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Abstract 

Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such 
as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these 
traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly 
reducing the total time and resources required for their production, and in turn, allows these valuable compounds to 
become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications 
have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, 
the recent rapid development of available metabolic information has enabled the development of automated 
approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists 
time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics 
used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information 
on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. 
No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the 
pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfind-
ing approaches continue to become more sophisticated, the development of better methods for visualizing pathway 
results and integrating these results into existing metabolic engineering practices is also important for encouraging 
wider use of these pathfinding methods.
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Background
Metabolic engineering is the scientific process of manip-
ulating the metabolism of a microorganism to produce 
valuable compounds. Engineering microbial production 
involves the disruption of endogenous genes or adding 
genes from heterologous organisms to form pathways 
that tap into the natural metabolic network. There have 
been numerous successes of metabolic engineering, 
including the well publicized biosynthesis of artemisinic 
acid, a precursor to the antimalarial drug artemisinin 
[1], and thebaine, a precursor to hydrocodone and mor-
phine [2]. In each of these cases, a pathway responsible 
for the production in plants was translated to a chassis 

microorganism, such as E. coli and S. cerevisiae, to sepa-
rate the supply of these therapeutics from the plants they 
were sourced from. At the root of these successes is the 
identification of the requisite pathways and the system-
atic transfer of these pathways to a microbial host.

Metabolic pathfinding has clear applications to the first 
step in the design-build-test-learn cycle for developing 
biosynthetic pathways [3]. We define metabolic pathfind-
ing as the process of identifying viable routes through 
a metabolic network from a starting compound to a 
desired target compound. Here, pathways are not lim-
ited to those that exist within a single organism, but can 
contain any enzymatic reactions from multiple organisms 
to complete a novel, heterologous pathway. To perform 
pathfinding we need a metabolic network that is con-
structed using information linking reactants to prod-
ucts through characterized enzymatic reactions. Several 
metabolic databases provide the requisite connectivity 
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data used to construct a metabolic network structure. Of 
these, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) has been employed most frequently, likely due to 
being one of the first metabolic databases available with 
open access and a wide breadth of information. MetaCyc 
[4] also has descriptive entries for metabolic pathways 
that are attributed to many groups of organisms. Some 
databases, including BRENDA [5] and ExPASy [6], have 
more information about the enzymes including kinetics 
and protein structure, whereas others, such as ChEBI [7], 
specialize in descriptions of small molecules. New con-
tent is being continuously added to all these databases, 
many of which now source enzymatic reactions from 
thousands of organisms.

Traditionally, researchers have manually searched 
existing literature and databases to design pathways. 
However, the rapidly growing body of metabolic infor-
mation makes it difficult to effectively survey and utilize 
all available resources. Computational approaches have 
been developed to enable researchers to take advantage 
of these growing resources. For example, pathways for 
production of 1,4-butanediol, a non-natural compound, 
were discovered with the assistance of a pathway-iden-
tification algorithm [8]. Thousands of pathways, four to 
six reactions long, were generated starting from com-
mon central metabolites. Solution prioritization was 
required to whittle the pathways down to a manageable 
number to be constructed and tested in the lab resulting 
in a demonstration of feasibility for a novel, biocatalytic 
route (Fig. 1a). Assisted metabolic pathfinding may aid in 
the more rapid discovery of synthesis pathways for other 
valuable products.

Assisted metabolic pathfinding aims to solve two 
main challenges—the challenge of efficiently speed-
ing up the pathway search process and the challenge of 
selectively finding biologically feasible, novel pathways. 
This paper focuses primarily on the approaches of path-
finding algorithms that address these two challenges. 
However, improvements in the search algorithms alone 
are not sufficient to solve these challenges, as the qual-
ity of the pathway results is also heavily dependent on 
the metabolic resources utilized by the search algorithm. 
Advancements in metabolic pathfinding rely on advance-
ments in techniques for expanding the metabolic search 
space. For example, retrosynthesis-based approaches [9, 
10] can be used to build search spaces that extend beyond 
the data stored in curated metabolic databases. Other 
databases like ATLAS [11] and XTMS [12] store informa-
tion on extended search spaces and even apply existing 
pathfinding techniques (BNICE [13, 14] and RetroPath 
[15], respectively) to these spaces. Metabolic pathfinding 
may not be the main focus of retrosynthesis algorithms 
and expanded databases; however, these resources are 

nevertheless critical for finding novel metabolic pathways 
and will be included in this review.

