
Fagerberg et al. J Cheminform  (2018) 10:19 
https://doi.org/10.1186/s13321-018-0273-z

RESEARCH

Finding the K best synthesis plans
Rolf Fagerberg1, Christoph Flamm2, Rojin Kianian1,3,4, Daniel Merkle1 and Peter F. Stadler2,3,4,5,6,7* 

Abstract 

In synthesis planning, the goal is to synthesize a target molecule from available starting materials, possibly optimizing 
costs such as price or environmental impact of the process. Current algorithmic approaches to synthesis planning are 
usually based on selecting a bond set and finding a single good plan among those induced by it. We demonstrate 
that synthesis planning can be phrased as a combinatorial optimization problem on hypergraphs by modeling indi-
vidual synthesis plans as directed hyperpaths embedded in a hypergraph of reactions (HoR) representing the chem-
istry of interest. As a consequence, a polynomial time algorithm to find the K shortest hyperpaths can be used to 
compute the K best synthesis plans for a given target molecule. Having K good plans to choose from has many ben-
efits: it makes the synthesis planning process much more robust when in later stages adding further chemical detail, 
it allows one to combine several notions of cost, and it provides a way to deal with imprecise yield estimates. A bond 
set gives rise to a HoR in a natural way. However, our modeling is not restricted to bond set based approaches—any 
set of known reactions and starting materials can be used to define a HoR. We also discuss classical quality measures 
for synthesis plans, such as overall yield and convergency, and demonstrate that convergency has a built-in inconsist-
ency which could render its use in synthesis planning questionable. Decalin is used as an illustrative example of the 
use and implications of our results.

Keywords:  Synthesis planning, Bond set, Hypergraph, Hyperpath, Algorithm, Convergency, Decalin

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Synthesis planning is a core problem in chemistry, first 
treated as computational problem by Corey [1] in the late 
sixties. The objective is to find a way to synthesize a given 
target molecule from available starting materials, possi-
bly optimizing costs such as amount of materials, price, 
or environmental impact of the process.

Synthesis planning is still regarded as somewhat of an 
art form, although attempts have been made over sev-
eral decades at applying formal approaches and com-
putational methods  [1–15]. Such attempts have focused 
on models of synthesis plans, quality measures for rank-
ing such plans, and algorithms for finding the best plan 
among several possible plans.

An early contribution towards an automated approach 
for synthesis planning is retrosynthetic analysis. It was 
introduced by Corey  [1, 12, 13] in 1969 as part of a 

formalization of the rules of synthesis used in the devel-
opment of the computer program LHASA (logic and 
heuristics applied to synthetic analysis). Retrosynthetic 
analysis is a top-down approach to synthesis planning, 
which governs the selection of the chemical bonds to be 
involved in the synthesis by using heuristics formulated 
to mimic a chemist’s reasoning. The basic idea is sim-
ple: Starting with the target chemical structure, split the 
molecule by removing a bond indicated by the heuristic. 
Then recursively continue on the generated smaller mol-
ecules until sufficiently simple or commercially available 
starting materials have been found. As an alternative to 
using heuristics trying to mimic the choices of chem-
ists, Bertz [6, 10] suggested choosing bonds by minimiz-
ing the graph theoretical molecular complexity of the 
resulting precursor molecules. Other approaches include 
choosing bonds based on the existence of substructures 
of the target molecule that are isomorphic to easily acces-
sible or available molecules found in libraries [16–19]. An 
overview of programs for synthesis planning based on 
retrosynthesis can be found in [3, 14].

Open Access

*Correspondence:  studla@bioinf.uni‑leipzig.de 
3 Bioinformatics Group, Department of Computer Science, 
Interdisciplinary Center for Bioinformatics, Härtelstraße 16‑18, 
04107 Leipzig, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5016-5191
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-018-0273-z&domain=pdf


Page 2 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

A major drawback of retrosynthesis, however, is that 
it is a greedy approach. In the attempt to make good 
choices during the retrosynthetic top-down recursion, it 
leaves out synthesis plans with costly last steps but much 
better first steps. Consequently, plans found using a ret-
rosynthetic approach are not necessarily optimal plans 
according to quality measures for synthesis plans.

Contribution
The starting point of this paper is the observation that 
computing a single good plan does not always suffice: 
Models of synthesis plans and definitions of quality 
measures necessarily leave out many real-world details, 
and the best plan according to a given choice of model 
and quality measure may turn out to be infeasible when 
later adding further chemical details to the plan. A more 
robust strategy would be to instead find a number of 
good plans from which the practitioner can choose based 
on additional chemical knowledge and wet-lab feasibility. 
We believe that such a strategy can significantly increase 
the practical value of formal synthesis planning. Generat-
ing and evaluating all possible plans is a natural approach, 
but this is highly inefficient due to the combinatorial 
explosion in the number of plans. In this paper, we make 
the strategy feasible by providing an efficient method for 
finding the K best synthesis plans, for any number K.

Our approach is based on representing the set of chem-
ical reactions under interest as a directed hypergraph (a 
known method in chemistry, see e.g.  [9]). We demon-
strate that synthesis plans correspond exactly to the con-
cept of hyperpaths1 in such hypergraphs. This in turn 
allows us to exploit an existing polynomial time algo-
rithm  [20] for finding the K shortest hyperpaths in a 
hypergraph—to our knowledge the first use of this algo-
rithm in a chemical context. The result is a big improve-
ment in the computational complexity of ranked 
enumeration of synthesis plans, which is our core 
contribution.

Besides adding robustness to synthesis planning, the 
strategy also enables an easy way to find plans that are 
optimized according to more than one quality measure: 
compute a set of the best plans for each measure and out-
put their intersection. Similarly, one can use intersections 
of sets of good plans for several values of yield estimates, 
in order to obtain plans stable against variance in the 
actual yields obtained. Another feature of our approach 
is that it is not restricted to using a so-called bond set 
(many existing methods in formal synthesis planning are 
based on bond sets), but it has larger flexibility in terms 
of modeling the set of reactions available.

1  Not to be confused with the simpler concept of (non-hyper) paths in the 
often used bipartite graph representation of hypergraphs.

Along the way, we also demonstrate that one of the 
known classical quality measures surprisingly has a built-
in inconsistency which could render its use in synthesis 
planning questionable.

The rest of this paper is structured as follows: In the 
“Previous work” section, we list the existing research 
closest to our contribution. In the “Synthesis planning 
basics” section, we outline relevant synthesis planning 
concepts. In the “Results” section, we point out problems 
that can arise when using unary-binary trees for mode-
ling synthesis plans, and demonstrate how to solve these 
problems by the use of directed acyclic graphs and hyper-
graphs. We define a structure called a hypergraph of 
reactions, which we prove contains all synthesis plans as 
hyperpaths (Theorem 1). We then show how this allows 
us to find the K best synthesis plans in polynomial time 
(Theorem  2). We also discuss quality measures. In the 
“Discussion” section, we put our approach in a practical 
context using the molecule decalin as an example, before 
ending with "Conclusions" section.

Previous work
The previous line of work closest to the work in this paper 
is by Hendrickson [8] and by Smith [9]. They both focus 
on graph based descriptions of synthesis plans, and on 
formal quality measures of these plans. Hendrickson [8] 
models synthesis plans as binary trees, and defines qual-
ity measures based on convergency  [21], which essen-
tially is how balanced the tree is. The rationale for this 
quality measure is that the more balanced the tree for a 
plan is, the fewer reactions the average starting material 
will take part in, either directly or as part of larger mole-
cules in later reactions. All reactions incur some loss, and 
the strategy aims at reducing this loss. Smith [9] models 
synthesis plans as hypergraphs, and defines quality meas-
ures more explicitly based on the actual loss incurred 
by each reaction. In both papers, the focus is on finding 
a single best plan according to the quality measure in 
question. Smith explicitly gives an algorithm based on 
dynamic programming for finding this in his setting.

In terms of programs for synthesis planning, Hendrick-
son’s line of work has led to a program SynGen (synthetic 
generator) [15]. This program retrosynthetically expands 
all possible ways to synthesize the carbon skeleton of the 
target molecule, offering different ways to assist selection 
of plans after they have been computed. As the program 
enumerates all plans, it is computationally costly even for 
synthesis plans of depth three [15].

Our work in this paper can be said to extend the meth-
ods of Smith and Hendrickson. In combination with an 
algorithm from [20], we are able to find the K best synthe-
sis plans for a target without having to compute all plans, 
resulting in a much better computational efficiency.



Page 3 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

A concept somewhat related to synthesis planning is 
finding pathways in metabolic networks, see e.g. [22] for 
a recent review. The work most closely related to ours 
is  [23], which models metabolic pathways as a type of 
hyperpaths and gives a method for enumerating path-
ways between a set of source compounds and a target 
compound in the network. However, their algorithm 
enumerates all pathways, not the  K best according to a 
quality measure. Other papers reviewed in  [22] do con-
sider finding pathways in ranked order, but the modeling 
there is as simple paths in standard graphs.

Synthesis planning basics
A synthesis plan describes a way to synthesize a given 
target molecule from available starting materials by a 
set of chemical reactions. There are two main types of 
reactions  [8]: construction reactions, which create new 
carbon–carbon bonds in the target’s skeleton, and func-
tionalization reactions, which alter the functional groups 
attached to the skeleton but do not alter the skeleton 
itself. Synthesis planning often proceeds in two phases, 
the first of which is identification of a set of construc-
tion reactions, and the second is consideration of func-
tionalization reactions. The rationale for using such a 
two phase procedure (from fewer to more chemical fea-
tures) during the search for an optimal synthesis plan is 

that the full chemical design space is too vast to explore 
efficiently. Usually, the first phase is considered to be the 
core of the planning—to quote Hoffmann [7, p. 5], “The 
points stressed earlier should be highlighted once more: 
Construction of the skeleton of the target structure is the 
prime task in synthesis planning, not the placement of 
functionalities or stereogenic centers”. Following most of 
the work on formal methods for synthesis planning, we 
therefore focus on the first phase and model construction 
reactions only.

Construction reactions come in two variants: affixa-
tions which add target bonds by uniting two separate 
precursor molecules, and cyclizations which add target 
bonds by closing a ring in a single molecule. Construc-
tion reactions are often said to fix a bond in the target, 
and the set of bonds fixed in the plan is denoted the bond 
set.

