j ≥ ks ⇒ ps,j = ws,j = 0. 
All necessary information in a scaffold used in G.A.M.E. 
is represented by (n, K, W, P). n is the number of pos-
sible atoms (positions) in the scaffold that can be linked 
by side chains. K =  {k0, …, kn−1} contains the sidechain 
counts, defined such that ks is the number of possible 
sidechains that can be extended at a position s in the 
scaffold. W  =  {ws,j}(s,j) represents molecular weights of 
the possible extended sidechains, defined such that ws,j is 
the weight of the jth sidechain at position s. P =  {ps,j}(s,j) 
denotes probabilities of the extended sidechains to the 
scaffold, defined such that ps,j is the probability of the 
jth sidechain linked at position s of the scaffold. Given a 
scaffold, S = (n, K, W, P), Ψ(S) = [|0, k0 − 1|] × … × [|0, 
kn−1 − 1|] is defined as a set of all structures that can be 
generated by extending the possible sidechains on this 
scaffold. Furthermore, Ψs(S) =  [|0, k0 −  1|] ×  … ×  [|0, 
ks − 1|] denotes a set of all structures that can be gener-
ated on the sub-scaffold Ss, containing only the first s sub-
stituted positions of the scaffold S (from position 0 to s). 
Given a compound x ∈ Ψ(S), the mass of x is designated 
as g(x) = Σ ws,j, and the probability of x that was gener-
ated by extending sidechains to the scaffold S is defined 
by f(x) = Π ps,j. (wmin, wmax, D) represents a set of mass 
information. [wmin, wmax] is the interval of masses corre-
sponding to the mass peak from the MS experiment in 
a mixture. This interval depends on the resolution of the 
mass spectrometer. D is the number of mass decimal dig-
its available for wmin and wmax. In the DP algorithm [20] 
for structure elucidation, the molecular weights (mass) 
has to be converted to a value of integers format multi-
plied by 10D. The converted value of mass will lead to no 
loss of significant digits in the DP algorithm.

Optimization problem
The processes of structure elucidation in a mixture can 
be represented by an optimization problem. In G.A.M.E., 

https://doi.org/10.5281/zenodo.237579
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the definition of the optimization problem is same with 
the CSCCP [20]. Given a scaffold S =  (n, K, W, P) and 
a mass peak M =  (wmin, wmax, D), the CSCCP is to find 
the top R most probable compounds in Ψ(S) having 
weights inside the interval [wmin, wmax]. We have noted 
that a scaffold might contain different configurations in 
“Datasets” section. In one CSCCP, we only manipulate 
one configuration of the scaffold. The CSCCP is to search 
optimal chemical structures, x ∈ Ψ(S), that extend the 
possible substituents to a configuration of the given scaf-
fold while maximizing the objective function, f(x), such 
that two constraints, x ∈ Ψ(S) and g(x) ∈ [wmin, wmax], are 
fulfilled. The R compounds, x ∈ Ψ(S) having highest val-
ues of f(x), and containing total weights between wmin and 
wmax are regarded as the best predicted structures in a 
CSCCP. The previous studies [20] used the DP algorithm 
to solve the optimization problem, and we modified the 
DP algorithm based on the GPU parallelism.

Transformed input (w′

min
, w′

max ,W
′)

Because the generated structures must be indexed by its 
weights in the design of DP algorithm, all mass values must be 
converted to integers by multiplying 10D in the program. We 
therefore define w′

min = wmin × 10D ∈ ℕ, w′
max = wmax × 10D 

∈ℕ, and W′ = {w′
s,j}s,j, such that w′

s,j = ws,j × 10D. (w′
min, w

′
max, 

W′) is the integer format of a mass peak.