The metabolic pathfinding problem itself can be further 
divided into two different approaches: graph-based path-
finding and constraint-based pathfinding. This review 
will focus on graph-based pathfinding, which highlights 
the connections between compounds and reactions in 
the metabolic network. Graph-based approaches rep-
resent a metabolic pathway as a path that consists of an 
ordered series of intermediate compounds and reac-
tions that transform some defined starting compound(s) 
to some defined target compound(s). Graph-based 
pathfinding utilizes a very well-studied data structure 
to represent the metabolic network, abstracting away 
more complicated interactions between compounds and 
enzymes in the cell. This abstraction enables graph-based 
methods to readily scale with larger metabolic networks 
spanning multiple organisms. However, since much of 
the underlying metabolic network is abstracted by the 
graph representation, there is a greater chance for graph-
based approaches to return pathways without biological 
significance unless relevant parameters and heuristics are 
introduced to guide the search. Constraint-based meth-
ods (e.g., [16]) highlight the stoichiometry and relative 
rates of reactions involved in the metabolic process being 
studied. In many constraint-based methods, a selected 
set of reactions is optimized to meet a specified objec-
tive (e.g., maximizing the yield of a valuable compound) 
under the steady state assumption, meaning that there 
is no net increase or decrease of metabolites within the 
studied system. For constraint-based methods, elemen-
tary flux modes or extreme pathways can serve as the 
representation of a metabolic pathway [17–19]. Unlike 
graph-based paths which may only include the main 
compounds and reactions in a pathway, elementary flux 
modes and extreme pathways provides a more complete 
summary of the requisite intermediate compounds and 
enzymes while conforming to steady-state constraints. 
Overall, constraint-based methods tend to offer a more 
accurate model of a known metabolic network, such as 
one from a well-studied organism like E. coli. However, 
this approach is not yet able to computationally scale to 
very large metabolic networks [20]. Though algorithms 
have been developed to identify viable pathways using 
elementary mode analysis [20, 21], we choose to focus 
specifically on graph-based pathfinding to examine how 
parameters and heuristics can be used to efficiently guide 
the search in large-scale metabolic networks.

A metabolic network can be described as connec-
tions between compounds and the enzymes catalyz-
ing reactions between compounds, which lends itself 
well to graph representation. There are many different 
ways a metabolic network can be represented as a graph 
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(Fig. 1b). One of the simplest ways is for the nodes in a 
graph to represent the compounds in the metabolic 
network, and the edges to represent the reactions or 
enzymes that connect one compound to another. This 
representation is used in several earlier pathfinding algo-
rithms [22–24]. It is also possible for the nodes in a meta-
bolic graph to represent the enzymatic reactions and the 
edges to represent the intermediate compounds, as done 
in MetaRoute [25]. Another possible graph representa-
tion of the metabolic network is for both compounds and 

reactions to be represented as nodes in a bipartite graph, 
where edges represent the connections between com-
pounds and reactions. This representation is used in a 
few algorithms [26, 27]. A third possible graph represen-
tation is the hypergraph, where multiple compounds (i.e., 
the reactants) can be connected to multiple target com-
pounds (i.e., the products) with a single hyperedge (the 
reaction). Unlike other graph representations, the hyper-
graph representation can connect two different groups 
of compounds with a single reaction hyperedge, which 

Fig. 1  a 1,4-Butanediol is an example of a non-natural compound that is produced using a heterologous pathway generated by an pathway-iden-
tification algorithm. These heterologous genes from organisms differing from the host are dashed. Intermediates of the citric acid cycle were used 
as starting compounds in a pathway search restricted by path length toward the desired target, 1,4-butanediol. b Graph-based networks can be 
described as either directed, bipartite, or hypergraphs. In directed graphs, nodes (open circles) and edges (arrows) can represent either compounds 
or reactions. In the case of bipartite graphs, the pathway will be composed of nodes that alternate between compounds and reactions. For hyper-
graphs, groups of multiple compounds can be linked through a single hyperedge that may represent a reaction rule that links compounds that are 
associated with multiple additional reaction rules



Page 4 of 13Kim et al. J Cheminform  (2017) 9:51 

allows more details about each reaction (i.e., all interme-
diate compounds involved) to be shown explicitly in the 
representation [20]. The hypergraph representation is 
used in several pathfinding and retrosynthesis algorithms 
[12, 20, 28–30]. Node and edge weights based on relevant 
parameters (e.g., atom mappings, compound similarity, 
reaction thermodynamics, and organism-specific infor-
mation) can be introduced to any of the above graph 
representations to guide the pathfinding search towards 
more biologically relevant results.

