
Schurz et al. J Cheminform (2017) 9:50
DOI 10.1186/s13321-017-0238-7

RESEARCH ARTICLE

G.A.M.E.: GPU‑accelerated mixture
elucidator
Alioune Schurz1, Bo‑Han Su2, Yi‑Shu Tu1, Tony Tsung‑Yu Lu1, Olivia A. Lin1 and Yufeng J. Tseng1,2,3*

Abstract 

GPU acceleration is useful in solving complex chemical information problems. Identifying unknown structures from
the mass spectra of natural product mixtures has been a desirable yet unresolved issue in metabolomics. However,
this elucidation process has been hampered by complex experimental data and the inability of instruments to
completely separate different compounds. Fortunately, with current high-resolution mass spectrometry, one feasible
strategy is to define this problem as extending a scaffold database with sidechains of different probabilities to match
the high-resolution mass obtained from a high-resolution mass spectrum. By introducing a dynamic programming
(DP) algorithm, it is possible to solve this NP-complete problem in pseudo-polynomial time. However, the running
time of the DP algorithm grows by orders of magnitude as the number of mass decimal digits increases, thus limit‑
ing the boost in structural prediction capabilities. By harnessing the heavily parallel architecture of modern GPUs, we
designed a “compute unified device architecture” (CUDA)-based GPU-accelerated mixture elucidator (G.A.M.E.) that
considerably improves the performance of the DP, allowing up to five decimal digits for input mass data. As exempli‑
fied by four testing datasets with verified constitutions from natural products, G.A.M.E. allows for efficient and auto‑
matic structural elucidation of unknown mixtures for practical procedures.

Keywords:  Natural product, Mass spectrum, Structure elucidator, GPU acceleration

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Mass spectrometry (MS) is one of the most widely used
analytical methods for identifying the components of
unknown mixtures or natural products. Elucidation
of chemical structures, especially from natural prod-
ucts, is important to identify potential drug candidates
with fewer adverse effects and structural novelty for
drug discovery [1]. Mass spectra indicate the mass-to-
charge ratio of each component, and the amplitude of
each peak roughly represents the relative abundance of
the molecule. However, additional techniques such as
nuclear magnetic resonance (NMR) [2], a time-consum-
ing and complex procedure, are needed to fully identify
each component in the mixture. Furthermore, MS itself
cannot elucidate the structure of a partially or com-
pletely unknown compound [3–5]. Therefore, successful

structure elucidation of unknown compounds depends
on the development of advanced computational tools for
analyzing mass spectral data [6].

Several NMR-based expert systems have been devel-
oped to facilitate automated structure elucidation [7–
15]. This type of computer-aided structure elucidation
(CASE) approach suffers from the complex and time-
consuming nature of NMR experiments, which usually
involve multiple runs of different 2D NMR [16]. Moreo-
ver, the required NMR protocols may differ for different
compounds, especially those with few hydrogen atoms
or a diverse array of heteroatoms [14]. Additionally, the
limited sensitivity of NMR relative to vibrational spec-
troscopy and mass spectroscopy further limits the devel-
opment of high-throughput automated CASE expert
systems [17, 18]. Recently, Harn et al. [19] have developed
a new CASE method (NP-StructurePredictor) that can
efficiently and accurately predict individual components
in a mixture (The detailed method of NP-StructurePre-
dictor is included in the Additional file 1); this approach
is based on a model generated by referencing a collection

Open Access

*Correspondence: yjtseng@csie.ntu.edu.tw
2 Department of Computer Science and Information Engineering,
National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei 106,
Taiwan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-017-0238-7&domain=pdf

Page 2 of 9Schurz et al. J Cheminform (2017) 9:50

of 226,949 natural products. NP-StructurePredictor
divides each compound into a major scaffold and its side-
chains. The relationship between each scaffold is initially
constructed, and the probabilities of each sidechain on
different possible scaffolds are evaluated. The model then
takes the input seed scaffolds provided by users to match
scaffolds in the model and automatically generates a list
of most probable matching compounds sorted on the
basis of evaluated probabilities for a given mass peak. The
list is populated by combining possible sidechains at each
position of the scaffold and evaluating the probability of
the resulting compounds by using the natural products
database (NPDB) probability data. Only the resulting
compounds whose weight corresponds to the mass peak
are retained. Experiments involving real test cases have
shown that NP-StructurePredictor can correctly predict
most of the compounds in mixtures, but it does so in a
computationally inefficient manner.

The computational problem defined in the NP-Struc-
turePredictor system has been formally proven to be
NP-complete; it constitutes a chemical substituent core
combinatorial problem (CSCCP) [20]. Because of the
NP-completeness of CSCCPs, the branch and bound
strategy used in NP-StructurePredictor lead to long run-
ning time for complex scaffolds. To resolve this issue, Su
has developed a dynamic programming (DP) algorithm
[20] to increase computational efficiency (the detailed
method of DP algorithm is included in the Additional
file 1). Although the DP algorithm allowed optimization
of the NP-complete problem into pseudo-polynomial
time, the search for optimal solutions can still be com-
pleted in exponential time complexity in the worst-case
scenario. Each additional decimal digit of mass in the DP
algorithm increases the running time tenfold. For exam-
ple, the required computational time in the challenging
case of C. chinensis would exceed 1 month if the num-
ber of decimal digits was set to 5. For high-resolution
LC–MS experiments, the unreasonable execution time
required to elucidate unknown chemical structures based
on the DP strategy is still not functional in many cases.