Intermediated variables (C, L)
The DP algorithm used two important matrices to 
traverse a list of selected sidechains, and extend the 
sidechains to the given scaffold during the process of gen-
erating possible structures in a mixture: the cost matrix 
C =  {cs,w,r}s,w,r ∈ [0, 1](n×w′

max×R) and the sidechain infor-
mation matrix L  =  {ls,w,r}s,w,r ∈ 

[∣

∣0, h
∣

∣

]

[|0,R|](n×w′
max×R), 

with (s,w,r) ∈ [|0,n|] × [|0, w′
max |] × [|0,R|]. The value of 

cs,w,r represents the probability of the rth highest value of 
f(x) when only s out of n substituted positions on a given 
scaffold S has been traversed by the DP program, and the 
mass of compounds in Ψs(S) generated by the selected 
sidechains linking on the S is equal to w÷10D as well. w 
denotes the molecular weight ranging from 0 to w′

max in 
integer format. The DP algorithm iteratively evaluates the 
possible extended sidechains on scaffold S from position 
0 to s, and calculates the values in C for all the molecular 
weight from 0 to w′

max and R values from 0 to R for each 
s substituted positions. When all the values in C have 
been calculated by the DP algorithm, the generated com-
pounds with the values of cn,w,r, where w ∈ [w′

min, w
′
max], 

and r ∈ [0,R], are the optimal predicted results. The ls,w,r 
is the tuple 

(

ks,w,r , r
prev
s,w,r

)

, where ks,w,r is a sidechain index 
at position s of the compound in Ψs(S) with rth highest 
probability and total weight w, and rprevs,w,r is the rank of the 

compound in Ψs-1(S) with the total weight w − w′
s,ks,w,r

 
that was used to construct the rth compound in Ψs(S). 
ls,w,r were used to traverse a list of selected sidechains 
generating the cs,w,r in the DP algorithm. The detailed DP 
algorithm is introduced in the next section.

GPU algorithm implementation
To solve the CSCCP, the DP algorithm that was applied 
in our GPU system can be implemented in the following 
two phases.

First phase: the first phase comprises four imbricated 
loops indexed by (s,w,r,k). For a loop state, (s,w,r) ∈ 
[|0,n|] ×  [|0, w′

max|] ×  [|0,R|], we have k ∈ [|0,ks-1|]. In 
the first loop, the algorithm evaluates the values of C from 
position 0 to s on the given scaffold. At each iteration on 
s, the algorithm computes all the values cs,:,: = {cs,w,r|(w,r) 
∈ [|0, w′

max|] × [|0,R|]}. The second loop is the traverse of 
all possible weight w from 0 to w′

max. This aim is achieved 
as follows. For each possible weight w, the next (k,r) loops 
compute the set Tmp =

{(

k , r, ps,k × cs−1,w−w′
s,ks,w,r

)}

k .r
 . 

The set is then sorted according to the updated prob-
ability in the 3rd component of Tmp. Let (T0,T1,…,TR-1) 
be the highest R ranked elements for the Tmp calcula-
tion with the following notation: ∀r ∈ [|0,R|], Tr =  (t0

(r), 
t1
(r), t2

(r)), cs,w,r = t2
(r) and ls,w,r = (t0

(r),t1
(r)). Then, Tr is used to 

update C and L in each iteration.
This phase is the main computational part of the 

DP algorithm. Because the loop on w goes from 0 to 
w′
max =  wmax ×  10D, the complexity of the algorithm is 

proportional to 10D; for each additional decimal digit 
required, the running time extends ten times longer.

Second phase: the second phase outputs the final rank-
ing of the generated structures in the first phase corre-
sponding to the mass peak. The top R probabilities are 
simply the top R elements in the set {cn,w,r|(w,r) ∈ [|w′

min , 
w′
max|]  ×  [|0,R|]}. Because of a simple recursive back-

tracking algorithm, the matrix L can be used to compute 
the compound corresponding to each probability of the 
above top R probabilities. This phase is not computation-
ally demanding and does not require acceleration.