This review covers the techniques supporting graph-
based metabolic pathfinding algorithms and the heu-
ristics that guide pathway discovery from networks, 
enzymatic reactions, and chemical structures to a spe-
cific host organism context (Fig. 1b). We will begin with 
a description of the structure of the metabolic network in 
terms of (1) graph connectivity, which refers to the num-
ber of connections each node has across the network, 
and (2) path length, or the number of transformative 
steps that separate any two compounds in the network 
(“Metabolic network structure” section). Then, the role 
of compound structure (“Structure of compounds” sec-
tion) and reaction specific information (“Reactions” 
section) in identifying feasible, novel pathways will be 
discussed. Next, we briefly describe the role of organ-
ism-related information (“Organism” section). We con-
clude the paper with a discussion of the limitations and 
implications for future directions for metabolic pathfind-
ing (“Discussion” section). By describing the advantages 
and disadvantages of features used in current pathfind-
ing approaches, we hope to guide interested users to the 
algorithms that suit their needs while summarizing the 
latest research for developers.

Metabolic network structure
Properties of the metabolic network representation can 
be used to guide and constrain the search problem and 
rank the resulting pathways. The properties that have 
been used in the literature are the connectivity of the 
network and the length of pathways found. The indi-
vidual compounds and reactions of a pathway can also 
be assigned weights based on biochemical and network-
based properties.

Graph connectivity
The graph-based representation of the network makes it 
intuitive to gravitate towards graph-based features and 
constraints, particularly graph connectivity (Fig.  2a). 
Many approaches identify highly connected compound 
nodes in the graph, or hub compounds, which appear 
in many different reactions. Identifying hub compounds 
can suggest potential currency metabolites, or side com-
pounds that are used as energy or electron providers but 

are not incorporated into the final product compounds 
(e.g., NADH, ATP, etc.). As such, pathways routing 
through currency metabolites tend to not be biologically 
meaningful, and for many algorithms, these currency 
compounds are manually removed [13, 14, 24, 31, 32]. 
In Croes et  al.  [31], the weight of compound vertices is 
set equal to the degree of the compound in the network, 
biasing the search against going through highly con-
nected compounds. Croes et al. compared this weighted 
graph search with an unweighted graph and a filtered 
graph (where 36 highly connected pool metabolites 
were removed), and found that weighted graph search 
performed better (85% correspondence with annotated 
pathways) than the unweighted graph search (30%) and 
filtered graph search (65%). Croes et  al. also suggested 
that the small world property of metabolic networks 
described by Wagner and Fell [33] is an artifact of having 
currency metabolites in unweighted metabolic graphs, 
which make compounds in the metabolic network seem 
more tightly connected. This is also suggested by several 
other papers [34–36].

In Faust et  al.  [26], different weighting schemes for 
compounds and reactant pairs (RPAIRs) were compared 
amongst each other. The weighting schemes included 
weighting compounds by degree, as described by Croes 
et  al. in 2006, and weighting RPAIRs by their classifica-
tion type. The RPAIR classification can be treated as a 
ranking for how relevant the pair of compounds are in the 
reaction. For example, if an RPAIR is classified as “main,” 
the compounds involved in the RPAIR are considered the 
main chemical transformation that occurs in the reac-
tion, whereas a RPAIR classified as “cofac” or “ligase” may 
describe compounds that serve as metabolite compounds 
or facilitators of the reaction. Faust et  al. introduces 
higher weights for RPAIR classifications that are consid-
ered less relevant to the reaction, favoring pathways that 
include more RPAIRs classified as “main.” According to 
this study, searches using the Croes et  al. weighting for 
compounds found better results than searches without 
compound weighting, while using RPAIR classification 
weighting showed no significant improvement in search 
results.

In MetaRoute [25], the weight of the compound ver-
tices is set to the sum of the out-degree of the com-
pound and the context weight of the in-going reaction 
nodes. The context weight is based on the degree of the 
side compounds involved in the reaction. The context 
weighting gives rare compounds a high weight and com-
mon compounds a low weight, encouraging paths to go 
through reactions that use common compounds as side 
compounds.

The connectivity of a graph is very simple to compute, 
and it is no surprise that it has been used by several 
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metabolic pathfinding approaches. Despite its simplic-
ity, connectivity can be used to effectively infer some 
biochemical information about the metabolic network. 
However, excluding features of the metabolic network 
based on connectivity alone may not reflect known bio-
chemical properties. For example, excluding highly con-
nected compounds to avoid currency compounds may 
also exclude compounds that play a significant role 
in pathways (e.g., pyruvate). Unlike other algorithms, 
M-path by Araki et  al. [37] uses hub compounds as a 
launch point to speed up the search. The approach iden-
tifies 139 compounds involved in eight or more reac-
tions as hub compounds and introduces the reactions 
between the start compound and the hub compounds as 

the first steps in the search. Araki et al. refers to a paper 
by Barabasi and Oltvai  [38], which suggests that highly 
connected compounds that are not currency metabolites 
are critical in linking together many compounds in the 
metabolic network. By including these highly connected 
compounds as first intermediates, the M-path algorithm 
can shorten the number of reaction steps needed to reach 
the target compound and improve the performance of 
the search.