To overcome the computational bottleneck of automat-
ically identifying chemical components of mixtures with
the DP algorithm, hardware acceleration via graphical
processing units (GPUs) can be directly used to substan-
tially improve the time performance. Indeed, the use of
GPUs has recently attracted broad attention in the field
of computer science. GPUs are not merely specialized
video rendering devices to assist in accelerating the visu-
alization of 3D graphics; they can also be used as a pro-
gramming interface to support high-performance parallel
computing [21]. The traditional CPU-based algorithm is
no longer an effective way to solve extremely computa-
tionally demanding tasks [22]. A modern GPU contains

thousands of efficient threads that can simultaneously
perform multitasking optimization. Consequently, GPU
methods are faster than conventional CPU methods and
can provide an increase of one or two orders of magni-
tude [23]. Most importantly, the CUDA programming
toolkit released by NVIDIA facilitates the development
of software parallelism via GPUs. CUDA is an exten-
sion of the standard C/C++-like programming language,
allowing researchers to implement and explore the paral-
lel computing ability of GPUs. An increasing number of
applications for GPU computing have been developed in
different fields of cheminformatics, including free energy
calculations [24], molecular docking [25, 26], molecular
dynamics simulations [27, 28], high-throughput screen-
ing [29], similarity searching [30], and classification [31].
Therefore, the use of massively GPU parallel architecture
is a feasible way to minimize the effects of NP-complete-
ness complexity in CSCCP.

In this study, we present a GPU-accelerated algorithm,
the GPU-accelerated mixture elucidator (G.A.M.E.), that
can efficiently promote performance improvements of
DP algorithms used to resolve chemical structures in the
mass spectra of an unknown mixture. G.A.M.E. is a novel
GPU-accelerated method implemented by the CUDA
toolkit on NVIDIA cards that uses the heavily parallel
architecture of modern GPUs. This method significantly
decreases the computational time when five decimal dig-
its of mass are required, thus allowing for efficient and
automatic structure elucidation in practical cases. All
datasets and source code of G.A.M.E. are available on
GitHub at https://github.com/CMDM-Lab/GAME.

Methods
The system architecture of G.A.M.E. is identical to the
DP algorithm in previous study other than the GPU
parallel programming in G.A.M.E. The system utilized
molecular weights calculated from a list of m/z values
obtained through LC–MS experiments as input informa-
tion to predict chemical structures matching the input
molecular weights in a mixture. Furthermore, possible
scaffold structures of the mixture can be provided to
the system to accelerate the prediction processes. When
possible scaffolds cannot be provided, G.A.M.E. is able
to apply all scaffolds collected in our database to search
for suitable candidates. After such prediction by the GPU
searching algorithm, a list of possible candidates in mix-
tures and their relative rankings will be provided. In the
previous studies, four Chinese herb mixtures with veri-
fied structures were used to validate the accuracy of the
NP-StructurePredictor system. Since G.A.M.E. is a new
GPU programming version of the previous system with
the same architecture, we will only focus on the improved
time performance of the system in this study.

https://github.com/CMDM-Lab/GAME

Page 3 of 9Schurz et al. J Cheminform (2017) 9:50

Datasets
The G.A.M.E. algorithm searches for possible compounds
matching the input molecular weights by expanding a
seed scaffold with suitable sidechains. For comparing
the feasibility and processing time between G.A.M.E.
and its original CPU version, a natural product database
(NPDB) was built from curating all of the known struc-
tures from the Dictionary of Natural Products (DNP)
[32], the “ZINC natural products” subset of ZINC [33],
and the Traditional Chinese Medicine Database [34]. The
scaffolds are the remaining core structures after all termi-
nal side chains have been deleted. Then, a total of 83,242
scaffold files were generated from the collected 243,130
natural products in the NPDB. The side chains excluded
from the natural products were separated curated as our
side chain database. Furthermore, we also analyzed pos-
sible sets of atoms (positions) on each scaffold structure
that can be linked by the side chains, and evaluated link-
ing probabilities of the sidechains to the scaffold. The
possible sets of positions on the scaffold were defined as
configuration of scaffolds, and were denoted by Nr in this
study. G.A.M.E. uses the configurations of the selected
scaffold by linking possible side chains to elucidate suit-
able chemical structures corresponding to the input
molecular weights of a mixture. All datasets are available
on GitHub at https://doi.org/10.5281/zenodo.237579.
After dataset curation, only 26,641 scaffold files are suit-
able for the following test with wmax = 500, with total
configuration number of 51,562.

In addition, for comparisons with the CPU DP algo-
rithm in real study cases, verified constitutions from four
natural products (Cuscuta chinensis, Ophiopogon japoni-
cus, Polygonum multiflorum and Angelica sp.) obtained
from the Natural Product Laboratory of Taiwan Medi-
cal and the Pharmaceutical Industry Technology and
Development Center were used as testing datasets. The
numbers of verified constitutions in the Cuscuta chinen-
sis, Ophiopogon japonicus, Polygonum multiflorum, and
Angelica sp. datasets were 5, 7, 7, and 45, respectively;
the corresponding molecular ranges were from 286.24 to
478.41, from 328.32 to 370.36, from 270.24 to 578.53 and
from 162.03 to 574.29, respectively.

GPU configuration
Computations were performed on an ASUS® ESC4000
G2 Server with two Intel® Xeon E5-2630 v2 processors
(3.10 GHz) running under CentOS 6.7. We used Python
2.7 and CUDA 7.5 in combination with PyCuda 2017.1.
Our graphic card was an NVIDIA® Tesla K40c with a
compute capability of 3.5, equipped with 15 streaming
multiprocessors of 192 cores each, 11,439 MB of global
memory and 49 kB of shared memory. The computational

resources were provided by Computer and Networking
Center, National Taiwan University.

Problem definitions
Before introducing the GPU algorithm in later sections,
we first defined notations used in the algorithms, and
illustrated the problem of structural elucidation in this
section.