In the next sections, global memory and shared mem-
ory requirements for the DP algorithm [20] are analyzed. 
The memory usage is reduced by discarding unneces-
sary data after each iteration and applying a compression 
technique. Different parallelization schemes were then 
designed, and the best scheme was applied according to 
parameter constraint assessment (see Additional file  1). 
We evaluated those schemes on the basis of global mem-
ory requirements, shared memory requirements, mem-
ory access patterns and the amount of parallelism. For 
the experimental data analysis section, we compared the 
difference between the performance of our GPU algo-
rithm and that of the previous CPU version.
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Memory usage reduction
Given that the sizes of C and L matrix are proportional 
to 10D (as well as n and r), they become too large to 
fit in GPU memory for larger values of D. In fact, only 
certain values of C are required to be accessible at any 
time during the execution of the algorithm. At a loop 
state s, only the sub matrices cs-1,:,: and cs,:,: are used to 
update the matrix C; we denote these two matrices as 
C− =

{

C−
w,r

}

w,r
 and C+ =

{

C+
w,r

}

w,r
 respectively. At 

the iteration on position s, the size of C− and C+ are 
each w′

max × R. Since we used the C− and C+ to replace 
C, we only required 2  ×  w′

max  ×  R values instead of 
n × w′

max × R, thus representing 100(1 − 2/n)% of saved 
memory. Because the number of bytes per floating type 
value is 4, 8  × w′

max  ×  R bytes of global memory are 
used to store C. For a scaffold with 10 substituted posi-
tions, 80% of the memory can be reduced. On the other 
hand, all values of L from s = 0 to n must be kept in the 
device memory until the end of the execution because 
L must be traversed to retrieve the lists of the selected 
sidechains for generation of compounds having the high-
est probability values in C. To reduce memory usage, we 
designed a compression technique. We created a com-
pressed matrix Lc, denoted Lc =

{

lcw,r
}

w,r
, defined by 

∀(w, r), lcw,r = l1,w,r · l2,w,r · · · ln−1,w,r · ln,w,r , where ls,w,r  
refers to the binary code of ls,w,r, and denotes the string 
concatenation. For a given value (w,r), since each of ks,w,r 
and rprevs,w,r is declared as 16-bits integer in DP algorithm, 
we totally require n ×  32-bits integer to store n values 
of ks,w,r and rprevs,w,r without compression. In G.A.M.E., we 
merged totally n values of 

(

ks,w,r , r
prev
s,w,r

)

 (s =  0 to n for a 
given (w,r)) into two 32-bits integers. The number of 
bits required to store ks,w,r and rprevs,w,r are ⌊log2(ks) + 1⌋ and 
⌊log2(R) +  1⌋, respectively. By summation of the total n 
values of bits for 

(

ks,w,r , r
prev
s,w,r

)

, this compression tech-
nique were then be limited to the constraints described 
in Eqs. 1 and 2. After using the Lc compression technique, 
only two 32-bit integers are used for each l

c
w,r. Therefore, 

only 8 × w′
max × R bytes of global memory are needed to 

store L instead of 8 × n × w′
max × R bytes. In this case, 

100 (1 − 1/n)% memory is saved.

Parallelization on the GPU
According to the iterative nature of the dynamic pro-
gramming, it is not possible to parallelize over n in the 
first loop of the DP algorithm. Nevertheless, it would be 
possible to parallelize the DP program in the following 
designs: (a) have each block handle a range of w values, 

(1)
n−1
∑

s=0

⌊log2(ks)+ 1⌋ ≤ 32

(2)n⌊log2(R)+ 1⌋ ≤ 32

and have each thread in this block process a w value, (b) 
have each block handle a w value, and have each thread in 
this block process a k value, or (c) have each block handle 
a w value, and have each thread in this block process a r 
value. In this study, we implemented the GPU paralleliza-
tion based on the design (a) because it enabled the high-
est degree of parallelism. According to design (a), the 
pseudocode of our DP CUDA kernel is provided in Algo-
rithm 1 (Fig. 1). Each thread with thread index (thread-
Idx) processes Algorithm  1, and the loops for (k,r) ∈ 
[|0,h|] × [|0,R|] are implemented sequentially from lines 
6 to 17. BlockDim is the number of threads per block, and 
BlockIdx represents the Block index of the processing 
thread on threadIdx. Thus, the code in line 2 evaluates 
the required mass (molecular weight) that is processed 
by the thread on threadIdx. C−, C+ and Lc are allocated 
in the GPU global memory, whereas K, W′, P are stored 
in GPU Constant memory (i.e., the constant memory 
provides a cached access to constants). The pseudocode 
from lines 18 to 22 is similar to Su’s DP [20], which uses 
a sort algorithm to retrieve the top R values of Tr and 
updates the C and L matrices. The parameter limitations 
in the G.A.M.E. were described in the Additional file 1.