The usual way to depict such synthesis plans is using 
unary-binary trees, where affixations give rise to binary 
vertices and cyclizations to unary vertices. Leaves 
represent starting materials, internal vertices repre-
sent intermediate molecules, and the root represents 
the target molecule. Some example plans for the tar-
get molecule decahydronaphtalene (IUPAC name 
Bicyclo(4.4.0)-decane) are depicted in Fig.  1. This com-
pound, with the trade name decalin®, is a bicyclic organic 

a

b
Fig. 1  Example synthesis plans for decalin for two different bond sets of size four. The bonds in each bond set are red and dashed. Leaf vertices are 
labeled with starting materials, internal vertices are labeled with intermediate molecules. As a shorthand, each of the rightmost trees has an internal 
vertex labeled with two molecules and represents two different plans



Page 4 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

molecule with ten carbon atoms. It is an important 
industrial solvent for resins, waxes, and oils, and it serves 
as a component in jet fuels. The rightmost synthesis plans 
in Fig. 1 start with two affixations followed by two cycli-
zations. The leftmost plans alternate between an affixa-
tion and a cyclization. The bonds in the bond set are red 
and dashed.

Obviously, there can be several plans for the same tar-
get molecule. As an example, one can consider the bond 
set as a summary of the synthesis plan [8], actually rep-
resenting a larger set of alternative synthesis plans aris-
ing from considering different orders of fixing the bonds. 
These plans may differ substantially in their yield, lab 
resource consumption, and environmental side effects. 
Thus, for a given set of synthesis plans there is a need to 
find the best. To this end, several quality measures for 
ranking synthesis plans have been proposed. Two clas-
sical ones are the external path length (EPL) and total 
weight of starting materials (TW).

The measure EPL was introduced by Hendrickson [8], 
and is defined as the sum of the numbers of reactions 
from each starting material to the target. When modeling 
synthesis plans as unary-binary trees, this is the sum of 
the lengths of all root-to-leaf paths, which is also known 
as the external path length of the tree. This measure 
optimizes the convergency  [21] of the plans: fully con-
vergent plans (balanced trees) minimizes EPL, whereas 
linear plans maximizes it. The measure aims at reducing 
overall loss of material during the synthesis by reduc-
ing the number of reactions in which the average start-
ing material takes part. However, we demonstrate later in 
the paper that this classic quality measure has intrinsic 
inconsistencies which could make its use questionable.

The measure TW is defined as the total weight of start-
ing materials in grams needed to produce one gram of 
the target molecule, and hence is a more direct descrip-
tion of the overall loss of material. This measure was 
described by Hendrickson [8] and later by Smith [9]. The 
two authors differ in the way the value is calculated. In 
“Appendix 4: Total weight of startingmaterials” we dem-
onstrate that Smith’s definition is in fact a generalization 
of that of Hendrickson, hence we here focus on the defi-
nition by Smith.

In the unary-binary tree representation of a synthesis 
plan, an edge e in the tree connects an input molecule v 
of a reaction with its output molecule u. Smith assumes 
knowledge of the loss in each individual reaction, and 
expresses this by values re on all edges e, where re is the 
amount in grammes of molecule v needed to create one 
gram of molecule u. Let Pi be the path from the root to 
leaf i. The total weight of starting material  i needed to 
produce one gram of target is then equal to the product 
of the re values along Pi. Thus, the total weight of starting 

materials needed to produce one gram of target is the 
sum of these values over all paths. Hence,

As Smith notes, by adding virtual unary reactions below 
all leaves with re values signifying price per gram, TW can 
easily express price rather than weight. In TW, the cost of 
a reaction is measured per gram of output molecule pro-
duced, i.e., upstart costs of reactions are not accounted 
for. Hence, the quality measure is measuring the asymp-
totic cost when large amounts of the target molecule are 
to be produced.

Results
Representations of synthesis plans
In a synthesis plan, an intermediate molecule may be used 
as input in several reactions. Our starting point is the 
observation that in such cases, this intermediate molecule 
clearly should only be synthesized in one way: given two 
different ways to synthesize a given intermediate molecule, 
one will have the smallest asymptotic cost, and even if the 
two have equal costs, using both induces extra overhead.

This means that if an intermediate molecule appears 
more than once as a vertex in a unary-binary tree rep-
resentation of a synthesis plan, its subtrees should be 
identical. To illustrate, in the tree in Fig. 2a, molecule C 
is synthesized in two different ways. However, either the 
tree Fig. 2b or the tree Fig. 2c must be cheaper, depend-
ing on the costs of the two ways of synthesizing  C. In 
short, while synthesis plans can be represented by unary-
binary trees with nodes labeled by molecules, not all such 
unary-binary trees are realistic synthesis plans.

As a consequence, we believe synthesis plans are bet-
ter described as directed acyclic graphs (DAGs) in which 
each vertex has a unique vertex label, each vertex has 
out-degree zero, one or two (depending on whether 
it represents a starting material, a product of a cycliza-
tion, or a product of an affixation, respectively), there is 
exactly one vertex t with in-degree zero (representing the 
target molecule), and there is a path from t to any other 
vertex in the DAG. Such a DAG can be obtained from the 
unary-binary tree structure by merging vertices with the 
same label. Vice versa, a tree structure can be obtained 
from the DAG by a depth-first search from the root of 
the DAG, in a version which allows revisits to vertices. 
In Fig. 3b, the DAG arising from the unary-binary tree in 
Fig. 3a is shown.

In the DAG (as well as in unary-binary trees), labels of 
vertices are molecules. For this labeling to be chemically 
meaningful, the labels cannot be arbitrary, but should 
reflect the reactions involved. We now formalize this, 
using graph models of molecules as labels.

(1)TW =
∑

i

∏

e∈Pi

re



Page 5 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

If edge (v, u) is in the DAG, we denote vertex u a child 
of v. A vertex with out-degree zero we denote a leaf. A 
molecule is an undirected, connected, labeled graph, 
where labels are atom types. A building block of a DAG is 
a non-leaf vertex v together with every child u of v and its 
corresponding edge (v, u). In a DAG with nodes labeled 
by molecules, a building block is a reaction if it satisfies 
the following: (1) v has one or two children. (2) If v has 
one child u, the label of v is obtained from the label of u 
by adding exactly one edge. This is a cyclization. (3) If v 
has two children u1 and u2, then the label of v is obtained 
from the labels of u1 and u2 by adding exactly one edge 
connecting these labels. This is an affixation. A starting 
material is a molecule that can be acquired without the 
need to plan how to synthesize it.

Definition 1  A synthesis plan for t is a labeled DAG 
with the following properties:

1.	Vertex labels are molecules, and each label is unique.
2.	Each building block is a reaction.
3.	There is exactly one vertex with in-degree zero, 

namely t.
4.	The label of each leaf is a starting material.

Our next observation is that such DAG models of syn-
thesis plans can be represented as directed hypergraphs. 
A hypergraph differs from a standard graph in that edges 
connect sets of vertices rather than single vertices. More 
precisely, a hyperarc is an ordered pair of vertex (multi)
sets. In chemistry, a reaction is a multiset of reactants 
and a multiset of products, and can therefore be seen as 
a hyperarc. As we only model construction reactions, all 
heads are singletons in this paper. In Fig. 3c, the reactions 
of Fig. 3b are depicted as hyperarcs.

When we say that a hyperarc represents a chemical 
reaction, we mean that its vertices are labeled with mol-
ecules, and that the label of the head is obtained from the 
labels of the tail under the reaction in question, analo-
gously to the definition of a reaction in a DAG given 
above.

Hypergraphs are well suited for modeling chemistry, 
because they make the relationship between all mole-
cules involved in a reaction explicit. This is in contrast to 
a DAG or a tree, where the two reactants in a reaction are 
only indirectly related via their common product.

In a hypergraph representation of the synthesis plan, 
adding a dummy source vertex s, together with a directed 
hyperarc ({s}, {i}) to each starting material i of the synthe-
sis plan (as shown in Fig. 3c), gives a hypergraph which 

t

B C

C D E

G H F F

a

t

B C

C D E

D E F F

F F

b

t

B C

C G H

G H

c
Fig. 2  Unary-binary trees representing synthesis plans. Vertices with identical labels represent identical molecules. a A tree with two different 
subtrees for vertices with label C. Substituting one subtree for the other results in the tree b or the tree c

t

B C

C D E

D E F F

F F
a

t

B
C

D E

F
b

t

B
C

D E

F
s

c
Fig. 3  Three different ways to model synthesis plans. In the unary-binary representation, the subtrees rooted in C are identical and are thus merged 
in the DAG and hyperpath representations. a Traditional notation. b DAG. c Hyperpath



Page 6 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

is in fact a hyperpath. This allows us to think of a synthe-
sis plan as a form of path, hence to think of optimal syn-
thesis plans as optimal paths. Given a larger hypergraph 
modeling the reactions in a part of chemistry under con-
sideration, the search for optimal synthesis plans within 
this chemistry then becomes a search for optimal paths 
in the hypergraph.

Below, we recap basic hypergraph terminology, and 
then show how to use hypergraphs for finding synthesis 
plans.

Hypergraphs
A directed hypergraph is a set V of vertices and a set 
E of hyperarcs, where each hyperarc e = (T (e),H(e)) 
is an ordered pair of non-empty multisets of verti-
ces. The set T(e) is denoted the tail of the hyperarc and 
H(e)) the head. If |H(e)| = 1, the hyperarc is denoted 
a B-hyperarc, and the notation for the single head ver-
tex is h(e). A hypergraph with only B-hyperarcs is 
denoted a B-hypergraph. In this paper, we only consider 
B-hypergraphs. The size of a B-hypergraph is given by 
size(H) =

∑
e∈E(|T (e)| + 1). A hypergraph H ′ = (V ′,E′) 

is a subhypergraph of H = (V ,E) if V ′ ⊆ V  and E′ ⊆ E.
A (plain) path Pst from s to t in a B-hypergraph is a 

sequence Pst = �s, e1, v1, e2, v2, . . . , vq−1, eq , t� of verti-
ces and B-hyperarcs such that s ∈ T (e1), t = h(eq) and 
vi = h(ei) ∈ T (ei+1) for i = 1..q − 1. Its length |Pst | is the 
number q of hyperarcs. If t ∈ T (e1), then Pst is a cycle. A 
hypergraph is acyclic if it does not contain any cycles.