Input data notations (n, wmin, wmax, D, R, K, h, W, P)
The algorithm takes as input nine parameters: six scalars
and three matrices. They are defined as follows: n ∈ ℕ,
wmin ∈ ℝ+, wmax ∈ ℝ+ (wmax ≥ wmin), D ∈ ℕ, R ∈ ℕ,
K = {k0, …, kn−1} ∈ ℕn, h = max(K), W = {ws,j}(s,j)∈[|0,n|]×[|

0,h−1|] ⊂ (ℝ+)h×n and P = {ps,j}(s,j)∈[|0,n|]×[|0,h−1|] ⊂ [0,1]h×n.
Moreover, we define ∀s∈[|0,n|], j ≥ ks ⇒ ps,j = ws,j = 0.
All necessary information in a scaffold used in G.A.M.E.
is represented by (n, K, W, P). n is the number of pos-
sible atoms (positions) in the scaffold that can be linked
by side chains. K = {k0, …, kn−1} contains the sidechain
counts, defined such that ks is the number of possible
sidechains that can be extended at a position s in the
scaffold. W = {ws,j}(s,j) represents molecular weights of
the possible extended sidechains, defined such that ws,j is
the weight of the jth sidechain at position s. P = {ps,j}(s,j)
denotes probabilities of the extended sidechains to the
scaffold, defined such that ps,j is the probability of the
jth sidechain linked at position s of the scaffold. Given a
scaffold, S = (n, K, W, P), Ψ(S) = [|0, k0 − 1|] × … × [|0,
kn−1 − 1|] is defined as a set of all structures that can be
generated by extending the possible sidechains on this
scaffold. Furthermore, Ψs(S) = [|0, k0 − 1|] × … × [|0,
ks − 1|] denotes a set of all structures that can be gener-
ated on the sub-scaffold Ss, containing only the first s sub-
stituted positions of the scaffold S (from position 0 to s).
Given a compound x ∈ Ψ(S), the mass of x is designated
as g(x) = Σ ws,j, and the probability of x that was gener-
ated by extending sidechains to the scaffold S is defined
by f(x) = Π ps,j. (wmin, wmax, D) represents a set of mass
information. [wmin, wmax] is the interval of masses corre-
sponding to the mass peak from the MS experiment in
a mixture. This interval depends on the resolution of the
mass spectrometer. D is the number of mass decimal dig-
its available for wmin and wmax. In the DP algorithm [20]
for structure elucidation, the molecular weights (mass)
has to be converted to a value of integers format multi-
plied by 10D. The converted value of mass will lead to no
loss of significant digits in the DP algorithm.

Optimization problem
The processes of structure elucidation in a mixture can
be represented by an optimization problem. In G.A.M.E.,

https://doi.org/10.5281/zenodo.237579

Page 4 of 9Schurz et al. J Cheminform (2017) 9:50

the definition of the optimization problem is same with
the CSCCP [20]. Given a scaffold S = (n, K, W, P) and
a mass peak M = (wmin, wmax, D), the CSCCP is to find
the top R most probable compounds in Ψ(S) having
weights inside the interval [wmin, wmax]. We have noted
that a scaffold might contain different configurations in
“Datasets” section. In one CSCCP, we only manipulate
one configuration of the scaffold. The CSCCP is to search
optimal chemical structures, x ∈ Ψ(S), that extend the
possible substituents to a configuration of the given scaf-
fold while maximizing the objective function, f(x), such
that two constraints, x ∈ Ψ(S) and g(x) ∈ [wmin, wmax], are
fulfilled. The R compounds, x ∈ Ψ(S) having highest val-
ues of f(x), and containing total weights between wmin and
wmax are regarded as the best predicted structures in a
CSCCP. The previous studies [20] used the DP algorithm
to solve the optimization problem, and we modified the
DP algorithm based on the GPU parallelism.

Transformed input (w′

min
, w′

max ,W
′)

Because the generated structures must be indexed by its
weights in the design of DP algorithm, all mass values must be
converted to integers by multiplying 10D in the program. We
therefore define w′

min = wmin × 10D ∈ ℕ, w′
max = wmax × 10D

∈ℕ, and W′ = {w′
s,j}s,j, such that w′

s,j = ws,j × 10D. (w′
min, w

′
max,

W′) is the integer format of a mass peak.

Intermediated variables (C, L)
The DP algorithm used two important matrices to
traverse a list of selected sidechains, and extend the
sidechains to the given scaffold during the process of gen-
erating possible structures in a mixture: the cost matrix
C = {cs,w,r}s,w,r ∈ [0, 1](n×w′

max×R) and the sidechain infor-
mation matrix L = {ls,w,r}s,w,r ∈

[∣

∣0, h
∣

∣

]

[|0,R|](n×w′
max×R),

with (s,w,r) ∈ [|0,n|] × [|0, w′
max |] × [|0,R|]. The value of

cs,w,r represents the probability of the rth highest value of
f(x) when only s out of n substituted positions on a given
scaffold S has been traversed by the DP program, and the
mass of compounds in Ψs(S) generated by the selected
sidechains linking on the S is equal to w÷10D as well. w
denotes the molecular weight ranging from 0 to w′

max in
integer format. The DP algorithm iteratively evaluates the
possible extended sidechains on scaffold S from position
0 to s, and calculates the values in C for all the molecular
weight from 0 to w′

max and R values from 0 to R for each
s substituted positions. When all the values in C have
been calculated by the DP algorithm, the generated com-
pounds with the values of cn,w,r, where w ∈ [w′

min, w
′
max],

and r ∈ [0,R], are the optimal predicted results. The ls,w,r
is the tuple

(

ks,w,r , r
prev
s,w,r

)

, where ks,w,r is a sidechain index
at position s of the compound in Ψs(S) with rth highest
probability and total weight w, and rprevs,w,r is the rank of the

compound in Ψs-1(S) with the total weight w − w′
s,ks,w,r

that was used to construct the rth compound in Ψs(S).
ls,w,r were used to traverse a list of selected sidechains
generating the cs,w,r in the DP algorithm. The detailed DP
algorithm is introduced in the next section.

GPU algorithm implementation
To solve the CSCCP, the DP algorithm that was applied
in our GPU system can be implemented in the following
two phases.