Path length
Pathfinding algorithms often optimize for pathways with 
the smallest number of enzymatic steps, as these path-
ways tend to require less manipulation in a metabolic 

Fig. 2  a The degree of connectivity for a node (vertex) within a metabolic network can be described by the number edges that are incident to it. 
In this case, the degree for each node, or the total number of incoming and outgoing edges in the directed graph, is provided in each node. b The 
path length can be easily determined by counting the number of edges that must be traversed to complete a pathway from the starting (green) 
node to the target (red) node. This is directly analogous to the number of enzymatic steps that must be engineered to complete a biosynthetic 
pathway. c Atom mapping is a highly detailed interpretation of chemical transformation that occurs along each edge of the metabolic network. 
Here, the first step of the citric acid cycle can be both described as a simple network with two edges and three nodes, or as a balanced chemical 
reaction where atoms can be tracked between reactants and their corresponding products. Notice that the network ignores water and coenzyme 
A (CoA), whereas the atom mapped reaction can be used to identify what atoms from the reactants acetyl-CoA and oxaloacetic acid contributed to 
the product, citrate
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engineering context (Fig.  2b). Many pathfinding algo-
rithms set a maximum path length [31] or give the user 
an option to specify a maximum path length [23, 39, 40]. 
Pitkanen et al. [41] uses path length as part of the path-
finding heuristic to limit the search in the underlying net-
works. Pathways can also be ranked based on path length 
(e.g., algorithms finding k-shortest paths [27, 42]). Rank-
ing by path length is often a byproduct of the applied 
graph search algorithm (i.e., k-shortest paths) and used 
to organize pathway results. In order to distinguish 
pathfinding methods that actively include path length 
as a constraint or heuristic from methods that only use 
path length to rank pathway results, the latter cases were 
not marked as using path length in Table  1. Since path 
length is an inherent property of the solution pathway, 
no additional computation is required for obtaining 

this information. However, strongly biasing the search 
towards shorter pathway results ignores longer pathway 
results that may be equally valid for lab testing, such as 
the pathway for synthesizing a precursor of opioids that 
took 23 enzymatic steps in lab [2].

Structure of compounds
Most network representations include both structures 
of compounds and reactions, along with parameters that 
give additional information on both these parts. The 
chemical structure of compounds in the metabolic net-
work can be useful in inferring the existence of a bio-
chemical reaction between compounds, as biochemical 
reactions tend to have products that structurally resem-
ble one or more reactants. Structural information can be 
represented at different levels of detail, which introduces 

Table 1  Algorithms are arranged by publication date, and closed circles denote the features used in the respective pathfinding algo-
rithms along with the databases they draw information from

Algorithms and Web Services

Graph connectivity
Path  length
Atom mapping
Chemical similarity
Reaction rules & patterns
Thermodynamics
Efficiency or promiscuity
Organism-specific
Organism toxicity
Stoichiometric / FBA
Compound exclusion

KEGG

y

AA

licA

A

  

  

  

  

  

  
  

  
  

  

Open circles used in the organism-specific column indicate that users may input weights or parameters to make the algorithm organism-specific, but the algorithm 
itself does not provide options for the user to select for specific organisms
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a trade-off between the accuracy of the similarity meas-
ure and the computational complexity of the overall met-
abolic pathfinding problem.

Atom tracking
At the finest level of detail, algorithms can track changes 
on atomic level (Fig. 2c). Retaining as many of the atoms 
from the start compound in the target compound auto-
matically excludes currency metabolites that contribute 
no atoms to the final product, which helps exclude path-
way results that are biochemically infeasible. Also, con-
serving as much of the atomic structure of compounds 
in each reaction step can help to select pathways that are 
more biologically feasible. This method was first intro-
duced by Arita [22], which aims to conserve at least 
one atom from start compound to target using k-short-
est paths. The MetaRoute algorithm [25] also uses this 
approach. Building on this approach, new algorithms 
aimed to conserve multiple atoms. Pitkanen et  al.  [41] 
uses a heuristic to maximize the number of carbons 
transferred during a reaction, while also minimizing the 
path length. This encourages the inclusion of reactions 
that transfer more carbon atoms in the final branched 
pathway results. In Heath et  al.  [27], the pathway must 
conserve a minimum number of carbon atoms from 
start to target compound. A search to find the maximum 
number of conserved carbon atoms will start with the 
total number of carbon atoms in either the start or target 
compound and then decrement this number by one if no 
pathways are found that conserve that number of atoms. 
In Boyer and Viari [39], pathways must conserve a mini-
mum number of atoms which do not necessarily need 
to be carbons. In the initial carbon flux path algorithm 
proposed by Pey et  al. [42], any reactions not involving 
a carbon exchange between its main reactant and prod-
uct were removed from the search space. Pey et al. later 
updated their carbon flux paths algorithm to include 
atom tracking [43] to insure carbons from the start com-
pound were eventually incorporated into the target com-
pound. RouteSearch [40] maximizes atoms conserved 
throughout the pathway using a heuristic scoring func-
tion. This score accounts for five different atom types 
(carbon, oxygen, nitrogen, phosphorus, and sulfur), and 
each type of atom can be assigned a different weight. 
More recently, atom group tracking has been introduced 
by AGPathFinder [44]. Instead of tracking single atoms, 
this algorithm tracks groups of adjacent atoms connected 
by bonds. This avoids the computational cost of tracking 
individual atoms, but still captures much of the informa-
tion gained by atom tracking. Incorporating atomic level 
information into the search ensures that at least a por-
tion of the starting compound is used to produce the 
target compound, which may filter out many biologically 