The above concept of paths is only used for defining 
cycles. The proper generalization of directed paths to 
hypergraphs is that of hyperpaths. There are different 
ways of defining this—we use a variation based on [24]. 
For a general overview see [25]. Examples of what consti-
tutes a hyperpath and what does not are given in “Appen-
dix 1: Hyperpaths”.

Definition 2  A hyperpath πst = (Vπ ,Eπ ) from a source 
vertex s to a target vertex t in a B-hypergraph H is a sub-
hypergraph of H with the following properties: If t = s, 
then Vπ = {s} and Eπ = ∅. Otherwise, Eπ can be ordered 
in a sequence 〈e1, e2, . . . , eq〉 such that

(1)	T (ei) ⊆ {s} ∪ {h(e1), h(e2), . . . , h(ei−1)} for all i
(2)	 t = h(eq)

(3)	 Every v ∈ Vπ\{t} has at least one outgoing hyperarc 
in Eπ, and t has zero.

(4)	 Every v ∈ Vπ\{s} has exactly one ingoing hyperarc 
in Eπ, and s has zero.

Note that Definition  2(4) gives a 1–1 correspondence 
between Eπ and Vπ\{s}, hence we can define unique 

indices for the vertices in Vπ\{s} by vi = h(ei). We let v0 
be s. The hyperarc ei is called the predecessor hyperarc of 
vi and the corresponding map p : Vπ\{s} �→ Eπ is called 
the predecessor function of πst [20]. We use the notation 
πst = �p(v1), p(v2), . . . , p(vq−1), p(t)� for hyperpaths from 
now on. If a subhypergraph of a hyperpath πst is a hyper-
path itself, it is called a subhyperpath of πst. We will later 
need the following fact.

Lemma 1  Let πst = �p(v1), p(v2), . . . , p(vq−1), p(t)� be a 
hyperpath from s to t. Then for any vi, there is a unique 
subhyperpath πsvi of πst from s to vi.

Proof  By Definition 2(2) and (4), any subhyperpath from 
s to vi must contain the set πsvi of hyperarcs returned by 
the procedure Backtrack listed in Algorithm  1. It is 
easy to verify that πsvi fulfills the requirements Defini-
tion  2(1)–(4). For uniqueness, let π ′

svi
 be a hyperpath 

from s to vi, let E′ be the hyperarcs of π ′
svi

 not in πsvi , and 
let ej be the hyperarc of E′ with highest index j. By Defini-
tion 2(3), vj must have an outgoing hyperarc e. By Defini-
tion 2(1) and the maximality of j, we cannot have e ∈ E′, 
and by the marking strategy of the algorithm, it cannot be 
a hyperarc of πsvi. Hence, E′ is empty and πsvi = π ′

svi
. � �

Algorithm 1 Backtrack
Input: A hyperpath πst = 〈p(v1), p(v2), ..., p(vq−1), p(t)〉 from s
to t and backtrack starting point i, 0 ≤ i ≤ q.
Output: Hyperpath πsvi = 〈e1, e2, ..., eq′ 〉 (q′ ≤ i) from s to vi.
Backtrack(πst, i)
1 let πsvi = 〈〉 be a new hyperpath
2 mark vi
3 for j = i downto 1
4 if vj is marked
5 e = p(vj)
6 mark each u ∈ T (e)
7 append e to front of πvi
8 return πsvi

Finding synthesis plans via hypergraphs
The overall goal of this paper is to find synthesis plans 
within a given chemistry. We assume the chemistry 
is described by a (possibly large) set of construction 
reactions, i.e., affixations and cyclizations. Above, we 
described how to model synthesis plans as hypergraphs. 
In this section, we show how to view the set of reac-
tions of the given chemistry as a single, large hypergraph, 
and how this in turn will allow us to find synthesis plans 
within the chemistry simply by looking for hyperpaths in 
this hypergraph.

Let R be a set of reactions, and let S be a set of starting 
materials. We define the hypergraph, called the Hyper-
graph of Reactions (HoR) induced by R and S, as follows.



Page 7 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

Definition 3  Let ER be the representation of R as a set 
of hyperarcs. Let VR be the set of vertices appearing in 
the heads and tails of the hyperarcs in ER. Vertices with 
the same label (i.e., representing the same molecule) are 
considered identical. Let VS be the set of vertices with 
labels in S. Then, the hypergraph of reactions (HoR) is the 
hypergraph

where s is a dummy vertex and Es = {({s}, {v}) | v ∈ VS} is 
a set of dummy hyperarcs.

An example HoR with R and S being the combined sets 
of reactions and starting materials from the three synthe-
sis plans for decalin in Fig. 1a is depicted in Fig. 4.

The crux of our paper is captured by the following 
theorem.

Theorem 1  Let H = (V ,E) be a HoR induced by reac-
tions R and starting materials S. Let v be a vertex from VR 
and let t be its label. Then there is a 1-1 correspondence 
between (a) the synthesis plans for t with reactions from R 
and starting materials from S and (b) the hyperpaths in H 
from s to v.

Proof  Let σ be a synthesis plan from (a). To map it to 
a hyperpath in (b), do as follows. Add a dummy vertex s 
and a dummy edge from each leaf of σ–s. This result is 
still a DAG, hence admits a topological ordering of its 
vertices, i.e., a linear order on its vertices such that all 
edges point in the same direction. Convert each reac-
tion and dummy edge of the DAG into a hyperarc in the 
natural way, cf. Fig. 3, reversing the direction. Let Eπ be 
the resulting hyperarcs, and let Vπ be the vertices of the 
DAG. Then π = (Vπ ,Eπ ) is a hyperpath: Definition 2(4) 
follows because a building block of a DAG vertex con-
tains all the outgoing DAG edges of the vertex. Due to 
Definition 2(4), the topological ordering of the DAG ver-
tices induces an ordering of Eπ fulfilling Definition 2(1). 
Definition  1(iii) induces Definition  2(3) and, combined 
with the topological ordering, also Definition 2(2).

Conversely, let π be a hyperpath from (b). To map it to 
a synthesis plan in (a), do as follows: From π remove s and 
its outgoing dummy hyperarcs, and convert every hyper-
arc to a building block in the natural way, reversing the 
direction. The result is a synthesis plan: Definition  1(i) 
and (ii) follow by what it means for a hyperarc to repre-
sent a reaction and by the uniqueness of vertex labels in 
Definition 3. Definition 1(i) follows from Definition 2(3). 
Definition 1(iv) follows from Definition 2(4) and the fact 
that only dummy hyperarcs have been removed, each of 
which by definition points to a starting material.

H = (VS ∪ VR ∪ {s},ER ∪ Es),

Clearly, the two mappings are each other’s inverses.� �

As a consequence of Theorem  1, algorithms comput-
ing hyperpaths in hypergraphs are also algorithms com-
puting synthesis plans. In particular, we claim that an 
algorithm by Nielsen et al. [20] for finding the K shortest 
hyperpaths in a B-hypergraph can be used to find the K 
best synthesis plans for a target molecules  t, given a set 
of reactions and a set of starting materials. We now verify 
the details of this claim.

The algorithm by Nielsen et  al. is based on Yens 
classic algorithm  [26] for shortest paths in directed 
(standard) graphs. The overall idea is to find the sin-
gle shortest hyperpath and then recursively consider 
all ways in which a hyperpath can deviate from the 
shortest hyperpaths found so far, using single shortest 
hyperpath computations as a subroutine. For an acyclic 
B-hypergraph H = (V ,E), the single shortest hyper-
path can be computed using dynamic programming  [9] 
in O(|V | + size(H)) time, leading to a runtime for the 
algorithm by Nielsen et  al. of O(K |V |(|V | + size(H))) 
on such hypergraphs. The requirement of acyclicity can 
be lifted (at the expense of a slight increase in runtime) 
by using different algorithms for finding single shortest 
hyperpaths [27], whereas the algorithm by Nielsen et al. 
assumes the hypergraph to be a B-hypergraph.

Any HoR H is acyclic and satisfies size(H) ≤ 3|E|. The 
former is because every reaction has a strict increase 
from reactants to product in the number of edges in the 
molecule labels, and the latter is because every hyperarc e 
in a HoR is a B-hyperarc with |T (e)| ≤ 2.

Finally, the algorithm by Nielsen et  al. requires the 
lengths of hyperpaths to be given by what is called an 
additive weight function. We will later demonstrate that 
the very generic quality measure TW for synthesis plans 
can be expressed in this form.

These properties combined with Theorem  1 give the 
following result.

Theorem  2  Given a HoR  H = (V ,E) and a tar-
get  t ∈ V  , the K best synthesis plans for  t in H, ranked 
according to the measure TW, can be found in time 
O(K |V |(|V | + |E|)).

A detailed exposition of the algorithm by Nielsen et al. 
is given in “Appendix 2: The K best plans algorithm”.

The sets R and S of reactions and starting materials in 
the HoR can arise from many sources. As in Fig. 4, a set of 
known synthesis plans for a target  t can be combined to 
a HoR which could then contain further, unknown plans. 
Another approach could be to generate the reactions of 
the HoR by recursively breaking the bonds of the target t 
in all possible ways. This could be all bonds of t (possibly 



Page 8 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

stopping the recursion when a specified minimum size 
of intermediate molecules is met), or it could be a subset 
of bonds (i.e., a bond set) selected by methods from the 
classic retrosynthetic approach [1]. In “Appendix 3: Bond 
set based HoR construction”, we provide the algorithmic 
details of efficiently breaking a bond set in all possible 
ways. More generally, any database of reactions and start-
ing materials describing a chemistry under consideration 
can be used as R and S. These databases can be based on 
published literature and patents, such as Reaxys  [28] and 
SciFinder  [29]. Recent developments for retrosynthetic 
reaction prediction [30–32] even allow for the inference of 
unknown reactions. As these automated prediction meth-
ods have already proven to be highly accurate, finding the 
K shortest hyperpaths also has potential for discovering 
novel synthesis plans employing such predicted reactions.