First phase: the first phase comprises four imbricated
loops indexed by (s,w,r,k). For a loop state, (s,w,r) ∈
[|0,n|] × [|0, w′

max|] × [|0,R|], we have k ∈ [|0,ks-1|]. In
the first loop, the algorithm evaluates the values of C from
position 0 to s on the given scaffold. At each iteration on
s, the algorithm computes all the values cs,:,: = {cs,w,r|(w,r)
∈ [|0, w′

max|] × [|0,R|]}. The second loop is the traverse of
all possible weight w from 0 to w′

max. This aim is achieved
as follows. For each possible weight w, the next (k,r) loops
compute the set Tmp =

{(

k , r, ps,k × cs−1,w−w′
s,ks,w,r

)}

k .r
 .

The set is then sorted according to the updated prob-
ability in the 3rd component of Tmp. Let (T0,T1,…,TR-1)
be the highest R ranked elements for the Tmp calcula-
tion with the following notation: ∀r ∈ [|0,R|], Tr = (t0

(r),
t1
(r), t2

(r)), cs,w,r = t2
(r) and ls,w,r = (t0

(r),t1
(r)). Then, Tr is used to

update C and L in each iteration.
This phase is the main computational part of the

DP algorithm. Because the loop on w goes from 0 to
w′
max = wmax × 10D, the complexity of the algorithm is

proportional to 10D; for each additional decimal digit
required, the running time extends ten times longer.

Second phase: the second phase outputs the final rank-
ing of the generated structures in the first phase corre-
sponding to the mass peak. The top R probabilities are
simply the top R elements in the set {cn,w,r|(w,r) ∈ [|w′

min ,
w′
max|] × [|0,R|]}. Because of a simple recursive back-

tracking algorithm, the matrix L can be used to compute
the compound corresponding to each probability of the
above top R probabilities. This phase is not computation-
ally demanding and does not require acceleration.

In the next sections, global memory and shared mem-
ory requirements for the DP algorithm [20] are analyzed.
The memory usage is reduced by discarding unneces-
sary data after each iteration and applying a compression
technique. Different parallelization schemes were then
designed, and the best scheme was applied according to
parameter constraint assessment (see Additional file 1).
We evaluated those schemes on the basis of global mem-
ory requirements, shared memory requirements, mem-
ory access patterns and the amount of parallelism. For
the experimental data analysis section, we compared the
difference between the performance of our GPU algo-
rithm and that of the previous CPU version.

Page 5 of 9Schurz et al. J Cheminform (2017) 9:50

Memory usage reduction
Given that the sizes of C and L matrix are proportional
to 10D (as well as n and r), they become too large to
fit in GPU memory for larger values of D. In fact, only
certain values of C are required to be accessible at any
time during the execution of the algorithm. At a loop
state s, only the sub matrices cs-1,:,: and cs,:,: are used to
update the matrix C; we denote these two matrices as
C− =

{

C−
w,r

}

w,r
 and C+ =

{

C+
w,r

}

w,r
 respectively. At

the iteration on position s, the size of C− and C+ are
each w′

max × R. Since we used the C− and C+ to replace
C, we only required 2 × w′

max × R values instead of
n × w′

max × R, thus representing 100(1 − 2/n)% of saved
memory. Because the number of bytes per floating type
value is 4, 8 × w′

max × R bytes of global memory are
used to store C. For a scaffold with 10 substituted posi-
tions, 80% of the memory can be reduced. On the other
hand, all values of L from s = 0 to n must be kept in the
device memory until the end of the execution because
L must be traversed to retrieve the lists of the selected
sidechains for generation of compounds having the high-
est probability values in C. To reduce memory usage, we
designed a compression technique. We created a com-
pressed matrix Lc, denoted Lc =

{

lcw,r
}

w,r
, defined by

∀(w, r), lcw,r = l1,w,r · l2,w,r · · · ln−1,w,r · ln,w,r , where ls,w,r
refers to the binary code of ls,w,r, and denotes the string
concatenation. For a given value (w,r), since each of ks,w,r
and rprevs,w,r is declared as 16-bits integer in DP algorithm,
we totally require n × 32-bits integer to store n values
of ks,w,r and rprevs,w,r without compression. In G.A.M.E., we
merged totally n values of

(

ks,w,r , r
prev
s,w,r

)

 (s = 0 to n for a
given (w,r)) into two 32-bits integers. The number of
bits required to store ks,w,r and rprevs,w,r are ⌊log2(ks) + 1⌋ and
⌊log2(R) + 1⌋, respectively. By summation of the total n
values of bits for

(

ks,w,r , r
prev
s,w,r

)

, this compression tech-
nique were then be limited to the constraints described
in Eqs. 1 and 2. After using the Lc compression technique,
only two 32-bit integers are used for each l

c
w,r. Therefore,

only 8 × w′
max × R bytes of global memory are needed to

store L instead of 8 × n × w′
max × R bytes. In this case,

100 (1 − 1/n)% memory is saved.

Parallelization on the GPU
According to the iterative nature of the dynamic pro-
gramming, it is not possible to parallelize over n in the
first loop of the DP algorithm. Nevertheless, it would be
possible to parallelize the DP program in the following
designs: (a) have each block handle a range of w values,

(1)
n−1
∑

s=0

⌊log2(ks)+ 1⌋ ≤ 32

(2)n⌊log2(R)+ 1⌋ ≤ 32

and have each thread in this block process a w value, (b)
have each block handle a w value, and have each thread in
this block process a k value, or (c) have each block handle
a w value, and have each thread in this block process a r
value. In this study, we implemented the GPU paralleliza-
tion based on the design (a) because it enabled the high-
est degree of parallelism. According to design (a), the
pseudocode of our DP CUDA kernel is provided in Algo-
rithm 1 (Fig. 1). Each thread with thread index (thread-
Idx) processes Algorithm 1, and the loops for (k,r) ∈
[|0,h|] × [|0,R|] are implemented sequentially from lines
6 to 17. BlockDim is the number of threads per block, and
BlockIdx represents the Block index of the processing
thread on threadIdx. Thus, the code in line 2 evaluates
the required mass (molecular weight) that is processed
by the thread on threadIdx. C−, C+ and Lc are allocated
in the GPU global memory, whereas K, W′, P are stored
in GPU Constant memory (i.e., the constant memory
provides a cached access to constants). The pseudocode
from lines 18 to 22 is similar to Su’s DP [20], which uses
a sort algorithm to retrieve the top R values of Tr and
updates the C and L matrices. The parameter limitations
in the G.A.M.E. were described in the Additional file 1.

