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Abstract 

Jdpd is an open Java simulation kernel for Molecular Fragment Dissipative Particle Dynamics with parallelizable force 
calculation, efficient caching options and fast property calculations. It is characterized by an interface and factory-
pattern driven design for simple code changes and may help to avoid problems of polyglot programming. Detailed 
input/output communication, parallelization and process control as well as internal logging capabilities for debug-
ging purposes are supported. The new kernel may be utilized in different simulation environments ranging from 
flexible scripting solutions up to fully integrated “all-in-one” simulation systems.
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Introduction
Mesoscopic simulation aims at describing supramolecu-
lar phenomena at the nanometer (length) and microsec-
ond (time) scale for large interacting physical ensembles 
(representing millions of atoms) within comparatively 
short computational time frames (hours) by “coarse 
grained” neglect of uninteresting degrees of freedom. 
Dissipative Particle Dynamics (DPD) is a mesoscopic 
simulation technique for isothermal complex fluids and 
soft matter systems that combines features from Molec-
ular Dynamics (MD), Langevin Dynamics and Lattice-
Gas Automata [1–5]. It satisfies Galilean invariance and 
isotropy, conserves mass and momentum and achieves a 
rigorous sampling of the canonical ensemble due to soft 
particle pair potentials that diminish entanglements or 
caging effects. DPD is expected to show correct hydrody-
namic behavior and to obey the Navier–Stokes equations.

Whereas DPD particles in general may be arbitrarily 
defined “fluid packets” [2] the Molecular Fragment DPD 
variant [5–12] identifies each particle with a distinct 

small molecule of molar mass in the order of 100  Da. 
Larger molecules are composed of adequate “molecu-
lar fragment” particles that are bonded by harmonic 
springs to mimic covalent connectivities and spatial 
3D conformations. Thus this variant may be regarded 
as a chemically intuitive and molecular accurate “fine 
grained” version of the intrinsically “coarse grained” DPD 
technique.

A simulation kernel software comprises the fundamen-
tal data structures and numerical calculation algorithms 
that are necessary to approximate the temporal evolution 
of a defined particle ensemble. DPD (as well as similar 
MD) code consists basically of a main loop over (non-
parallelizable) successive simulation steps in which (par-
allelizable) particle pair force evaluations are the most 
time-consuming part [13, 14]. Thus parallelization efforts 
focus mainly on these force calculations in order to speed 
up simulations.

The new Jdpd library enriches the small set of existing 
commercial [15, 16], open general [17–22] and hardware 
specific DPD kernels [23, 24]. It is (to our knowledge) the 
first pure Java implementation for Molecular Fragment 
DPD leveraging inherent Java strengths like cross-plat-
form portability, parallelized computations, automatic 
memory management or object-oriented plus functional 
programming capabilities, see Fig.  1. In addition Jdpd 
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may help to tackle problems of polyglot programming 
where a simulation kernel may be coded in C/C++ or 
FORTRAN with a managerial software layer written in a 
different language (like “universal” Java).

Computational methods, implementation details 
and performance results
DPD particle trajectories are guided by Newton’s equa-
tion of motion [3, 5]:

mi, ri, mass and position vector of particle i; t, time; Fi, 
total force on particle i exerted by other particles j; N , 
number of particles in simulation; FC

ij , F
D
ij , F

R
ij , conserva-

tive, dissipative and random force on particle i exerted by 
particle j.

Dissipative (frictional) and random forces oppose 
each other and act as a thermostat conserving the total 
momentum and introducing Brownian motion into 
the system. The conservative forces comprise soft DPD 
particle repulsions (with a common cut-off length of 1 
DPD unit), harmonic springs between bonded particles 
and electrostatic interactions between charged parti-
cles (the implemented model for the latter is an ad-hoc 
approach to take electrostatic long-range interactions 
between “a few” charged particles in the simulation box 

mi
d2ri
dt2

= Fi =
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into account—details are outlined in [12] where an appli-
cation to biological membranes and protein models is 
described. A theoretically more sound treatment of elec-
trostatic interactions like those proposed in [25–27] may 
be addressed by future developments with the current 
technical implementation of electrostatics interactions as 
a useful blueprint to alleviate coding efforts):

FC ,DPD
ij , FC ,Bond

ij , FC ,Estat
ij , soft repulsive DPD force, har-

monic bond force and electrostatic force on particle i 
exerted by particle j; aij , maximum isotropic repulsion 
between particles i and j; rij = ri − rj = rij r

0
ij ; r

0
ij , unit 

vector; kBond , spring constant of bond; rBond , bond length.
Dissipative force
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(
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)
, dissipative force distance 

variation; vi, velocity of particle i; vij = vi − vj .
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Fig. 1  DPD simulation architecture(s) with Jdpd: A job execution management layer may run several parallelized Jdpd instances with different 
simulation jobs (denoted 1 to N) where every Jdpd instance itself may use several parallelized internal calculation threads (denoted Calc 1 to M)
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σ , noise amplitude; ωR
(
rij
)
, random force distance vari-

ation; ζij , random number with zero mean and unit vari-
ance; �t, integration time step depend on each other in 
a canonical NVT ensemble (again a cut-off length of 1 
DPD unit is applied) [5]. 