Quality measures
The algorithm of Nielsen et  al. requires the lengths of 
hyperpaths to be given by an additive weight function. 
In this section, we investigate whether existing qual-
ity measures for synthesis plans can be expressed in this 
form, and we show that the very generic measure TW 
indeed can. On the other hand, this turns out to not be 
the case for the classic measure  EPL. The reasons are 
inconsistencies that we demonstrate are inherent in 
the measure. This is a bit surprising in light of its use in 

previous work, but the implication seems to be that the 
EPL measure should be used with caution.

An additive weight function W assigns weights to 
hyperpaths in an inductive manner. For our purposes, we 
only need a special case, often denoted a value function 
(for a more general definition of additive weight func-
tions, see [27]): For each hyperarc e and each vertex v in 
its tail T(e), let av,e be a non-negative real number. Then 
for a hyperpath πst from s to t, the weight W (πst) is one if 
t = s, and is otherwise given recursively by

where the πsv’s are the subhyperpaths from s to the ver-
tices v in the tail of last hyperarc p(t) of πst. These sub-
hyperpaths exist and are unique by Lemma 1. They also 
contain strictly fewer hyperarcs, so the recursion stops 
eventually. Hence, W is well-defined.

Total weight of starting materials We defined the qual-
ity measure total weight of starting materials (TW)  in 
“Synthesis planning basics” section, expressed in unary-
binary trees. Recall that TW expresses how much start-
ing material is needed to produce one gram of target 
molecule, taking yields of reactions into account. In the 
hyperpath setting, the definition becomes the following. 
For a reaction e with a reactant v, the retro yield rv,e is the 
amount of v in grams needed in reaction e to create one 
gram of the product h(e). Thus, rv,e ≥ 0, and by mass con-
servation 

∑
v rv,e ≥ 1 for any reaction e. Figure  5 shows 

the HoR from Fig. 4 decorated with example retro yields.
Each (plain) st-path Pst = �s, e1, v1, e2, v2, . . . , e|Pst |, t� 

contained in the hyperpath of the synthesis plan induces 
a use of starting material v1 given by the product of the 
retro yields along the path. The product along a path 
is 

∏|Pst |
i=1 rvi−1,ei, where we for each hyperarc e from the 

dummy vertex s to a starting material define rs,e = 1. 
Thus, the total weight of starting materials needed for a 
synthesis plan represented by a hyperpath πst is

This can be rephrased inductively as follows

This is most easily seen in the traditional tree nota-
tion for synthesis plans, cf. Fig. 3. Thus, TW can indeed 
be expressed as an additive weight function, cf. Eq.  (2). 
The measure TW is actually very generic in nature  [9]. 
For example, it can easily be adjusted to calculate the 
total price of the starting materials if a price per gram 

(2)W (πst) =
∑

v∈T (p(t))

av,p(t)W (πsv),

(3)TW(πst) =
∑

Pst inπst

|Pst |∏

i=1

rvi−1,ei .

(4)TW(πst) =

{
1 if t = s∑
v∈T (p(t))

rv,p(t)TW(πsv) otherwise

s

Fig. 4  An example HoR based on the combined sets of reactions 
and starting materials from the three synthesis plans for decalin in 
Fig. 1a. The hyperpath corresponding to the leftmost tree in Fig. 1a is 
highlighted in red



Page 9 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

pv is known for each starting material v, simply by set-
ting rs,e = pv for the hyperarc e from s to v. It can also 
incorporate non-chemical expenses of reactions, such 
as cost of energy usage or cost of disposal of waste prod-
ucts, simply by adding s to the tail of any hyperarc e rep-
resenting a reaction and setting rs,e to the non-chemical 
expense per gram product produced in e. Even more gen-
erally, we note that any measure which can be described 
as an additive weight function  [27] is compatible with 
our method.External Path Length Recall from “Synthesis 

planning basics” section that the quality measure exter-
nal path length (EPL) [8] is the sum of the lengths of all 
paths from the root to the leaves. When trying (and fail-
ing) to express EPL as an additive weight function, we 
discovered a certain peculiarity inherent in the measure: 
the optimal synthesis plan for a molecule depends on 
how the molecule is later used. More precisely, what con-
stitutes the best (sub-)synthesis plan for an intermediate 
molecule inside a larger synthesis plan depends on where 
in the large plan the molecule is used. This does not cor-
respond to physical reality, since different instances of a 
molecule are not distinguished after creation. As a con-
sequence, in an optimal plan (w.r.t. EPL) where the same 
intermediate molecule appears twice, the plan could ask 
for different subplans for it. As we argued at the start of 
the “Results” section, such a plan would never be used in 
practice.

We now demonstrate the above inconsistency by an 
example, expressed using unary-binary trees (the model 
in which EPL was originally defined [8]).

Consider a (hypothetical) molecule  M, and assume it 
can be synthesized using two different bond sets M′ and 
M′′, as depicted in the top row of Fig. 6. M′ admits only 
linear synthesis plans, whereas M′′ has many, including a 
fully convergent one. These synthesis plans are depicted 
in the bottom row of Fig. 6.

For synthesizing M by itself, the measure EPL is mini-
mized by the fully convergent plan for the bond set M′′ . 
However, consider the molecule  T depicted in Fig.  7a, 
with the synthesis plan depicted in Fig.  7b. In this syn-
thesis plan, the molecule  M appears twice, with differ-
ent sub-synthesis plans. According to EPL these different 
synthesis plans for  M are indeed the optimal choices at 
these two positions in the remaining plan, as the reader 

1.
25

1.
25 1.00

0.
25

1.25

1.00

0.
25

1.2
5

1.00

0.2
5

0.31
25 0.9375

s

Fig. 5  The HoR from Fig. 4 decorated with example retro yields

M ′:

2
′3 ′

4′

5
′ 6 ′

1
′

M
1
′ 1 ′

2
′ 2 ′

3
′ 3 ′

4
′ 4 ′

5
′ 5 ′

6
′ 6 ′

M ′′:

4
′′ 2 ′′

5
′′ 1 ′′

6
′′ 3 ′′

7
′′

M
1
′′ 1 ′′

2
′′ 2 ′′

3
′′ 3 ′′

4
′′ 4 ′′

5
′′ 5 ′′

6
′′ 6 ′′

7
′′ 7 ′′

Fig. 6  The top row shows a hypothetical molecule M with two different bond sets M′ and M′′. The bonds in the bond sets are the edges labeled 
by numbers. M′ admits only linear synthesis plans, whereas M′′ admits many, including a fully convergent one. The bottom row shows a linear plan 
based on M′ and a fully convergent plan based on M′′



Page 10 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

can readily verify. For instance, the two alternatives 
shown in Fig. 8a, b have EPL = 98 and EPL = 97, while 
that of Fig. 7b has EPL = 96. In other words, according to 
EPL, the position of M in the large plan determines how 
it should be made. We note that already in [8], Hendrick-
son expressed some reservations about the reliability of 
the measure as a cost function, but in less explicit terms 
than the phenomenon demonstrated above.

Discussion
In this section, we discuss our approach in a practical 
context. Using decalin as an example, we first show that 
even small molecules admit a large number of synthesis 
plans. We next investigate how sensitive the ordering of 
these plans is to changes in the yields of reactions. Finally, 
we compare a formal synthesis plan to a fully detailed 
synthesis plan from the literature, illustrating the differ-
ence in level of details included. All three aspects dem-
onstrate that having K good synthesis plans available is a 
clear advantage over having just the single best plan.

An implementation of the algorithms in “Appendix 2: 
The K best plans algorithm” and  “Appendix 3: Bond set 

based HoR construction” can be acquired upon request 
by email to the authors.

Number of synthesis plans for decalin
Recall that decalin is a bicyclic organic molecule with ten 
carbon atoms (Fig. 1). It has previously been used as an 
example molecule in graph theoretic approaches to syn-
thesis planning [6]. Below, we use it to demonstrate that 
even small molecules typically lead to a large variety of 
synthesis plans.

We consider synthesis plans based on bond sets up to 
size four. A bond set can be represented as an edge-
colored molecule graph, in which red edges are in the 
bond set and black edges are not. From this, the number 
of non-isomorphic bond sets of a certain size can be cal-
culated by a straightforward application of Pólya’s Enu-
meration Theorem [33]: decalin has four non-isomorphic 
bond sets of size one, 182 non-isomorphic bond sets of 
size two, 47 non-isomorphic bond sets of size three, and 
92 non-isomorphic bond sets of size four.

2  Note that Bertz  [6] also counts bond sets of size two, but does not con-
sider isomorphism issues and hence arrives at a larger number.

T :

2′′

4′′
1′′

5′′
3′′

6′′ 7′′

1 2

3 4

2
′ 3 ′

4′

5
′6 ′

1
′

a

T

M

11

2 2

3 3

4

M

4

b
Fig. 7  A molecule T is shown in a with a bond set consisting of the labeled edges. Note that the molecule M appears twice as a substructure in T, 
and that the bond sets M′ and M′′ are subsets of the bond set of T. A corresponding synthesis plan for T is shown in b. The EPL for this plan is 96. a 
Molecule T. b A synthesis plan for T

T1

2 2

3 3

4

M

4

M

1

a

T

M

11

2 2

3 3

4

M

4

b
Fig. 8  Two synthesis plans for T which for both occurrences of M use either bond set M′ or bond set M′′. The plan in a has EPL = 98, the plan in b 
has EPL = 97. Both values are larger than the EPL for the plan in Fig. 7b



Page 11 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

For each of the 92 bond sets of size four, we count how 
many different plans this leads to. We do this by creating 
the HoR based on the bond set in question (using the 
algorithm in “Appendix 3: Bond set based HoR construc-
tion”) and then computing the K shortest hyperpath for 
K = ∞ (using the algorithm in “Appendix 2: The K best 
plans algorithm”). Of these 92 bond sets, two lead to 
three different synthesis plans each (these are depicted in 
Fig. 1), one leads to five different synthesis plans (Fig. 9), 
one leads to eight synthesis plans (Fig. 10), and the rest 
each leads to at least ten possible synthesis plans (one 
example is given in Fig. 11). The maximum number for a 
single bond set is 38 different plans. The total number of 
plans in the collection is 1711.3

3  In this sum, we did not check for isomorphic plans arising from different 
bond sets.

In more detail, consider the example of the bond set 
depicted in Fig.  10. It gives rise to eight different syn-
thesis plans, distributed over two different unary-binary 
tree topologies. Considering leaf vertex labels only (as 
often done in chemical literature) there are five different 
labeled unary-binary tree topologies. However, for three 
out of these five leaf-vertex-labeled trees, one internal 
vertex may have two different labels, which leads to the 
final eight different synthesis plans.