Fig. 1  The Algorithm 1 Kernel. The sharedMem variable is a pointer
to the dynamically allocated shared memory. The push(X,y) function
appends element y to array X and returns X. sort(X,R,i) returns the top
R elements when the elements of X are sorted by their ith compo‑
nent. encode(X,s,y) writes the binary code of y at the sth offset of
X
(

slog2(R)+
∑n

i=0
⌊log2(ki)+ 1⌋

)

 and returns X

Page 6 of 9Schurz et al. J Cheminform (2017) 9:50

Results and discussion
Parameter tuning of GPU computing
Before exploiting the advantages of GPU computing, sev-
eral parameters must be determined to ensure the opti-
mal performance of G.A.M.E. We preliminarily analyzed
our datasets and inferred the optimal values of R, D and
wmax, which are all related to the memory usage and time
complexity of G.A.M.E. Among them, R is the output
number of structures, D is the number of decimal dig-
its of mass for computing, and wmax is the maximal total
molecular weight of extended side chains on a given scaf-
fold. On the basis of the 83,242 scaffold files, the average
number of summation of the molecular weights from all
possible substituents in each compound was 89.42, and
the average number of maximum possible sidechains of
scaffolds, h, was 4. Additionally, the average number of
required ranks, R, that matched the verified searched
ground truth data among the four testing datasets was 8.
To calculate the top R solutions of a given scaffold, the
CSCCP program outputs R × Nr solutions, where Nr is
the number of configurations in one given scaffold; on
average, Nr is 5. According to the previous studies [20],
the value of R in 3 is sufficient to identify the correct
structures in four testing datasets. The number of deci-
mal digits, D, with a value of 5 is also sufficient to pro-
duce the real optimal solutions among the four testing
cases. Therefore, the values 3, 5, and 500 for R, D, and
wmax, respectively, were adequate to solve the CSCCP
using our algorithm.

Performance of GPU‑based G.A.M.E. compared with that
of CPU DP
To compare the performance of our G.A.M.E. algorithm
with Su’s original CPU DP algorithm, analyses were
performed on NPDB, with different D and number of
threads per block in GPU kernel, as shown in Figs. 2 and
3. Figure 2 illustrates that the acceleration of G.A.M.E.
with respect to CPU DP becomes increasingly signifi-
cant as D increases and is the most significant at D = 5.
The execution time was calculated from averaging the
running time of 1713 suitable scaffolds from the NPDB.
The parameters of ThreadsPerBlock, wmax, and R are set
to 64, 500 and 3, respectively. As expected, the perfor-
mance of G.A.M.E. grew with the number of decimal
digits, D, because the amount of computation is propor-
tional to 10D. By increasing the value of D, the amount of
parallelism was maximized. When D = 0, the GPU was
under-utilized, thus leading G.A.M.E. to be slower than
the CPU DP. The average running time of G.A.M.E. was
0.0108 s when D = 0, whereas the CPU DP average run-
ning time was 0.0029 s. When D = 5, the average run-
ning time of G.A.M.E. was 1.54 s. By comparison, CUP
DP had an average running time of 146.77 s. In fact, the

running time of CPU DP dramatically increased, whereas
G.A.M.E. remained within an appropriate time when D
increased. Overall, G.A.M.E. showed a successful hard-
ware-accelerated performance increase relative to the
performance of Su’s original DP algorithm. Furthermore,
since the accuracy of the DP algorithm has been demon-
strated by Su [20], and we did not change the core of the
original DP algorithm [20] in the G.A.M.E. algorithm,
our system must maintain the same accuracy.

Whereas Fig. 2 focused on the effect of the number
of decimal digits, D, on performance, Fig. 3 shows that
G.A.M.E. is stable in every case and provides over 64-fold
acceleration when the number of threads per block in
GPU kernel is 32. In the GPU programming environ-
ment, a GPU kernel launches a grid of thread blocks to

 0.276
 1.951

14.337

48.797

75.037
86.593

0

25

50

75

0 1 2 3 4 5

Number of Decimal Digits, D

S
pe

ed
 U

p
Fa

ct
or

Fig. 2  Acceleration of G.A.M.E. relative to Su’s CPU DP as a function of
the number of decimal digits, D. Each data point is obtained by aver‑
aging the running time of 1713 suitable scaffolds from the NPDBs.
Fixed parameters: ThreadsPerBlock = 64

8.01

513.39

2.72

265.82

1.52

153.75

1.09

87.84

0.98

66.65

0

100

200

300

400

500

32 64 128 256 512

Number of Threads per Block

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

CPU DP GAME

Fig. 3  Running time of G.A.M.E. compared with Su’s CPU DP. Each
bar was obtained by averaging the running time of the 500 different
randomly selected scaffold configurations from the NPDBs, sharing
the same number of threads per block. Fixed parameters: D = 5,
wmax = 500

Page 7 of 9Schurz et al. J Cheminform (2017) 9:50

attain parallel computing. The number of threads in
each thread block was denoted by ThreadsPerBlock in
this study. ThreadsPerBlock will dominate both the time
performance and memory limitation of the computa-
tion. (Detailed definition and relation of blocks, threads,
and memory in GPU kernel was described in Additional
file 1). For evaluation of time performance with different
ThreadsPerBlock in G.A.M.E., the average running time
in seconds was calculated by averaging the running time
with samplings of 500 randomly chosen scaffold configu-
rations among the NPDB for cases with 32, 64, 128, 256
and 512 threads per block. In all cases with more than
32 threads per block, the running time was below 3 s,
whereas Su’s CPU DP ran in 144 s on average. Among
these cases, we obtained an average acceleration factor of
82.38. Therefore, we can expect that for compounds with
higher h and a larger wmax, the DP algorithm required
longer execution time to solve CSCCP, whereas G.A.M.E.
continued to execute in relatively lower running time.
Given the different ThreadsPerBlock, the average execu-
tion time of G.A.M.E. were all similar, stable, and suffi-
ciently short to solve CSCCP in practical cases because of
the successful parallel computations.