infeasible pathways. In previous years, atom mapping 
information was not as readily available; however, as new 
methods have been developed to computationally predict 
atom mapping, more and more pathfinding algorithms 
have included atom tracking in the search. Tracking indi-
vidual atoms can be computationally expensive, espe-
cially if every possible combination of atoms conserved 
from compound to compound is considered [45]. Even 
so, the fact that many recent pathfinding approaches 
incorporate atom tracking suggests it is an important 
parameter for the pathfinding problem.

Chemical similarity
If two compounds have similar chemical structures, there 
is a decent chance that these compounds can be con-
nected by a common reaction. Several approaches have 
used different representations of chemical structure as a 
way of guiding, constraining, and ranking the search.

Chemical fingerprint
Several approaches use chemical fingerprints and Tani-
moto coefficients [46] to measure compound similarity. 
A chemical fingerprint is a binary vector consisting of a 
string of ones and zeros. Each bit represents whether the 
compound contains a certain structural feature, such as 
the number of single carbon, carbon bonds present in 
the compound and the presence of chemical functional 
groups or ring structures. There are many available com-
pound fingerprints that include different numbers and 
types of structural features. The Tanimoto coefficient 
is used to measure the similarity between two differ-
ent compounds and is calculated by dividing the total 
number of structural features shared between the two 
compounds by the total number of structural features 
contained in both compounds. In Pathway Hunter Tool 
(PHT) [23], chemical fingerprints are included in the 
metabolite mapping scoring function, which is calculated 
by summing the calculated chemical similarity score and 
percentage atomic mass contribution. The algorithm uses 
this score to determine which reactants and products will 
be connected by edges in their search graph.

Graph‑based comparison
Other approaches rely on the graph representation of 
chemical compounds. Metabolic Tinker [28] uses a 
heuristic based on similarity of functional groups of 
atoms and bonds between the current compound and 
the target compound identified using a graph com-
parison technique similar to the one described in [47]. 
In this technique, each compound is represented as a 
graph, where atoms are the nodes and bonds are the 
edges. Common structural features between compounds 
are then identified by finding the maximal common 
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subgraph(s). SIMCOMP [48], an algorithm that identifies 
the maximum common substructure between the graph 
representations of two compounds, was used for build-
ing the KEGG RPAIR database utilized by many path-
finding algorithms (Fig.  3a). SIMCOMP uses a variant 
of the Bron-Kerbosch maximum clique algorithm [49] 
to identify the maximum common substructure of two 
compounds.

Unlike chemical fingerprints, where a pre-determined 
set of chemical characteristics are used to compare two 

compounds, the graph comparison approach directly 
compares the chemical structure of two compounds 
against each other. The graph comparison approach 
tends to be more accurate in calculating structural simi-
larity but is more computationally expensive [50]. In 
GEM-Path [51], both chemical fingerprints with Tani-
moto coefficients and the subgraph matching of chemical 
structure are used to measure chemical similarity.

Calculating compound similarity is not as computa-
tionally expensive as atom mapping and serves as a check 

Fig. 3  a Chemical similarity can be quantified by comparing common structural features. For example, SIMCOMP is an algorithm that calculates a 
similarity score by determining the maximum common substructure between two compounds. SIMCOMP can be used to rank all compounds in 
the KEGG database against a single queried compound, in this case oxaloacetic acid, by similarity score. The structural dissimilarities (substitutions 
and additions marked in red) of five familiar compounds relative to oxaloacetic acid are highlighted to provide context to the calculated similarity 
score. b Generalized reaction rules describe enzymatic reactions where the reactants share structural motifs and undergo related transformations 
within an EC class. Reaction rule 2.3.3.a is one of 86 BNICE generalized reaction rules described by Henry et al. [70]. Examples of enzymatic reac-
tions described by this reaction rule include citrate (Si)-synthase (2.3.3.1) that forms citrate from oxaloacetate, 2-ethylmalate synthase (2.3.3.6) that 
forms 2-ethylmalate from 2-oxobutyrate, and malate synthase (2.3.3.9) that forms malate from glyoxylate. Motifs of the constituent reactants are 
highlighted in grey (aldehyde or ketone group) and red (acetyl group), and the corresponding atoms are identified in the products. Databases can 
be expanded, as is the case with MINEs and ATLAS, by applying reaction rules to metabolites that share a common motif
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that the reactions included in pathways are biochemically 
feasible. However, compound similarity falls short in the 
cases where two compounds share many common struc-
tural components but are not biochemically related.