Fig. 1  The Algorithm 1 Kernel. The sharedMem variable is a pointer 
to the dynamically allocated shared memory. The push(X,y) function 
appends element y to array X and returns X. sort(X,R,i) returns the top 
R elements when the elements of X are sorted by their ith compo‑
nent. encode(X,s,y) writes the binary code of y at the sth offset of 
X
(

slog2(R)+
∑n

i=0
⌊log2(ki)+ 1⌋

)

 and returns X
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Results and discussion
Parameter tuning of GPU computing
Before exploiting the advantages of GPU computing, sev-
eral parameters must be determined to ensure the opti-
mal performance of G.A.M.E. We preliminarily analyzed 
our datasets and inferred the optimal values of R, D and 
wmax, which are all related to the memory usage and time 
complexity of G.A.M.E. Among them, R is the output 
number of structures, D is the number of decimal dig-
its of mass for computing, and wmax is the maximal total 
molecular weight of extended side chains on a given scaf-
fold. On the basis of the 83,242 scaffold files, the average 
number of summation of the molecular weights from all 
possible substituents in each compound was 89.42, and 
the average number of maximum possible sidechains of 
scaffolds, h, was 4. Additionally, the average number of 
required ranks, R, that matched the verified searched 
ground truth data among the four testing datasets was 8. 
To calculate the top R solutions of a given scaffold, the 
CSCCP program outputs R ×  Nr solutions, where Nr is 
the number of configurations in one given scaffold; on 
average, Nr is 5. According to the previous studies [20], 
the value of R in 3 is sufficient to identify the correct 
structures in four testing datasets. The number of deci-
mal digits, D, with a value of 5 is also sufficient to pro-
duce the real optimal solutions among the four testing 
cases. Therefore, the values 3, 5, and 500 for R, D, and 
wmax, respectively, were adequate to solve the CSCCP 
using our algorithm.

Performance of GPU‑based G.A.M.E. compared with that 
of CPU DP
To compare the performance of our G.A.M.E. algorithm 
with Su’s original CPU DP algorithm, analyses were 
performed on NPDB, with different D and number of 
threads per block in GPU kernel, as shown in Figs. 2 and 
3. Figure  2 illustrates that the acceleration of G.A.M.E. 
with respect to CPU DP becomes increasingly signifi-
cant as D increases and is the most significant at D = 5. 
The execution time was calculated from averaging the 
running time of 1713 suitable scaffolds from the NPDB. 
The parameters of ThreadsPerBlock, wmax, and R are set 
to 64, 500 and 3, respectively. As expected, the perfor-
mance of G.A.M.E. grew with the number of decimal 
digits, D, because the amount of computation is propor-
tional to 10D. By increasing the value of D, the amount of 
parallelism was maximized. When D = 0, the GPU was 
under-utilized, thus leading G.A.M.E. to be slower than 
the CPU DP. The average running time of G.A.M.E. was 
0.0108 s when D = 0, whereas the CPU DP average run-
ning time was 0.0029  s. When D =  5, the average run-
ning time of G.A.M.E. was 1.54  s. By comparison, CUP 
DP had an average running time of 146.77 s. In fact, the 

running time of CPU DP dramatically increased, whereas 
G.A.M.E. remained within an appropriate time when D 
increased. Overall, G.A.M.E. showed a successful hard-
ware-accelerated performance increase relative to the 
performance of Su’s original DP algorithm. Furthermore, 
since the accuracy of the DP algorithm has been demon-
strated by Su [20], and we did not change the core of the 
original DP algorithm [20] in the G.A.M.E. algorithm, 
our system must maintain the same accuracy.