Optimal number of mass decimal digits for G.A.M.E.
To determine the applicability of our G.A.M.E. imple-
mentation, we first performed a series of tests to estimate
what proportion of the NPDB scaffolds could be used
as an input for G.A.M.E. We listed the different reasons
causing the CSCCP to be non-feasible and evaluated the
proportions of unique non-feasible cases. Table 1 illus-
trates the percentage of feasible cases within all con-
figurations of scaffolds of the NPDB for a target weight
w′
max = 500 × 10D and with the value of D increasing

from 0 to 7. The feasible cases indicate the configura-
tions of given scaffolds that could be performed well in
G.A.M.E., adhering to all hardware-imposed constraints.
The proportions were obtained by analyzing 51,562 suit-
able configurations of all 83,242 scaffolds of the NPDB
when wmax = 500. We found that 99.28% of the cases
were feasible for D ≤ 5. For D = 6, only 32.94% of the
cases were feasible, and for D = 7, the proportion of fea-
sible cases was 1.06%. In other words, cases with D values
larger than 6 are beyond the limit of G.A.M.E. Never-
theless, the previous studies [20] showed that a value of

D = 5 is sufficient to identify the correct structures in
four testing datasets. It is unnecessary to waste the mem-
ory space and delay the execution time by using too many
decimal digits, because statistically real solutions can still
be output when D is less than 6.

We then analyzed the reason why some cases are not
feasible, using the case in which wmax = 500. Table 2 illus-
trates the different types of problems distributed among
non-feasible cases. Most of the cases were not feasible
when D ≥ 6 because the usage of total global memory
exceeded maximal resource of the system. Furthermore,
since the design of compression technique (described in
“Memory usage reduction” section) for memory reduc-
tion in G.A.M.E. was limited in Eq. 1 and 2, the compres-
sion restraints made 369 configurations were not feasible
in all cases of D.

Hardware‑imposed limitations
By means of hardware acceleration to speed up the CPU
DP algorithm for CSCCP, certain parameters of the
developed G.A.M.E. suffered from hardware-imposed
constraints. Table 3 lists three types of constraints of
the observed resources for different parameters on the
NVIDIA® Tesla K40c. The first row in Table 3 shows the
evaluated maximum molecular weight (wmax) for differ-
ent values in R and D, according to an assessment of the
parameter constraints (see Additional file 1: Eq. 3). The
wmax must be less than or equal to 2499 (Da) for R = 3,
compared with 749 (Da) for R = 10. The total required
global memory based on different R values when D = 5
and wmax = 500 is listed in the second row of Table 3.
Whenever the value of R is 3 or 10, the required memo-
ries (2.24 GB or 7.45 GB) are still under the capacity of
the 11,440 MB global memory of the NVIDIA® Tesla
K40c. From the parameter constraint assessment (See
Additional file 1: Eq. 4), the possible maximum number
of threads per block for parallel computation given by
different R and h are shown in the third row of Table 3.
Lower values of R and h correspond to a higher number
of threads per block that the algorithm can execute for
parallelization. To ensure stable computing, our algo-
rithm automatically calculates the possible maximum
number of threads per block according to the parameters

Table 1  The percentage of feasible cases within all config-
urations of scaffolds of the NPDBs

The statistics were obtained from all scaffolds of the NPDBs. Fixed parameters:
wmax = 500

Number of decimal digits, D ≤5 6 7

Proportion of feasible cases (%) 99.28 32.94 1.06

Table 2  Statistics on non-feasible cases

The statistics were obtained on the non-feasible configurations of Table 1. Fixed
parameters: wmax = 500

Configurations with specific problem types D ≤ 5 D = 6 D = 7

Insufficient global memory (Supp. Eq. 1) 0 34,209 50,646

Compression impossible (Eqs. 1 and 2) 369 0 0

Both problems 0 369 369

Total 369 34,578 51,015

Page 8 of 9Schurz et al. J Cheminform (2017) 9:50

R and h. If there are cases that exceed the constraint
of the maximum molecular weight (wmax = 500) and
the compression technique of Eqs. 1 and 2, the system
ignores those non-feasible calculations.

Acceleration validation in real cases
In order to validate the accelerated G.A.M.E. system, we
used four testing sets from real analysis data of four natural
products: Cuscuta chinensis, Ophiopogon aponicas, Polygo-
num multiflorum, and Angelica sp. The execution time was
calculated from averaging the running time of 10 random
samplings of 20 cases in each sampling within these four
testing datasets. The R parameter was set to 3; the wmax
parameter was from molecular weights detected from
real MS experiments; and the ThreadsPerBlock parameter
was automatically calculated with the most blocks feasi-
ble calculated by the parameter assessment equation (see
Additional file 1: Eq. 4). The speed up factors, the CPU DP
average running time divided by GPU running time, was
illustrated in Fig. 4. In this testing analysis, the GPU was
under-utilized when D = 0. The average running time of
G.A.M.E. was 0.0207 s when D = 0, whereas the CPU DP
average running time was 0.0047 s. Although G.A.M.E.
cannot show the improved performance when D = 0, the
GPU programming showed the significant accelerations
when D is greater than 0. When D = 5, the average run-
ning time of G.A.M.E. was 20.72 s. By comparison, CUP
DP had an average running time of 324.16 s. As a result, in
real cases that wmax values were set from real experiments,
the G.A.M.E. also dramatically accelerated the perfor-
mance compared with Su’s original DP algorithm. In this
section, we have sufficiently demonstrated that G.A.M.E.
outperformed the process of the CSCCP problem in real
cases, compared with the original DP algorithm.