Reactions
In addition to information about the compounds 
involved in the network, graph-based searches also 
include information on reactions. This information can 
be used to both constrain and expand the search to find 
novel pathways.

Reaction rules
Building off the idea of structural similarity, some algo-
rithms introduced reaction rules, or more general transi-
tions between compounds based on changes in chemical 
structure. Two enzymatic reactions may involve different 
reactants and products; however, if the same structural 
change occurs between reactants and products in these 
reactions (i.e., functional group A is replaced by func-
tional group B), these reactions may both fall under the 
same reaction rule. Reaction rules allow new, potentially 
feasible pathways to be found by introducing reactions 
that may not yet have been added to metabolic databases. 
These rules can both be used to (1) create a metabolic 
network without directly requiring information on enzy-
matic reactions from metabolic databases and (2) help 
expand an existing metabolic network created based on a 
metabolic database.

Reaction rules are based heavily on structural represen-
tations of compounds. In BNICE [13, 14], compounds are 
represented as an atom-bond matrix, and the reactions 
are represented as the difference between the matrices 
of the substrate and product compounds (Fig. 3b). With 
this more generalized representation of reactions, BNICE 
reduces the existing database of 43,000 enzymes to 250 
generalized enzymatic reactions by grouping together 
enzymes that catalyze reactions which follow the same 
reaction rules. In PathMiner [52], each compound is 
similarly described as a set of 145 chemical descriptors 
(based on atoms/bond information), and reactions are 
represented as vector differences. The reactions are used 
as a heuristic to guide an A* search [53]. In M-path [37], 
compounds are represented by chemical feature vectors 
that account for 318 atom and bond feature types. Atom 
types include primary, secondary, and tertiary carbons, 
and each covalent bond in a compound is counted as a 
pair of atom types. Reactions are again represented as 
reaction feature vectors that describe difference in num-
ber of atom/bond feature types between substrates and 
products. In Cho et al. [54], there is a reaction rules data-
base containing constructed reaction rules. PathPred [55] 
uses so-called RDM patterns from RPAIRs, which take 

into account the reaction center, the difference regions, 
and the matched regions between the reactants and 
products. PathPred also uses Jaccard coefficient [56] to 
compare compounds, and it weights the atoms closer to 
the reaction center more greatly compared to more dis-
tant atoms. A reaction score is calculated based on the 
Jaccard coefficient for each reaction, and the overall path-
way score is the average of the reaction scores of all its 
reactions. In Faust et al.  [26], RPAIR mappings are used 
without atom tracking to show the connectivity of com-
pounds without annotations of atoms. In FMM [24], 
reactions are represented as a 16,884 × 16,884 matrix, 
where each row and column represents a compound and 
having a ‘1’ represents that there exists a forward reac-
tion between the compounds. In RetroPath by Carbonell 
et  al. [15], the molecular signature of any given com-
pound is defined by a subset of neighboring atoms and 
chemical bonds surrounding each individual atom in the 
compound. The reaction rules are defined as the differ-
ences in molecular signatures between the reactant com-
pounds and product compounds in a reaction. Only the 
atoms and bonds within a given number of bonds away 
from each atom are considered as part of the molecu-
lar signature. This distance, referred to as the diameter 
by Carbonell et  al., could be increased to include more 
surrounding atoms and bonds in the molecular signa-
ture and in turn, make each reaction rule include more 
detailed differences in molecular structure between reac-
tants and products. Or, the diameter could be decreased 
to include less of the surrounding atoms and bonds in 
the molecular signature, causing each reaction rule to 
be more general and applicable to more groups of com-
pounds. Thus, by changing the diameter, the strictness 
of reaction rules can be adjusted to prevent an exponen-
tial explosion of potential reactions. Reaction rules allow 
the search to find novel pathways not present in existing 
metabolic databases. However, the issue with using reac-
tion rules to find new paths is that there is a potential for 
an exponential explosion of results.