From numbers above, we see that even small molecules 
can have a large number of possible synthesis plans. For 
larger molecules, an exhaustive enumeration becomes 
very costly in terms of computation time, and having a 
polynomial time algorithm for returning the  K best is a 
strong asset.

Fig. 9  An example bond set of size four for decalin. It leads to five synthesis plans, distributed over two different unary-binary tree topologies. This 
is the only bond set of size four leading to five synthesis plans

Fig. 10  An example bond set of size four for decalin. It leads to eight synthesis plans, distributed over two different unary-binary tree topologies. 
This is the only bond set of size four leading to eight synthesis plans



Page 12 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

Order of synthesis plans
We now add retro yields to the synthesis plans of deca-
lin. For each bond set, two different sets of example 
retro yields were used: one for which 

∑
v∈T (e) rv,e = 1.25 

for each hyperarc e representing a reaction, and one for 
which 

∑
v∈T (e) rv,e = 2.5. These two cases correspond to 

a yield of 1/1.25 = 80% and 1/2.5 = 40%, respectively. For 
each reaction, the retro yields are distributed between the 
reactants in proportion to their number of carbon atoms.

As an example, consider the three synthesis plans of 
Fig. 1a. With a yield of 80% in each reaction, one can ver-
ify that the total weight of starting materials needed to 
create one gram of decalin is 2.27 g in the case where the 
first affixation is followed by a cyclization, and 2.34 g in 
the two cases where both cyclization reactions are per-
formed in the end. With a yield of 40%, the correspond-
ing numbers are 32.5 and 34.4 g. Fig. 5 shows the HoR of 
these three plans decorated with the retro yields corre-
sponding to 80% yield.

As another example, consider the eight plans in Fig. 10. 
Using a yield of 80% in each reaction, one can verify that 
the best plan is the top leftmost plan. This has a total 
weight of starting materials of 1.87 g. With a yield of 40%, 

the best plan is the top rightmost plan with a total weight 
of starting materials of 15.63 g.

From all synthesis plans of all possible bond sets of 
size 4, the best possible total weight turns out to be 1.72 g 
if the yield is 80%, and 10.0 g if the yield in each reaction 
is 40% (plans not among those depicted).

We now try to quantify how much the total ordering 
among all the plans changes when switching between 
these two sets of retro yields. This will give information 
on how sensitive the ranking of plans is to changes in the 
yields of reactions. For a given bond set, the two yield val-
ues 80 and 40% used above each gives rise to a ranking of 
the synthesis plans of the bond set. Let i be the first posi-
tion where these rankings disagree, i.e., the first i − 1 best 
plans are the same in the two rankings, but the i’th plan 
is not. For each possible value of i, we count how many of 
the 92 different bond sets have this value as the first posi-
tion where the rankings disagree. These counts are listed 
in Table 1 as Count(i).

When planning, yields are often not known with high 
precision (and may even change over time as lab experience 
with the chosen reactions grows). The above shows that 
some plans may be quite sensitive to the exact yield values. 

Fig. 11  An example bond set of size four for decalin. It leads to ten synthesis plans, distributed over four different unary-binary tree topologies. 
There are nine other bond sets of size four leading to ten synthesis plans

Table 1  Illustrating the sensitivity of the plans to changes in the yield values from 80 to 40%

Each entry Count(i) is the number of bond sets of size four for which the i − 1 best plans are the same, but the ith plan is not

i 1 2 4 5 10 Same ranking Total

Count(i) 1 7 2 4 1 77 92



Page 13 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

Running our algorithm for two different sets of yield values 
and a fairly large K, and then taking the intersection of the 
results, is a way to learn which among the good plans are 
robust towards uncertainties in the yield values.

Detailed chemical synthesis plan for a size 2 bond set 
for decalin
As discussed earlier, synthesis planning often proceeds in 
two phases, the first of which is identification of a set of 

Fig. 12  Top left: Overall reaction for the synthesis of Wieland-Miescher Ketone (WMK) from methyl vinyl ketone and 2-methylcyclohexane-
1,3-dione. Top right: The phase one synthesis plan corresponding to this overall reaction. It has decalin as skeleton molecule and a bond set of size 
two. Bottom: Detailed reaction mechanism of the L-proline catalyzed Robinson annulation to yield WMK. The red arrows indicate the affixation and 
acclimatization steps in the synthesis tree (top right). Note that both bond fixes require a lot of electron rearrangement shown as arrows in the two 
bracketed reaction transition states. In all subfigures, the bonds of the bond set are shown by red lines



Page 14 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

construction reactions, and the second is consideration 
of functionalization reactions.

In this section, we want to illustrate the difference 
between a skeleton plan from the first phase and a 
detailed synthesis plan including the functionalization 
reactions from the second phase. As will be apparent, 
the difference can be large. Hence, the single best plan 
from phase one may easily turn out to be infeasible under 
actual lab conditions. Being able to find the K best plans 
in phase one gives a much more robust strategy, since 
this gives a number good plans on which practitioners 
can build in phase two.

We use the synthesis of the Wieland-Miescher Ketone 
(WMK) as an example. WMK is a key building block [34] 
in the total synthesis of numerous natural products pos-
sessing a wide spectrum of biological activity. The reac-
tion (also known as Hajos-Parrish-Eder-Sauer-Wiechert 
reaction) is one of the first examples of asymmetric 
organocatalysis. The overall reaction is depicted in the 
top left of Fig. 12. It corresponds to the phase one plan 
shown in top right of Fig. 12, which has decalin as skel-
eton molecule and a bond set of size two. Interestingly, 
only the shown size two bond set has been under heavy 
investigation, and many different organocatalysts have 
been tried out to improve the yield and enatiomeric 
access of the reaction. Alternative bond sets, however, 
have only occasionally been tried out, which is surpris-
ing given the central role of WMK as a versatile building 
block in natural product synthesis. The affixation and 
cyclization steps require quite heavy valence electron 
rearrangements as illustrated by arrows in the two brack-
eted transition states in the lower part of Fig.  12. Fur-
thermore, the synthetic target WMK is garnished with 
functional groups and chiral centers which are not con-
sidered in the phase one plan.

Conclusions
We have demonstrated that a core part of chemical 
synthesis planning can be phrased as a combinatorial 
optimization problem on hypergraphs by modeling indi-
vidual synthesis plans as directed hyperpaths embed-
ded in a hypergraph of reactions (HoR) representing 
the chemistry of interest. An immediate consequence is 
that the K best synthesis plans for a given target can be 
computed in polynomial time [20] for a number of qual-
ity measures of practical importance, and indeed for any 
measure which can be expressed as an additive weight 
function. The polynomial runtime makes it feasible to do 
this even for big K and large molecules. Having K good 
plans to choose from has many benefits: it makes the syn-
thesis planning process much more robust towards actual 
feasibility when in later stages adding functionalization 
reactions and other chemical details, it allows one to 

combine several quality measures, and it provides a way 
to deal with imprecise yield estimates.

Looking at the standard retrosynthetic approach, the 
obvious type of HoR is defined using a fixed target and 
a bond set, cf.  the algorithm described in “Appendix 3: 
Bond set based HoR construction”. However, our mod-
eling is not restricted to this. For instance, it is possible 
to combine any number of known synthesis plans for a 
target molecule into a HoR, from which new hybrid plans 
may arise. More generally, any database of reactions and 
starting materials can be used to define a HoR.

Along the way, we also demonstrated that the classic 
quality measure EPL has a built-in inconsistency which 
could render its use in synthesis planning questionable.

The work presented here is one step towards improving 
chemical synthesis planning in the light of developments 
in graph and hypergraph algorithms. A natural next step 
would be to attempt to add more chemical detail in the 
modeling. For instance, one could try to include refunc-
tionalization reactions and to consider strategies for 
introducing and removing protective groups within this 
modeling framework.

Authors’ contributions
The order of authors is alphabetical, following the tradition from computer 
science. All authors contributed the the design of the study, the mathematical 
results, and the writing of the manuscript. All authors read and approved the 
final manuscript.

Author details
1 Department of Mathematics and Computer Science, University of Southern 
Denmark, Campusvej 55, 5230 Odense, Denmark. 2 Institute for Theoretical 
Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria. 
3 Bioinformatics Group, Department of Computer Science, Interdisciplinary 
Center for Bioinformatics, Härtelstraße 16‑18, 04107 Leipzig, Germany. 4 Max 
Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, 
Germany. 5 Fraunhofer Institute for Cell Therapy and Immunology, Perlick-
straße 1, 04103 Leipzig, Germany. 6 Center for non‑coding RNA in Technology 
and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg 
C, Denmark. 7 Santa Fe Institute, 1399 Hyde Park Rd, 87501 Santa Fe, USA. 

Acknowledgements
We thank Daniel Fentz Johansen and Carsten Grønbjerg Lützen for their 
implementation of the algorithm for finding the K best synthesis plans as a 
part of their MSc thesis.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was supported in part by the COST Action CM1304 “Emergence and 
Evolution of Complex Chemical Systems”, in part by the Volkswagen Stiftung 
Project no. I/82719, in part by the Independent Research Fund Denmark, 
Natural Sciences, Grants DFF-1323-00247 and DFF-7014-00041, in part by the 



Page 15 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

National Science Foundation (INSPIRE 1648973), and by the Danish foundation 
Oticon Fonden.

Appendix 1: Hyperpaths
Examples of hyperpaths and non-hyperpaths. Fig-
ure 13 is a hyperpath from s to t: each vertex (except s) 
has exactly one ingoing hyperarc, each vertex (except 
t) has at least one outgoing hyperarc, and the order-
ing 〈p(F), p(E), p(D), p(C), p(B), p(t)〉 of the hyperarcs 
meets the condition of Definition 2(1). Figures  14, 15, 
and 16 are not hyperpaths: in Fig.  14, the vertex D has 
no ingoing hyperarc, in Fig. 15 the vertex B has two ingo-
ing hyperarcs (a hyperpath can be obtained by deleting 
either of these hyperarcs), and in Fig. 16 the vertex B has 
no outgoing hyperarcs (a hyperpath can be obtained by 
deleting this vertex together with the incident hyperarc).   Appendix 2: The K best plans algorithm

As mentioned, a polynomial time algorithm for find-
ing the K best hyperpaths in a hypergraph was given by 
Nielsen et  al.  [20]. We here explain the algorithm and 
illustrate how it works by an example.