Conclusions
Our G.A.M.E. method is executed in silico to predict the
constituents of a mixture on the basis of its mass spec-
tral data by exploiting a scaffold database with sidechain

probability information, such as Harn’s Natural Product
Scaffold database. By harnessing the power of modern
GPU graphic cards, G.A.M.E. outperforms Su’s DP algo-
rithm with an average acceleration factor of 33 in 99% of
the cases. It can be applied to situations in which up to
5 decimal digits are required. Our studies demonstrate
three advantages in using a GPU-accelerated algorithm
to solve CSCCP: (a) the algorithm can be implemented
easily, (b) CSCCP can be appropriately divided into many
small tasks to perform parallel computations, and (c) a
stable running time is achieved. We conclude that our
hardware-accelerated algorithm is an excellent method to
solve CSCCP. As expected, with the rapid development
of PC hardware, the use of GPU acceleration or even the
application of distributed systems will be a practical way
to directly and efficiently identify the components of an
unknown mixture.

Abbreviations
G.A.M.E.: GPU-accelerated mixture elucidator; DP: dynamic programming;
CUDA: compute unified device architecture; MS: mass spectrometry; NMR:
nuclear magnetic resonance; CASE: computer-aided structure elucidation;
NPDB: natural products database; CSCCP: chemical substituent core combina‑
torial problem; VGA: video graphics array.

Authors’ contributions
AS designed and implemented the algorithm. AS, BHS, and YST ran tests. YJT
provided guidance to the work. AS drafted the manuscript. BHS, YST, TTL,
OAL, and YJT revised the manuscript. All authors read and approved the final
manuscript.

Additional file

Additional file 1. Contains the supplementary information of the manu‑
script. This includes (1) overview of GPU programming framework with
CUDA; (2) parameter limitations assessment imposed by hardware; (3) an
introduction for the prediction procedure in NP-StructurePredictor; (4) an
introduction of dynamic algorithm for structure elucidation.

Table 3  Parameter constraints on the NVIDIA® Tesla K40c

Resources Constraints Parameters

Target weight (wmax) ≤2499 Da R = 3, D = 5

≤749 Da R = 10, D = 5

Memory usage 2.24 GB R = 3, D = 5, wmax = 500

7.45 GB R = 10, D = 5, wmax = 500

Number of threads per block
(ThreadsPerBlock)

≤512 R = 2, h = 4

≤256 R = 3, h = 5

≤128 R = 3, h = 10

≤64 R = 6, h = 10

≤32 R = 10, h = 10

 0.251
 1.243

 5.792

19.346

29.868
33.092

0

10

20

30

0 1 2 3 4 5

Number of Decimal Digits, D

S
pe

ed
 U

p
Fa

ct
or

Fig. 4  Acceleration of G.A.M.E. relative to Su’s CPU DP as a function
of the number of decimal digits, D. Each data point is obtained by
averaging the running time of 200 randomly sampled scaffolds and
molecular mass combinations from the four natural products

http://dx.doi.org/10.1186/s13321-017-0238-7

Page 9 of 9Schurz et al. J Cheminform (2017) 9:50

Author details
1 Graduate Institute of Biomedical Electronics and Bioinformatics, National
Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei 106, Taiwan. 2 Depart‑
ment of Computer Science and Information Engineering, National Taiwan
University, No. 1 Sec. 4, Roosevelt Road, Taipei 106, Taiwan. 3 Drug Research
Center, National Taiwan University College of Medicine, No. 1 Sec. 1, Jen Ai
Rord, Taipei 106, Taiwan.

Acknowledgements
The authors thank Yuan Ling Ku, Ph.D. (Medical and Pharmaceutical Industry
Technology and Development) for providing the natural product test cases
used in our experiments. The authors are also grateful to Computer and
Information Networking Center, National Taiwan University for the support of
high-performance computing facilities.

Competing interests
The authors declare that they have no competing interests.

Funding
Taiwan Ministry of Science and Technology (105-3011-F-002-010-) and the
Department of Computer Science and Information Engineering of National
Taiwan University.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 12 January 2017 Accepted: 5 September 2017

References
	1.	 Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural

products for drug discovery in the genomics era. Nat Rev Drug Discov
14(2):111–129

	2.	 Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of
plants. Nat Protoc 5(3):536–549

	3.	 Corcoran O, Mortensen RW, Hansen SH, Troke J, Nicholson JK (2001)
HPLC/1H NMR spectroscopic studies of the reactive alpha-1-O-acyl
isomer formed during acyl migration of S-naproxen beta-1-O-acyl glucu‑
ronide. Chem Res Toxicol 14(10):1363–1370

	4.	 Corcoran O, Spraul M (2003) LC-NMR-MS in drug discovery. Drug Discov
Today 8(14):624–631

	5.	 van der Hooft JJJ, Mihaleva V, de Vos RCH, Bino RJ, Vervoort J (2011) A
strategy for fast structural elucidation of metabolites in small volume
plant extracts using automated MS-guided LC-MS-SPE-NMR. Magn Reson
Chem 49:S55–S60

	6.	 Kind T, Fiehn O (2010) Advances in structure elucidation of small mol‑
ecules using mass spectrometry. Bioanal Rev 2(1–4):23–60

	7.	 Elyashberg ME, Gribov LA (1968) Formal-logical method for interpret‑
ing infrared spectra from characteristic frequencies. J Appl Spectrosc
8(2):189–191

	8.	 Lederberg J, Sutherland GL, Buchanan BG, Feigenbaum EA, Robertson AV,
Duffield AM et al (1969) Applications of artificial intelligence for chemical
inference. I. The number of possible organic compounds. Acyclic struc‑
tures containing C, H, O, and N. J Am Chem Soc 91(11):2973–2976

	9.	 Nelson DB, Munk ME, Gash KB, Herald DL (1969) Alanylactinobicyclone.
Application of computer techniques to structure elucidation. J Org Chem
34(12):3800–3805