kB, Boltzmann constant; T , thermodynamic temperature.
The sketched forces and corresponding potentials are 

implemented in calculation classes of the packages har-
monicBonds, dpdCutoff1 and electrostatics. An additional 
gravitational acceleration that acts on particle masses 
may be defined for every direction. All calculation classes 
for DPD and electrostatics forces and potentials extend 
abstract class ParticlePairInteractionCalculator of pack-
age interactions which itself implements a cut-off length 
based simulation box cell partitioning [13]: The result-
ing cell linked-list method allows a (near) linear scaling 
detection of interacting particle pairs within neighbored 
cells—a task that otherwise would be quadratically scal-
ing with the number of particles. In addition the simu-
lation box cells are grouped in (3*3*2=)18 parallelizable 
chunks (each cell is surrounded by 26 neighbor cells, 
every third cell in every of the three spatial directions has 
no common neighbor cell but due to symmetric forces 
every second cell can be used in one of the three direc-
tions, see method getParallelisationSafeCellChunks of 
class CellBox in package utilities): These chunks guaran-
tee a separated non-overlapping access of internal force 
array elements from parallelized calculation threads so 
that fast lock-free array manipulations become possible 
(all particle related arrays are located in class ParticleAr-
rays of package parameters). An analogue lock-free par-
allelization feature with separated parallelizable bond 
chunks is realized within the bond related calculation 
classes (see package harmonicBonds).

Another significant performance improvement is 
achieved by efficiently caching the already evaluated 
interacting particle pairs for reuse throughout different 
force calculations within a single simulation step (see use 
of caching class ParticlePairDistanceParameters in pack-
age utilities). This caching avoids the time-consuming 
recalculation of particle pair distances (see relative per-
formance factors of the different implemented integra-
tion schemata below): The saved number of expensively 
safe-guarded particle pair distance calculations may 
be (empirically) evaluated to be about 7 times the total 
number of particles in simulation for a common DPD 
particle density of 3. An upper bound for this empirical 

γ =
σ 2

2 kBT

ωR
(
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)
=

√

ωD
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)
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number may be deduced from the average number of all 
neighbor-cell particle pairs which is 40 times the number 
of particles in the simulation (which overestimates the 
number of relevant particle pair distances since—incor-
rectly—particle pairs with a distance above the cut-off 
length of 1 DPD unit are included):

N , number of particles; ρDPD, DPD density; 
〈
Nij

〉

ρDPD
, 

average number of particle pairs for specific DPD density.
Since (unlike MD) dissipative DPD forces depend on 

relative particle velocities the common Velocity-Verlet 
(VV) integration of the equations of motion [13, 14] 
has to be modified (abbreviated MVV). Jdpd consists 
of optimized implementations of four DPD integra-
tion schemata (located in package integrationType) that 
cover different integration techniques: (1) The origi-
nal Groot-Warren scheme (GWMVV) [5, 28, 29] which 
depends on a tuning parameter where GWMVV equals 
VV integration for a value of 0.5, (2) the self-consistent 
scheme (SCMVV) [28–30] with an adjustable number of 
self-consistent dissipative force iterations where a single 
iteration leads to the DPDMVV variant, (3) Shardlow’s 
S1 scheme (S1MVV) [31, 32] and (4) the Nonsymmetric 
Pairwise Noose-Hoover-Langevin thermostat (PNHLN) 
[33] that requires the definition of an additional coupling 
parameter.

A single simulation task is performed by instantiat-
ing a DpdSimulationTask (which implements a Callable 
interface, see package jdpd) that may be submitted to an 
appropriate thread executor service to be invoked. The 
DpdSimulationTask constructor requires six configuration 
objects: (1) An (optional) RestartInfo instance that con-
tains information about a possible simulation job restart 
(all Jdpd jobs may be restarted with altered settings which 
allows flexible job execution chains), (2) an input instance 
that implements the IInput interface with all simulation 
settings (e.g. particle types and their interactions, initial 
particle positions within the simulation box, additional 
properties like molecule boundaries etc.), (3) an output 
instance implementing the IOutput interface for all out-
put data, (4) a progress monitor instance implementing 
the IProgressMonitor interface for real-time simulation 
progress information, (5) an ILogger instance for log-level 
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dependent accumulation of detailed internal calculation 
progress information and (6) a ParallelizationInfo instance 
that describes internal settings for parallelized calculations. 
All interfaces are located in package interfaces and possess 
concrete sample implementations like classes FileInput 
and FileOutput of package samples that implement file-
based I/O methods. The RestartInfo and ParallelizationInfo 
classes are found in package parameters.