Let H = (V ,E) be a directed B-hypergraph, let s, t ∈ V  
be vertices for which there exists at least one hyperpath 
from s to t, let P be the set of all hyperpaths from s to t, 
and let W be an additive weight function on hyperpaths, 
cf.  Eq.  (2). We assume the existence of an algorithm 
ShortestPath for computing a (single) optimal hyper-
path according to W. Let πst be such an optimal hyper-
path from s to t in H.

In the algorithm of Nielsen et  al., the ordering 
�p(v1), p(v2), . . . , p(vq−1), p(t)� of the hyperarcs of πst is 
used4 to partition the remaining hyperpaths into q dis-
joint subsets P i, 1 ≤ i ≤ q, as follows (where vq denotes 
t): P i is the set of all hyperpaths from s to t containing the 
hyperarcs p(vi+1), p(vi+2), . . . , p(vq−1), p(t) and not con-
taining p(vi). In other words, each P i consists of all st-
hyperpaths that have the same last q − i hyperarcs as πst 
and deviate from πst exactly at the ith hyperarc. Clearly, 
the P is form a partitioning of P\{πst}.

The idea behind the algorithm is to view this partition 
of P\{πst} along πst as a set of q new optimal hyperpath 
problems. Each set P i has an optimal hyperpath π i, and 
the best of these, say πj, will be the optimal of the remain-
ing hyperpaths P\{πst}, i.e., the second best hyper-
path in  H. Now, output πj and partition P j\{πj} along 
πj . To find the third best hyperpath, note that the sets 
of this partition together with the remaining sets P i for 
i = 1, 2 . . . j − 1, j + 1 . . . q form a partition of P\{πst ,πj}. 
Hence, the process can be continued in the same fashion, 
outputting the hyperpaths in H in sorted order.

Storing P or P i as actual sets of hyperpaths requires 
precomputation of all hyperpaths, which is undesirable. 
Instead, each set of st-hyperpaths can be represented by a 

4  If several orderings are legal (cf. Definition 2), any can be used.

t

B
C

D E

F
s

Fig. 13  Hyperpath

t

B
C

D E

F
s

Fig. 14  Not hyperpath

t

B
C

D E

F
s

Fig. 15  Not hyperpath

t

B
C

D E

F
s

Fig. 16  Not hyperpath



Page 16 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

subhypergraph of H [20]. H itself naturally contains all st-
hyperpaths of H and is thus the hypergraph representa-
tion of the set P. Each P i is represented by a hypergraph 
Hi = (V i,Ei) obtained by H in the following manner:

• • The vertex set remains the same, i.e., V i = V .
• • The arc set Ei is obtained from E as follows:

•	 The hyperarc p(vi) is removed.
• 	 The hyperarcs p(vi+1), p(vi+2), . . . , p(vq−1), p(t) are 

fixed in Hi. By this we mean that for each vj , j > i, 
all ingoing hyperarcs of vj except p(vj) are removed, 
making p(vj) the only ingoing hyperarc to vj.

It is shown in  [20] that π i ∈ P i if and only if π i is a st-
hyperpath in Hi.

The partition of a set of hyperpaths P̃ along a hyper-
path π̃ ∈ P̃ is computed by the backwards branching 
procedure Back-Branch, Algorithm 2. It takes as input 
the hypergraph representation H̃ of P̃ and the hyper-
path π̃ ∈ H̃ with q hyperarcs and predecessor function p. 
Each H̃ i is computed by deleting p(vi) and fixing the sub-
sequent hyperarcs as described above (in Algorithm  2, 
BS(v) denotes the set of ingoing hyperarcs for vertex v). 
Finally, the set B = {H̃ i | 1 ≤ i ≤ q} is returned.

Algorithm 2 Back-Branch
Input: Hypergraph H̃, Hyperpath π̃ in H̃ with hyperarcs
p(v1), p(v2), ..., p(vq).
Output: Set B = {H̃i} of hypergraphs representing the partition
of the hyperpaths of H̃ along π̃.

Back-Branch(H̃, π̃)
1 B = ∅
2 for i = q downto 1
3 Let H̃i be a new hypergraph
4 H̃i.V = H̃.V

5 // Remove hyperarc from of H̃
6 H̃i.E = H̃.E \ {π̃.p(vi)}
7 // Fix back tree
8 for j = q downto i+ 1
9 H̃i.BS(vj) = {π̃.p(vj)}

10 B = B ∪ {H̃i}
11 return B

This algorithm is illustrated in Fig.  17. Within the 
graph H a hyperpath is marked red. Branching is per-
formed along this hyperpath using the hyperarc order 
〈p(A), p(B), p(D), p(E), p(t)〉. The resulting hypergraphs 
H5,H4, . . . ,H1 are also depicted. Thick hyperarcs are 
fixed, which results in the deletion of the gray, dotted 
hyperarcs. The red and dashed hyperarc in each graph is 
the hyperarc at which the deviation takes place, and thus, 
this hyperarc is also deleted.

The main algorithm K-Shortest, Algorithm  3, main-
tains a priority queue L of tuples of the form (H̃ , π̃) , 
where H̃ is a hypergraph representation of a set of st-
hyperpaths in H, as described above, and π̃ is the best of 
these according to W. In the priority queue, the key of a 
tuple is W (π̃). Initially L contains the tuple (H ,πst).

In each iteration, the smallest tuple of L, say (H ′,π ′), is 
extracted and π ′ is output as the next best hyperpath of 
H. Then H ′ is partitioned along π ′ using the backwards 
branching procedure Back-Branch, and each new par-
tition along with its optimal hyperpath is inserted into L 
(unless no hyperpath exists in the partition). The algo-
rithm terminates when K hyperpaths have been output or 
if L is empty.

Algorithm 3 K-Shortest
Input: Hypergraph H, source s, target t, number of optimal
hyperpaths K.
Output: The K optimal hyperpaths from s to t in ascending
order.
K-Shortest(H, s, t,K)
1 Let L be a new priority queue
2 π = ShortestPath(H, s, t)
3 Insert (L, (H,π))
4 for k = 1 to K
5 if L = ∅
6 break
7 (H′, π′) = Extract-Min(L)
8 output π′

9 if k == K
10 break
11 for each Hi in Back-Branch(H′, π′)
12 πi = ShortestPath(Hi, s, t)
13 if πi �= nil
14 Insert L, (Hi, πi)

)

The correctness of the algorithm K-Shortest follows 
from the fact that it maintains the following invariant: At 
the end of iteration i, the i best hyperpaths π1,π2, . . . ,πi 
have been output, and the hypergraphs of the tuples of L 
represent a partition of P\{π1,π2, . . . ,πi}.

Algorithm ShortestPath in line 12 of Algorithm  3 
computes the optimal hyperpath according to W. In acy-
clic B-hypergraphs this can be done using dynamic pro-
gramming in O(|V | + size(H)) time [35].

For acyclic hypergraphs, algorithm K-Shortest runs 
in O(K |V |(|V | + size(H))) time  [20]. As described ear-
lier, for a HoR H we have size(H) ≤ 3|E|, which means 
that when using the algorithm for synthesis planning the 
runtime is O(K |V |(|V | + |E|)). 

Example  The hypergraph H of Fig. 17 is depicted again 
in Fig.  18a. There are four hyperpaths in this hyper-
path, namely π1,π2,π3 and π4, depicted in Fig.  18b, 
e. We illustrate how the best three hyperpaths are 



Page 17 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

computed by algorithm K-Shortest when assuming 
W (π1) < W (π2) < W (π3) < W (π4).

Initially, L = {(H ,π1)}. The tuple is extracted, π1 is 
output as the optimal hyperpath of H, and branching 
is performed on H along π1. The branching is shown in 
Fig. 19 (π1 is red). This figure is identical to Fig. 17 except 
for added information on the set of hyperpaths in each 
hypergraph. For instance, H5 contains the hyperpaths π2 
and π4. The optimal hyperpath is computed for each Hi , 
and since H1,H2 and H4 have no hyperpaths from s to 
t, L = {(H5,π2), (H

3,π3)} by the beginning of iteration 
two.

In iteration two, the tuple (H5,π2) is extracted since we 
assumed that W (π2) < W (π3). The hyperpath π2 is out-
put as the second best hyperpath in H and branching is 
performed on H5 along π2. This is shown in Fig. 20 (π2 is 
red). The only hypergraph in which there is a hyperpath 
from s to t is H54. Hence, the tuple (H54,π4) is inserted 
into L which becomes L = {(H3,π3), (H

54,π4)}.
In iteration three, the tuple (H3,π3) is extracted from 

L, π3 is output as the third best hyperpath of H and the 
algorithm terminates.

Appendix 3: Bond set based HoR construction
In this appendix, we consider the case of a HoR for which 
the sets R and S of Definition 3 are defined by recursively 
breaking bonds in a given subset  B of the bonds of the 
target in all possible ways, and present algorithmic details 
of how to do this efficiently.