Thermodynamics
Another common feature taken into account by pathfind-
ing algorithms is thermodynamic feasibility of the reac-
tions in pathways. Almost all algorithms that include 
thermodynamics use the component contribution 
method [57] for calculating �G. In MetabolicTinker [28], 
missing directional information is inferred from �G. If 
it is not possible to calculate the �G, the edge is treated 
as a bidirectional edge. The search heuristic is based par-
tially on thermodynamics, and paths are ranked based 
on thermodynamic feasibility. In BNICE [14], the �G 
value is used to analyze enzymatic reactions in different 
groups (profiling) and suggest feasibility of reactions. In 
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Cho et al. [54], enzymes are ranked based on thermody-
namic favorability, among other factors (such as bind-
ing site covalence and chemical similarity). The XTMS 
webserver [12] uses a scoring function to rank pathway 
results found by the RetroPath search algorithm. The 
XTMS scoring function incorporates the thermodynamic 
favorability of a pathway by both including the sum of 
all the �G values (taken from MetaCyc) of each reaction 
in a pathway and including the number of unfavorable 
reactions (any reactions with a �G value greater than 
zero) for each pathway. AGPathFinder [44] uses �Gs (in 
addition to compound similarity) to guide the search as 
weights.

Stoichiometry
Graph-based pathfinding methods can incorporate reac-
tion stoichiometry to limit the number of biologically 
irrelevant pathway results. The carbon flux paths algo-
rithm proposed by Pey et al.  [42, 43] introduces steady-
state constraints. Pey et al. demonstrate that using carbon 
flux paths significantly reduces the connectivity of certain 
compounds, such as oxaloacetate in E. coli, compared to 
a graph-based search without stoichiometric constraints. 
Introducing stoichiometric constraints allows carbon flux 
paths to distinguish between oxic and anoxic conditions 
in E. coli, which was not possible in previous graph-based 
algorithms. However, this pathfinding method was only 
tested within the metabolic network of a single well-stud-
ied organism (E. coli) and, like constraint-based methods, 
is not easily scalable to large multi-organism networks.

Enzyme efficiency and promiscuity
Enzymes can have different reaction rates, depending on 
how efficient an enzyme is in converting the substrate 
to product. On the other hand, promiscuous enzymes 
can catalyze reactions which may not be found in exist-
ing databases and may be used to expand the metabolic 
pathfinding search. In Cho et al.  [54], binding site cova-
lence was factored into ranking enzymes, where the 
highest ranked enzyme candidates were included in the 
final pathway solutions. In MRSD [58], edges between 
compounds are weighted based on the frequency of 
reactions that use the specified substrate to produce the 
specified product. This approach does not filter out spe-
cies duplicates. The XTMS webserver scoring function 
[12] takes into account a gene score in ranking pathway 
results found by the RetroPath algorithm. The gene score 
is calculated for each pathway based on the average of the 
pathway’s individual reaction scores, which is determined 
by the estimated promiscuity of the putative enzyme 
assigned to the given reaction based on the tensor prod-
uct technique.

Organism
Many algorithms give the user the ability to select an 
organism of interest. Arita et al.  [22] mention that their 
search algorithm can find pathways specific to one 
organism if the user specifies a weighting scheme that 
heavily penalizes reactions taken from all other organ-
isms. In RouteSearch [40], the user can specify weights 
for reactions taken from organism vs. reactions taken 
from a larger library including all organisms. Many oth-
ers require the user to select which organism or group 
of organisms to look at [32, 58]. Other methods do not 
require user input. In Cho et al. [54], enzymes are ranked 
based on organism specificity. DESHARKY [59] limits 
the number of compounds that are not organism-spe-
cific to only one non-specific reactant and one non-spe-
cific product. In GEM-Path [51], there is an association 
between reactions and organisms. One of the more inter-
esting of these algorithms is MRE [60], where the search 
takes into account endogenous competition of reactions. 
By considering which reactions happen more frequently 
in an organism, pathways can be optimized to include the 
most common reactions to maximize the production of 
the target compound and exclude reactions that may only 
occur at very low rates in the organism.

Discussion
Pathfinding is a critical and preliminary step in the devel-
opment of novel biosynthetic pathways. Pathfinding 
is often done manually, though there are many existing 
tools that can enumerate putative pathways with minimal 
input from the user. After a pathway has been identified, 
much time and effort goes into building, testing, trouble-
shooting, and optimizing the biological system, and not 
the initial pathway discovery [61]. This is acknowledged 
by metabolic engineers and synthetic biologists alike. 
Assisted pathfinding, for now, is typically restricted to 
providing and suggesting a series of enzymatic conver-
sions through the aforementioned algorithms and rank-
ing heuristics. It is up to the user to determine what 
organisms the genes should be sourced from based on 
limited enzyme kinetic data, which genetic system to use 
to regulate expression, and which organism to use as an 
appropriate host. Each step of this process is a challenge, 
and widespread adoption of assisted pathway discovery 
algorithms will depend on improved integration with the 
pathway engineering workflow. For this reason, future 
directions of assisted pathfinding must include the fol-
lowing: 1) maximizing the utility of existing but limited 
databases to find paths to non-native or other diverse 
commodity compounds, 2) facilitating the interpreta-
tion of the generated pathway solutions through visuali-
zations and other methods, 3) assisting in gene selection 
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based on known enzyme kinetics and other parameters 
of enzyme activity, and 4) identifying solutions with spe-
cific network topologies such as branched pathways and 
or cycles.