	10.	 Sasaki S, Abe H, Ouki T, Sakamoto M, Ochiai S (1968) Automated structure
elucidation of several kinds of aliphatic and alicyclic compounds. Anal
Chem 40(14):2220–2223

	11.	 Christie BD, Munk ME (1991) The role of 2-dimensional nuclear-magnetic-
resonance spectroscopy in computer-enhanced structure elucidation. J
Am Chem Soc 113(10):3750–3757

	12.	 Peng C, Yuan SG, Zheng CZ, Hui YZ (1994) Efficient application of 2D NMR
correlation information in computer-assisted structure elucidation of
complex natural-products. J Chem Inf Comput Sci 34(4):805–813

	13.	 Lindel T, Junker J, Kock M (1999) 2D-NMR-guided constitutional analysis
of organic compounds employing the computer program COCON. Eur J
Org Chem 3:573–577

	14.	 Blinov KA, Carlson D, Elyashberg ME, Martin GE, Martirosian ER, Molodtsov
S et al (2003) Computer-assisted structure elucidation of natural products
with limited 2D NMR data: application of the StrucEluc system. Magn
Reson Chem 41(5):359–372

	15.	 Elyashberg ME, Blinov KA, Williams AJ, Molodtsov SG, Martin GE,
Martirosian ER (2004) Structure elucidator: a versatile expert system for
molecular structure elucidation from 1D and 2D NMR data and molecular
fragments. J Chem Inf Comput Sci 44(3):771–792

	16.	 Elyashberg ME, Williams A, Martin GE (2008) Computer-assisted structure
verification and elucidation tools in NMR-based structure elucidation.
Prog Nucl Magn Reson Spectrosc 53(1–2):1–104

	17.	 Butler MS (2004) The role of natural product chemistry in drug discovery.
J Nat Prod 67(12):2141–2153

	18.	 Elyashberg M, Blinov K, Molodtsov S, Williams A (2012) Elucidating
‘undecipherable’ chemical structures using computer-assisted structure
elucidation approaches. Magn Reson Chem 50(1):22–27

	19.	 Harn Y-C (2011) Structure hunter: prediction of novel chemical structures
in a mixture [Master Dissertation]. Taipei, Taiwan: National Taiwan
University

	20.	 Su B-H (2012) A chemical substituents-core combinatorial optimization
and hERG toxicity prediction in drug design [Ph.D. Dissertation]. Taipei,
Taiwan: National Taiwan University

	21.	 Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC (2008) GPU
computing. Proc IEEE 96(5):879–899

	22.	 Asanovic K, Bodik R, Demmel J, Keaveny T, Keutzer K, Kubiatowicz J
et al (2009) A view of the parallel computing landscape. Commun ACM
52(10):56–67

	23.	 Owens JD, Luebke D, Govindaraju N, Harris M, Kruger J, Lefohn AE et al
(2007) A survey of general-purpose computation on graphics hardware.
Comput Graph Forum 26(1):80–113

	24.	 Miao Y, Sinko W, Pierce L, Bucher D, Walker RC, McCammon JA (2014)
Improved reweighting of accelerated molecular dynamics simulations for
free energy calculation. J Chem Theory Comput 10(7):2677–2689

	25.	 Clark AJ, Tiwary P, Borrelli K, Feng S, Miller EB, Abel R et al (2016) Prediction
of protein-ligand binding poses via a combination of induced fit docking
and metadynamics simulations. J Chem Theory Comput 12(6):2990–2998

	26.	 Gowthaman R, Lyskov S, Karanicolas J (2015) DARC, 2.0: improved
docking and virtual screening at protein interaction sites. PLoS ONE
10(7):e0131612

	27.	 Galindo-Murillo R, Roe DR, Cheatham TE III (2014) On the absence of
intrahelical DNA dynamics on the μs to ms timescale. Nat Commun
5:5152

	28.	 Chen W, Zhu Y, Cui F, Liu L, Sun Z, Chen J et al (2016) GPU-accelerated
molecular dynamics simulation to study liquid crystal phase transi‑
tion using coarse-grained gay-berne anisotropic potential. PLoS ONE
11(3):e0151704

	29.	 Johnson DK, Karanicolas J (2016) Ultra-high-throughput structure-based
virtual screening for small-molecule inhibitors of protein–protein interac‑
tions. J Chem Inf Model 56(2):399–411

	30.	 Korpar M, Šošić M, Blažeka D, Šikić M (2015) SW# db: GPU-accelerated
exact sequence similarity database search. PLoS ONE 10(12):e0145857

	31.	 Tyzack JD, Mussa HY, Williamson MJ, Kirchmair J, Glen RC (2014)
Cytochrome P450 site of metabolism prediction from 2D topological
fingerprints using GPU accelerated probabilistic classifiers. J Cheminform
6:29

	32.	 (2010) The Dictionary of Natural Products database is available from
Chapman & Hall/CRC. http://dnp.chemnetbase.com/ [updated 2017;
cited 2017]

	33.	 Irwin JJ, Shoichet BK (2004) ZINC—a free database of commercially avail‑
able compounds for virtual screening. J Chem Inf Model 45:177–182

	34.	 Chen CY-C (2011) TCM Database@Taiwan: the world’s largest traditional
Chinese medicine database for drug screening in silico. PLOS One
6:e15939

http://dnp.chemnetbase.com/

	G.A.M.E.: GPU-accelerated mixture elucidator
	Abstract
	Background
	Methods
	Datasets
	GPU configuration
	Problem definitions
	Input data notations (n, wmin, wmax, D, R, K, h, W, P)
	Optimization problem
	Transformed input (,)
	Intermediated variables (C, L)

	GPU algorithm implementation
	Memory usage reduction
	Parallelization on the GPU

	Results and discussion
	Parameter tuning of GPU computing
	Performance of GPU-based G.A.M.E. compared with that of CPU DP
	Optimal number of mass decimal digits for G.A.M.E.
	Hardware-imposed limitations
	Acceleration validation in real cases

	Conclusions
	Authors’ contributions
	References