A straight-forward method would be to consider all 
the |B|! orders of fixing the bonds in  B, each of which 
gives a unary-binary tree, and then for each tree enforc-
ing the requirement that no intermediate molecule 
is synthesized in more than one way, cf. Fig.  2. Enforc-
ing that requirement (and creating the DAG of Fig.  3b) 
can be done as follows: for each intermediate molecule 
appearing more than once in vertices of the tree choose 
one of these vertices and change all pointers to the rest 
of these vertices to point to that chosen vertex. To create 
all possible synthesis plans, for each such intermediate 
molecule all choices should be considered. This should 
be done in a bottom-up fashion, from smaller intermedi-
ate molecules to larger ones, in an ordering where mol-
ecule m1 is considered larger than molecule m2 if when 
seen as graphs m1 has more vertices than m2, or they have 
the same number of vertices and m1 has more edges than 
m2. Finally, R and S are set to the union of the reactions, 
respectively starting materials, of all of the synthesis 
plans created.

t

E

D

C

BA

s
a

t

E

D

C

BA

s

b

t

E

D

C

BA

s

c

t

E

D

C

BA

s

d
t

E

D

C

BA

s

e

t

E

D

C

BA

s

f
Fig. 17  Figure illustrating algorithm Back-Branch. Within the graph H a hyperpath is marked red. Branching is performed along this hyperpath using 
the hyperarc order 〈p(A), p(B), p(D), p(E), p(t)〉. The resulting hypergraphs H5,H4, . . . ,H1 are also depicted. Thick hyperarcs are fixed, which results 
in the deletion of the gray, dotted hyperarcs. The red, dashed hyperarc in each hypergraph is the hyperarc at which the deviation takes place, and 
thus, this hyperarc is also deleted. a H. b H5. c H4. d H3. e H2. f H1



Page 18 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

This process, however, would take �(|B|!) time. It 
would also render pointless the use of the algorithm for 
finding the K optimal hyperpaths in the resulting hyper-
graph, since having considered each synthesis plan 
explicitly one could just as well have evaluated the cost 
of each in the process, while keeping track of the K best.

We now give an algorithm ExpandHoR (see Algo-
rithm 4) for constructing the HoR which under reasona-
ble assumptions runs in O(|V | · |B| · |t|) time, where |t| is 
the size (number of vertices plus number of edges when 
seen as a graph) of the target molecule t. The algorithm 

explores the possible synthesis plans in a top-down man-
ner, starting with the target molecule, and recursively 
breaking bonds from  B. To avoid exploring the synthe-
sis of a given intermediate molecule more than once, it 
checks if an intermediate molecule has already been 
explored before recursing on it.

Each intermediate molecule  m is represented as a 
labeled (standard) graph, with the edges inside m corre-
sponding to bonds in B being marked. Such a graph can 
be traversed in O(|m|) time, and for each bond in B, the 
intermediate molecules produced by removing this bond 

t

E

D

C

BA

s

a

t

E

D

BA

s

b

t

D

C

BA

s

c

t

E

D

C

BA

s

d

t

D

C

B

s

e
Fig. 18  A graph H along with its 4 hyperpaths π1,π2,π3,π4. a H. b π1. c π2. d π3. e π4

t

E

D

C

BA

s
a

t

E

D

C

BA

s

b

t

E

D

C

BA

s

c

t

E

D

C

BA

s

d
t

E

D

C

BA

s

e

t

E

D

C

BA

s

f
Fig. 19  Branching on H along the hyperpath π1. In a π1 is highlighted in H with the color red. The rest of the figure illustrates the backwards branch-
ing. Each subfigure b–f shows a graph Hi and how it is created from H. Dashed and dotted hyperarcs are not part of the graphs, but were deleted 
due to branching. For each Hi, the deleted hyperarc p(vi) is red and dashed. Each fixed hyperarc is thick, and if fixing any hyperarc has led to dele-
tion of other hyperarcs, these are gray and dotted. Furthermore, the caption for each subfigure indicates the set of hyperpaths represented by that 
graph. a H: {π1, π2, π3, π4}, π1 is red. b H5: {π2, π4}, c H4: ∅. d H3: {π3}. e H2: ∅. f H1: ∅



Page 19 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

can be found in O(|m|) time, as they are the connected 
components of the resulting graph.

A molecule can also be represented by a unique string 
identifier  [36, 37] for molecules/labeled graphs. In the 
algorithm we use two types of unique string identifiers 
for intermediate molecules: IDbond(m) for the graph of 
the molecule  m including the marking on edges of the 
bonds from B, and ID(m) where these markings are disre-
garded. The reason is that it is possible for a bond set B to 
specify, in different locations of the target molecule, the 
same intermediate molecule with different internal sets 
of bond set edges. In any synthesis plan, if this intermedi-
ate molecule appears, it should be produced in only one 
way.5 However, for considering all possible synthesis 
plans, all the ways of synthesizing this intermediate mol-
ecule should be considered. In other words, a intermedi-
ate molecule appearing in several places should be 
represented by a single vertex v in the HoR, but its syn-
thesis should be explored for all the occurring subsets of 
bond set edges inside it. Therefore, the check in the algo-
rithm for further exploration of an intermediate mole-
cule  m is based on whether IDbond(m) has been seen 

5  In others of the synthesis plans for t, this intermediate molecule may not 
appear because its parts are combined with other intermediate molecules, 
which is the reason why such a bond set can be meaningful

before, but the vertices of the resulting HoR hypergraph 
are based on the ID(m) values.

A hyperarc e = (v, v1, v2) is a triple of string identifiers 
of type ID(m), with v representing the output molecule, 
and v1 and v2 representing the input molecules of the 
reaction modeled by e. When |T (e)| = 1, v2 is the empty 
string. The identifiers of type IDbond(m) seen so far, as 
well as the generated edges, are kept in hash tables V ′ 
and E, respectively. At the end of the algorithm, V can be 
generated as all vertices appearing in hyperarcs in E. The 
HoR is then the hypergraph (V, E).

The algorithm ExpandHoR maintains the invariant 
that at the time of call ExpandHoR(m), IDbond(m) has 
not been explored before. The very first call has m equal 
to the target molecule. The sets V ′ and E are global vari-
ables, each initialized to the empty set. When inserting 
into a hash table, it is assumed that nothing happens if 
the value is already present. The value S is just an identi-
fier for the dummy vertex s of the HoR.

t

E

D

C

BA

s
a

t

E

D

C

BA

s

b

t

E

D

C

BA

s

c

t

E

D

C

BA

s

d
t

E

D

C

BA

s

e

t

E

D

C

BA

s

f
Fig. 20  Branching on H5 along the hyperpath π2. In a π2 is highlighted in H5 with the color red. The rest of the figure illustrates the backwards 
branching. Each subfigure b–f shows a graph H5i and how it is created from H5. Dashed and dotted hyperarcs are not part of the graphs, but were 
deleted due to branching. For each H5i the deleted hyperarc p(vi) is red and dashed. Each fixed hyperarc is thick, and if fixing any hyperarc has led 
to deletion of other hyperarcs, these are gray and dotted. Furthermore, the caption of each subfigure indicates the set of hyperpaths represented by 
that graph. a H5: {π2, π4}, π2 is red. b H55: ∅, c H54: {π4}. d H53: ∅, e H52: ∅. f H51: ∅



Page 20 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

Algorithm 4 ExpandHoR
Computes the HoR for a molecule m with bond set B
ExpandHoR(m)
1 if m contains bond set edges: // m not base molecule
2 insert IDbond(m) in V ′

3 for each bond set edge b contained in m
4 mc = copy of m
5 delete edge b from mc // gives one or two connected components
6 find resulting connected components m1 and m2 // m2 may be empty
7 insert (ID(m),ID(m1),ID(m2)) in E
8 for m′ in {m1,m2}
9 if m′ not empty AND IDbond(m′) not already in V ′

10 ExpandHoR(m′)
11 else
12 insert (ID(m),S,””) in E

Each vertex  v in the resulting hypergraph may repre-
sent an intermediate molecule on which the algorithm is 
called several times, with different values of IDbond(m), 
but same value of ID(m). For each value of IDbond(m), 
there can only be one call, due to the maintenance 
of V ′ . If we assume that these values represents occur-
rences of the intermediate molecule at non-overlapping 
places in the target molecule, their combined number of 
bond set edges is bounded by |B|. Under this assump-
tion, each recursive call from an vertex v (with id ID(m)) 
is induced by a different bond set edge in  t, so we can 
only have |B| recursive calls in total from v, hence only 
O(|V | · |B|) recursive calls in total in the algorithm. For 
each bond edge, the connected components resulting 
from its removal can be found in O(|t|) time. Hence, the 
algorithm uses O(|V | · |B| · |t|) time, if the time for find-
ing string identifiers is assumed to be also O(|t|). The 
time for finding a unique string identifier is in the worst 
case actually exponential in the size of the intermediate 
molecule (consistent with the fact that finding unique 
identifiers solves the graph-isomorphism problem, which 
is not known to be solvable in polynomial time), but 
empirically, real-life molecules do not represent worst 
case instances, since algorithms for this work very fast in 
practice [37]. Note that a similar assumption on the time 
for solving the graph-isomorphism on real-life mole-
cules applies to the straight-forward algorithm described 
above, since it also needs to check whether intermediate 
molecules are the same. Hashing operations takes O(1) 
time, but only in the expected sense, hence the bound for 
the algorithm stated above is expected time.

We note that |V| is always at most O(2|B|), since each 
v ∈ V  can be specified by the bonds in B which are fixed 
in the subtree of v in some synthesis plan. Despite being 
exponential in |B|, this is much better than �(|B|!). For 
certain target molecules, |V| can be bound even better—
for instance, for linear molecules |V| is O(|B|2).

Appendix 4: Total weight of starting materials
We here show the connection between the two variants 
of the quality measure total weight of starting materials 
(TW) given by Hendrickson [8] and by Smith [9].

Recall the definition from “Synthesis planning basics” 
section of Smith’s version (here slightly rephrased in 
order to prepare for the inductive proof of Proposition 1 
below): Let Tt be the unary-binary tree representation of 
a synthesis plan for a target molecule t, let Pti be the path 
in Tt from t to leaf i, and for an edge e = (u, v) in Tt let re 
be the weight in grams of molecule  v needed to create 
one gram of u. Then Smith [9] calculates the total weight 
of starting materials needed to create one gram of target t 
as follows.6

Hendrickson  [8] calculates the total weight of starting 
materials needed to produce one molecule of the target 
as follows, where i again denotes a leaf in Tt.

In this formula, Hendrickson assumes the same yield (in 
the usual chemical meaning, percentage of input mate-
rial that becomes output material) y for all reactions and 
sets x = 1/y. The weight of the molecule in vertex  v is 
denoted wv. Clearly, for a binary vertex v with children 
v1, v2 we have wv = wv1 + wv2 and for a unary vertex v 
with child v1 we have wv = wv1.

The following proposition shows that given x in Hen-
drickson’s definition, we can set the retro yields in Smith’s 
definition such that the two measures have proportional 
values. Hence, Smith’s definition is a generalization of 
Hendrickson’s.