Non‑native compounds
There has been a recent push to expand searches to 
non-native compounds using reaction rules, building 
on BNICE [13, 14], because it is appreciated that the 
single greatest limiting factor to pathfinding is the com-
pleteness of the referenced databases. The ability to find 
paths to a non-native compound is severely limited when 
restricted to metabolic databases consisting of almost 
entirely of native compounds. General reaction rules 
can substitute for predicted enzyme promiscuity where 
specific enzyme reactions for a structurally similar but a 
non-native substrate are needed as either the target or an 
intermediate in a pathway. Reaction rules can serve as an 
acceptable best guess or a lead when a pathway cannot be 
found in its absence. This need has recently lead to the 
generation of expanded databases (e.g., MINEs [62] and 
ATLAS  [11]) that apply reaction rules to existing data-
bases (e.g., KEGG  [63]) to augment them and expand 
their reach. More work is needed in this area, as our 
research has identified a number of compounds of inter-
est that still remain outside the reach of these expanded 
databases.

Databases
Although the cumulative information that is available 
across all metabolic databases is extensive, manually 
searching, gathering, and compiling information from 
different databases is a challenging task. Each database 
often has its own representation and set of ID numbers 
for identifying components like compounds and reac-
tions, in addition to its own organization schema, suited 
specifically for the intended purposes of the database. 
These differences make it challenging to determine the 
exact links and relationships between information in dif-
ferent databases. There have been a few recent efforts to 
integrate different metabolic databases and create a less 
redundant, more comprehensive, and more accessible 
resource for metabolic information (e.g., BKM-react [64], 
MetRXN  [65], and MNXref  [66]). The effort to make a 
more comprehensive, unified metabolic resource could 
be a great asset to developing new metabolic pathfind-
ing algorithms, as the metabolic representations, heuris-
tics, and constraints used in these algorithms rely heavily 
on the breadth and completeness of the used metabolic 
database(s). In addition to this, it would be very help-
ful for databases to adopt an open distribution model 
when fiscally reasonable. Restrictions on data distribu-
tion hinder further development of pathfinding tools, 

and licensing barriers make it harder to adopt a single 
framework.

Interface and visualization
As the pathfinding capabilities improve, so do the num-
ber of solutions that can potentially be generated, and 
with it the challenge of providing the user with tools to 
explore the solutions that can number in the thousands 
and identify pathways of interest. Because of this, there 
is an increasing amount of user interaction built into 
pathfinding webservers (see MRSD [58], BioSynther [67], 
ATLAS [11], and XTMS [12]). By having a more interac-
tive webserver interface, users can quickly modify their 
queries or filter the results to find the solutions they 
want. This filtering may be achieved either by ranking as 
has been previously discussed, clustering of results based 
on pathway similarity or overlap [68], allowing the user 
to exclude pathways based on the presence or absence 
of specific intermediates that the user chooses to avoid, 
or some mixture of all of these. Improved visualization 
solutions will provide users with a balance between an 
abundance of options and ease of identifying promising 
pathways.

Gene selection
In addition to visualizations, a well-developed interface 
could integrate suggestions for genes based on enzyme 
activity and evidence of heterologous gene expression 
so that the user can seamlessly transition from pathway 
discovery to the initial build phase. Databases, such as 
BRENDA [5], have experimentally determined values 
for many enzymatic characteristics that could be used 
in determining the gene of choice for each reaction step. 
However, this information has yet to be implemented in a 
pathway discovery and selection webserver.

Topology
Almost all pathfinding algorithms are limited to pro-
ducing linear pathways with a few exceptions [41, 69]. 
Branched pathways and cycles represent different topolo-
gies of metabolic networks that are of interest to meta-
bolic engineering because the resulting condensation or 
recycling of constituent material can potentially improve 
the theoretical yield for a pathway. Though linear path-
ways are sufficient in most cases, the capability of iden-
tifying more complex and efficient pathways would be 
desirable.

Conclusion
Ultimately, the best pathfinding algorithm is the one that 
suits the user’s needs and is paired with an interface that 
facilitates pathway discovery. Pathfinding webservers can 
assist with the design of novel, feasible, and hopefully 
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improved pathways, but as discussed, pathfinding needs 
to become more highly integrated with the entire process 
of metabolic engineering. This survey of the available fea-
tures and future directions aims to increase adoption of 
existing pathfinding tools while advocating for advance-
ments that will increase their utility.
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