Whereas Fig.  2 focused on the effect of the number 
of decimal digits, D, on performance, Fig.  3 shows that 
G.A.M.E. is stable in every case and provides over 64-fold 
acceleration when the number of threads per block in 
GPU kernel is 32. In the GPU programming environ-
ment, a GPU kernel launches a grid of thread blocks to 
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attain parallel computing. The number of threads in 
each thread block was denoted by ThreadsPerBlock in 
this study. ThreadsPerBlock will dominate both the time 
performance and memory limitation of the computa-
tion. (Detailed definition and relation of blocks, threads, 
and memory in GPU kernel was described in Additional 
file 1). For evaluation of time performance with different 
ThreadsPerBlock in G.A.M.E., the average running time 
in seconds was calculated by averaging the running time 
with samplings of 500 randomly chosen scaffold configu-
rations among the NPDB for cases with 32, 64, 128, 256 
and 512 threads per block. In all cases with more than 
32 threads per block, the running time was below 3  s, 
whereas Su’s CPU DP ran in 144  s on average. Among 
these cases, we obtained an average acceleration factor of 
82.38. Therefore, we can expect that for compounds with 
higher h and a larger wmax, the DP algorithm required 
longer execution time to solve CSCCP, whereas G.A.M.E. 
continued to execute in relatively lower running time. 
Given the different ThreadsPerBlock, the average execu-
tion time of G.A.M.E. were all similar, stable, and suffi-
ciently short to solve CSCCP in practical cases because of 
the successful parallel computations.

Optimal number of mass decimal digits for G.A.M.E.
To determine the applicability of our G.A.M.E. imple-
mentation, we first performed a series of tests to estimate 
what proportion of the NPDB scaffolds could be used 
as an input for G.A.M.E. We listed the different reasons 
causing the CSCCP to be non-feasible and evaluated the 
proportions of unique non-feasible cases. Table  1 illus-
trates the percentage of feasible cases within all con-
figurations of scaffolds of the NPDB for a target weight 
w′
max =  500 ×  10D and with the value of D increasing 

from 0 to 7. The feasible cases indicate the configura-
tions of given scaffolds that could be performed well in 
G.A.M.E., adhering to all hardware-imposed constraints. 
The proportions were obtained by analyzing 51,562 suit-
able configurations of all 83,242 scaffolds of the NPDB 
when wmax  =  500. We found that 99.28% of the cases 
were feasible for D ≤  5. For D =  6, only 32.94% of the 
cases were feasible, and for D = 7, the proportion of fea-
sible cases was 1.06%. In other words, cases with D values 
larger than 6 are beyond the limit of G.A.M.E. Never-
theless, the previous studies [20] showed that a value of 

D =  5 is sufficient to identify the correct structures in 
four testing datasets. It is unnecessary to waste the mem-
ory space and delay the execution time by using too many 
decimal digits, because statistically real solutions can still 
be output when D is less than 6.

We then analyzed the reason why some cases are not 
feasible, using the case in which wmax = 500. Table 2 illus-
trates the different types of problems distributed among 
non-feasible cases. Most of the cases were not feasible 
when D ≥  6 because the usage of total global memory 
exceeded maximal resource of the system. Furthermore, 
since the design of compression technique (described in 
“Memory usage reduction” section) for memory reduc-
tion in G.A.M.E. was limited in Eq. 1 and 2, the compres-
sion restraints made 369 configurations were not feasible 
in all cases of D.

Hardware‑imposed limitations
By means of hardware acceleration to speed up the CPU 
DP algorithm for CSCCP, certain parameters of the 
developed G.A.M.E. suffered from hardware-imposed 
constraints. Table  3 lists three types of constraints of 
the observed resources for different parameters on the 
NVIDIA® Tesla K40c. The first row in Table 3 shows the 
evaluated maximum molecular weight (wmax) for differ-
ent values in R and D, according to an assessment of the 
parameter constraints (see Additional file  1: Eq.  3). The 
wmax must be less than or equal to 2499 (Da) for R = 3, 
compared with 749 (Da) for R =  10. The total required 
global memory based on different R values when D = 5 
and wmax =  500 is listed in the second row of Table  3. 
Whenever the value of R is 3 or 10, the required memo-
ries (2.24 GB or 7.45 GB) are still under the capacity of 
the 11,440  MB global memory of the NVIDIA® Tesla 
K40c. From the parameter constraint assessment (See 
Additional file 1: Eq. 4), the possible maximum number 
of threads per block for parallel computation given by 
different R and h are shown in the third row of Table 3. 
Lower values of R and h correspond to a higher number 
of threads per block that the algorithm can execute for 
parallelization. To ensure stable computing, our algo-
rithm automatically calculates the possible maximum 
number of threads per block according to the parameters 