Proposition 1  Let r(u,v) = wv
wu

x for all edges (u, v) in the 
unary-binary tree Tt representing a synthesis plan for t. 
Then Stwt = Ht.

Proof  We prove this by induction over the height of the 
unary-binary tree.

Consider the base case where the height h = 0: the 
unary-binary tree consists of just a target t. Then Sw = 1 
and Hw = wt so Swwt = Hw.

For the inductive step, let h > 0 and assume St ′wt ′ = Ht ′ 
for any target t ′ with a unary-binary tree of height k < h . 
There are two cases: (i.) t is the product of a cyclization 

6  Smith’s original definition was for synthesis plans modeled as hyper-
graphs. We here use unary-binary trees in order to compare to Hendrick-
son’s definition.

St =
∑

i inTt

∏

e∈Pti

re

Ht =
∑

Pti∈Tt

wix
|Pti|



Page 21 of 21Fagerberg et al. J Cheminform  (2018) 10:19 

and has one child, or (ii.) t is the product of an affixation 
and has two children.

Case (ii): Let the children of t be v, u. We have

From St = r(t,v)Sv + r(t,u)Su and Ht = x(Hv +Hu) we get

Case (i) is similar, only simpler. � �

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 12 September 2017   Accepted: 26 March 2018

References
	1.	 Corey EJ, Wipke WT (1969) Computer-assisted design of complex organic 

syntheses. Science 166:178–192
	2.	 Hendrickson JB, Braun-Keller E, Toczko GA (1981) A logic for synthesis 

design. Tetrahedron 37 Suppl. I:359–370
	3.	 Todd MH (2005) Computer-aided organic synthesis. Chem Soc Rev 

34:247–266
	4.	 Andraos J (2012) The algebra of organic synthesis: green metrics, design 

strategy, route selection, and optimization. CRC Press, Boca Raton
	5.	 Rücker C, Rücker G, Bertz SH (2004) Organic synthesis-art or science? J 

Chem Inf Comput Sci 44(2):378–386
	6.	 Bertz SH, Sommer TJ (1993) Application of graph theory to synthesis 

planning: complexity, reflexivity and vulnerability. In: Hudlicky T (ed) 
Organic synthesis: theory and applications. JAI Press, Greenwich, pp 
67–92

	7.	 Hoffmann RW (2009) Elements of synthesis planning. Springer, Berlin
	8.	 Hendrickson JB (1977) Systematic synthesis design. 6. Yield analysis and 

convergency. J Am Chem Soc 99:5439–5450. https://doi.org/10.1021/
ja00458a035

	9.	 Smith WD (1997) Computational complexity of synthetic chemis-
try–basic facts. Technical report. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.49.9276. Accessed on Jan 2018

	10.	 Bertz SH (2003) Complexity of synthetic routes: linear, convergent and 
reflexive syntheses 1. New J Chem 27(5):870–879

	11.	 Gelernter HL, Sanders AF, Larsen DL, Agarwal KK, Boivie RH, Spritzer 
GA, Searleman JE (1977) Empirical explorations of SYNCHEM. Science 
197(4308):1041–1049

	12.	 Corey EJ, Howe WJ, Orf HW, Pensak DA, Petersson G (1975) General 
methods of synthetic analysis. Strategic bond disconnections for bridged 
polycyclic structures. J Am Chem Soc 97(21):6116–6124

	13.	 Corey EJ, Cheng X (1995) The logic of chemical synthesis. Wiley, New York

r(t,v) =
wv

wt
x =

wv

wv + wu
x

r(t,u) =
wu

wt
x =

wu

wv + wu
x

Stwt = (r(t,v)Sv + r(t,u)Su)wt

=

(
wv

wv + wu
xSv +

wu

wv + wu
xSu

)
wt

= x

(
wvSv + wuSu

wv + wu

)
(wv + wu),

= x(wvSv + wuSu)

= x(Hv +Hu) [by the inductive hypothesis]

= Ht

	14.	 Nowak G, Fic G (2012) Generation of chemical transformations: reaction 
pathways prediction and synthesis design. In: Emmert-Streib F, Dehmer 
M, Varmuza K, Bonchev D (eds) Statistical modelling of molecular descrip-
tors in QSAR/QSPR, vol 2. Wiley, Weinheim, pp 393–425

	15.	 Hendrickson JB (2002) Generating benign alternative syntheses: the Syn-
Gen program, pp 127–144. https://doi.org/10.1021/bk-2002-0823.ch010

	16.	 Wipke WT, Rogers D (1984) Artificial intelligence in organic synthesis. sst: 
starting material selection strategies. an application of superstructure 
search. J Chem Inf Comput Sci 24(2):71–81

	17.	 Hanessian S, Franco J, Larouche B (1990) The psychobiological basis of 
heuristic synthesis planning man, machine and the chiron approach. 
Pure Appl Chem 62(10):1887–1910

	18.	 Mehta G, Barone R, Chanon M (1998) Computer-aided organic synthesis-
sesam: a simple program to unravel “hidden” restructured starting materi-
als skeleta in complex targets. Eur J Organ Chem 7:1409–1412

	19.	 Gillet VJ, Myatt G, Zsoldos Z, Johnson AP (1995) Sprout, hippo and caesa: 
tools for de novo structure generation and estimation of synthetic acces-
sibility. Perspect Drug Discov Des 3(1):34–50

	20.	 Nielsen LR, Andersen KA, Pretolani D (2005) Finding the K  shortest hyper-
paths. Comput Oper Res 32(6):1477–1497

	21.	 Velluz L, Valls J, Mathieu J (1967) Spatial arrangement and preparative 
organic synthesis. Angew Chem Int Ed Engl 6:778–789

	22.	 Kim SM, Peña MI, Moll M, Bennett GN, Kavraki LE (2017) A review of 
parameters and heuristics for guiding metabolic pathfinding. J Chem 
Inform 9(1):51. https://doi.org/10.1186/s13321-017-0239-6

	23.	 Carbonell P, Fichera D, Pandit SB, Faulon J-L (2012) Enumerating 
metabolic pathways for the production of heterologous target 
chemicals in chassis organisms. BMC Syst Biol 6(1):10. https://doi.
org/10.1186/1752-0509-6-10

	24.	 Ausiello G, Franciosa PG, Frigioni D (2001) Directed hypergraphs: prob-
lems, algorithmic results, and a novel decremental approach. Theoreti-
cal Computer Science, vol 2202. Lecture Notes in Computer Science. 
Springer, Berlin, pp 312–328

	25.	 Thakur M, Tripathi R (2009) Linear connectivity problems in directed 
hypergraphs. Theor Comput Sci 410(27–29):2592–2618. https://doi.
org/10.1016/j.tcs.2009.02.038

	26.	 Yen JY (1971) Finding the k shortest loopless paths in a network. Manag 
Sci 17:712–716

	27.	 Gallo G, Longo G, Pallottino S, Nguyen S (1993) Directed hypergraphs and 
applications. Discr Appl Math 42:177–201

	28.	 https://new.reaxys.com. Accessed on Jan 2018
	29.	 http://www.cas.org/products/scifinder. Accessed Jan 2018
	30.	 Liu B, Ramsundar B, Kawthekar P, Shi J, Gomes J, Nguyen QL, Ho S, Sloane 

J, Wender P, Pande V (2017) Retrosynthetic reaction prediction using neu-
ral sequence-to-sequence models. ACS Cent Sci 3(10):1103–1113. https://
doi.org/10.1021/acscentsci.7b00303

	31.	 Segler MHS, Waller MP (2017) Neural-symbolic machine learning for 
retrosynthesis and reaction prediction. Chem Eur J 23(25):5966–5971. 
https://doi.org/10.1002/chem.201605499

	32.	 Coley CW, Rogers L, Green WH, Jensen KF (2017) Computer-assisted ret-
rosynthesis based on molecular similarity. ACS Cent Sci 3(12):1237–1245. 
https://doi.org/10.1021/acscentsci.7b00355

	33.	 Pólya G (1937) Kombinatorische anzahlbestimmungen für gruppen, gra-
phen und chemische verbindungen. Acta Math 68(1):145–254. https://
doi.org/10.1007/BF02546665

	34.	 Bradshaw B, Bonjoch J (2012) The Wieland–Miescher Ketone: a journey 
from organocatalysis to natural product synthesis. SYNLETT 23:337–356. 
https://doi.org/10.1055/s-0031-1290107

	35.	 Gallo G, Pallottino S (1992) Hypergraph models and algorithms for the 
assembly problem. Technical report, Dipartimento di Informatica, Univer-
sitá di Pisa, TR-6/92

	36.	 Heller SR, McNaught A, Stein S, Tchekhovskoi D, Pletnev IV (2013) InChI—
the worldwide chemical structure identifier standard. J Chem Inf 5:7

	37.	 McKay BD, Piperno A (2014) Practical graph isomorphism II. J Symb Com-
put 60:94–112

https://doi.org/10.1021/ja00458a035
https://doi.org/10.1021/ja00458a035
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.9276
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.9276
https://doi.org/10.1021/bk-2002-0823.ch010
https://doi.org/10.1186/s13321-017-0239-6
https://doi.org/10.1186/1752-0509-6-10
https://doi.org/10.1186/1752-0509-6-10
https://doi.org/10.1016/j.tcs.2009.02.038
https://doi.org/10.1016/j.tcs.2009.02.038
https://new.reaxys.com
http://www.cas.org/products/scifinder
https://doi.org/10.1021/acscentsci.7b00303
https://doi.org/10.1021/acscentsci.7b00303
https://doi.org/10.1002/chem.201605499
https://doi.org/10.1021/acscentsci.7b00355
https://doi.org/10.1007/BF02546665
https://doi.org/10.1007/BF02546665
https://doi.org/10.1055/s-0031-1290107

	Finding the K best synthesis plans
	Abstract 
	Introduction
	Contribution
	Previous work
	Synthesis planning basics
	Results
	Representations of synthesis plans
	Hypergraphs
	Finding synthesis plans via hypergraphs
	Quality measures

	Discussion
	Number of synthesis plans for decalin
	Order of synthesis plans
	Detailed chemical synthesis plan for a size 2 bond set for decalin

	Conclusions
	Authors’ contributions
	References