An IInput object contains a Factory instance (located 
in package utilities) that implements enumerated type 
definitions for random number generation, DPD and 
electrostatics calculations, harmonic bonds or integra-
tion schemata. The factory pattern allows a simple exten-
sion or replacement of computational algorithms used 
throughout the whole simulation kernel, e.g. the imple-
mented random numbers generators [34–36] may be 
supplemented by alternative methods with a few addi-
tional lines of code in the Factory class. An IInput object 
also provides detailed molecular information (see class 
MoleculeDescription in package utilities): These molecu-
lar descriptions differentiate between topological bonds 
of a molecules’ particles for an adequate description of 
covalent connectivity and bonds between backbone par-
ticles that maintain a defined spatial 3D structure, e.g. 
ring systems or secondary and tertiary structures of pro-
teins. As a matter of course both bond types are treated 
equally throughout calculations.

For software programs with extensive parallelized 
numerical calculations the debugging facilities of cur-
rent integrated development environments are often not 
sufficient to tackle subtle errors. Thus Jdpd comprises 
(extensible) loggers (see classes FileLogger and Memory-
Logger in package logger) with different (extensible) log-
levels to obtain detailed information about the simulation 
progress.

Jdpd efficiently calculates kinetic and potential ener-
gies, average kinetic temperatures [14], surface tensions 
along the simulation box axes [14, 37] or particle based 
radii of gyration [38]. In addition a fast parallelized par-
ticle and molecule based nearest-neighbor analysis for 
the whole simulation process is implemented which 
allows a detailed temporal monitoring of changing aver-
aged particle’s and molecule’s vicinities. Initial force 
steps for potential energy minimization to improve start 
geometries may be defined and velocities may be scaled 
to keep a desired temperature. Molecule specific posi-
tion or velocity fixation is provided with the additional 
option to define molecule specific boundaries in form of 
reflective virtual walls within the simulation box to con-
fine molecules to a desired subspace. Molecule specific 
periodic “force kicks” may be defined to “smoothly drive” 
molecules into a desired direction. Periodic boundary 
conditions as well as reflective box walls are supported. 
Implemented safeguards try to tackle common problems 

Fig. 2  Jdpd performance snapshots in dependence of the number of simulated particles (see legend on the right) and the number of parallelized 
calculation threads for 13.000 simulation steps (corresponding to a physical time period of one microsecond) with integration type GWMVV
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like unfavorable simulation box start configurations with 
unphysical (high or low) particle densities.

For testing purposes Jdpd contains two appropriate 
packages tests and tests.interactions that contain Unit test 
code e.g. for a command file driven Jdpd usage.

Jdpd offers a satisfactory performance for various sci-
entific applications with workstation computers that are 
commonly available in scientific institutions (where the 
computational speed of Java just-in-time compiled Jdpd 
is in the ballpark of comparable ahead-of-time com-
piled FORTRAN or C/C++ code) but does not explic-
itly exploit specific hardware environments or devices 
like graphics processing units (thus Jdpd may be orders 
of magnitude slower than hardware specific high per-
formance computing implementations—but future Java 
Virtual Machines may address these hardware accelera-
tion options [39, 40]): As a rule of thumb a one-million-
particle/one-microsecond simulation using 8 parallelized 
calculation threads consumes about one gigabyte of 
memory and takes less than 3  h to finish on standard 
multicore processors, e.g. an Intel Xeon E5-2697 v2 CPU 
[41] used for the performance snapshots shown in Fig. 2. 
Up to the studied 8 parallelized calculation threads Jdpd 
computational periods scale inversely proportional with 
the thread number exhibiting scaling exponents between 
− 0.92 and − 1.09. The corresponding scaling with a 
growing simulated particle number is near-proportional 
with scaling exponents between 1.17 and 1.39 (thus well 
below quadratic scaling). The relative performance fac-
tors of the different implemented integration schemata is 
GWMVV (1.0) < S1MVV (1.1) < DPDMVV (1.4) < S1MVV 
without cache (1.8) < PNHLN (1.9) < DPDMVV without 
cache (2.2) < SCMVV with 5 iterations (2.3) < PNHLN 
without cache (2.8) < SCMVV with 5 iterations without 
cache (4.8). These findings correspond to those reported 
in [28, 29, 32, 33].

Conclusions
Jdpd is a new open DPD simulation kernel completely 
written in Java that complements the small available set 
of general purpose DPD kernels. It especially supports 
molecular fragment structures and offers parallelizable 
force calculation plus efficient caching options with an 
interface and factory-pattern driven design for comforta-
ble and low expenditure code extensions, customizations 
or replacements. Detailed input/output communication, 
parallelization and process control as well as internal log-
ging capabilities for debugging purposes are supported. 
The new kernel may be utilized in different simulation 
environments ranging from flexible scripting solutions 
up to fully integrated “all-in-one” simulation systems 
described in [11] where it may help to avoid polyglot 
programming.

The Jdpd library uses the Apache Commons RNG 
libraries [34] and is publically available as open source 
published under the GNU General Public License version 
3 [42]. The Jdpd repository on GitHub comprises the Java 
bytecode libraries (including the Apache Commons RNG 
libraries), the Javadoc HTML documentation [43] and 
the Netbeans [44] source code packages including Unit 
tests.
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