Table 1  The percentage of feasible cases within all config-
urations of scaffolds of the NPDBs

The statistics were obtained from all scaffolds of the NPDBs. Fixed parameters: 
wmax = 500

Number of decimal digits, D ≤5 6 7

Proportion of feasible cases (%) 99.28 32.94 1.06

Table 2  Statistics on non-feasible cases

The statistics were obtained on the non-feasible configurations of Table 1. Fixed 
parameters: wmax = 500

Configurations with specific problem types D ≤ 5 D = 6 D = 7

Insufficient global memory (Supp. Eq. 1) 0 34,209 50,646

Compression impossible (Eqs. 1 and 2) 369 0 0

Both problems 0 369 369

Total 369 34,578 51,015
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R and h. If there are cases that exceed the constraint 
of the maximum molecular weight (wmax  =  500) and 
the compression technique of Eqs.  1 and 2, the system 
ignores those non-feasible calculations.

Acceleration validation in real cases
In order to validate the accelerated G.A.M.E. system, we 
used four testing sets from real analysis data of four natural 
products: Cuscuta chinensis, Ophiopogon aponicas, Polygo-
num multiflorum, and Angelica sp. The execution time was 
calculated from averaging the running time of 10 random 
samplings of 20 cases in each sampling within these four 
testing datasets. The R parameter was set to 3; the wmax 
parameter was from molecular weights detected from 
real MS experiments; and the ThreadsPerBlock parameter 
was automatically calculated with the most blocks feasi-
ble calculated by the parameter assessment equation (see 
Additional file 1: Eq. 4). The speed up factors, the CPU DP 
average running time divided by GPU running time, was 
illustrated in Fig. 4. In this testing analysis, the GPU was 
under-utilized when D = 0. The average running time of 
G.A.M.E. was 0.0207 s when D = 0, whereas the CPU DP 
average running time was 0.0047  s. Although G.A.M.E. 
cannot show the improved performance when D = 0, the 
GPU programming showed the significant accelerations 
when D is greater than 0. When D = 5, the average run-
ning time of G.A.M.E. was 20.72 s. By comparison, CUP 
DP had an average running time of 324.16 s. As a result, in 
real cases that wmax values were set from real experiments, 
the G.A.M.E. also dramatically accelerated the perfor-
mance compared with Su’s original DP algorithm. In this 
section, we have sufficiently demonstrated that G.A.M.E. 
outperformed the process of the CSCCP problem in real 
cases, compared with the original DP algorithm.

Conclusions
Our G.A.M.E. method is executed in silico to predict the 
constituents of a mixture on the basis of its mass spec-
tral data by exploiting a scaffold database with sidechain 

probability information, such as Harn’s Natural Product 
Scaffold database. By harnessing the power of modern 
GPU graphic cards, G.A.M.E. outperforms Su’s DP algo-
rithm with an average acceleration factor of 33 in 99% of 
the cases. It can be applied to situations in which up to 
5 decimal digits are required. Our studies demonstrate 
three advantages in using a GPU-accelerated algorithm 
to solve CSCCP: (a) the algorithm can be implemented 
easily, (b) CSCCP can be appropriately divided into many 
small tasks to perform parallel computations, and (c) a 
stable running time is achieved. We conclude that our 
hardware-accelerated algorithm is an excellent method to 
solve CSCCP. As expected, with the rapid development 
of PC hardware, the use of GPU acceleration or even the 
application of distributed systems will be a practical way 
to directly and efficiently identify the components of an 
unknown mixture.
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