
van den Broek et al. J Cheminform (2018) 10:25
https://doi.org/10.1186/s13321-018-0278-7

SOFTWARE

Jdpd: an open java simulation kernel
for molecular fragment dissipative particle
dynamics
Karina van den Broek1,3, Hubert Kuhn2 and Achim Zielesny3* 

Abstract 

Jdpd is an open Java simulation kernel for Molecular Fragment Dissipative Particle Dynamics with parallelizable force
calculation, efficient caching options and fast property calculations. It is characterized by an interface and factory-
pattern driven design for simple code changes and may help to avoid problems of polyglot programming. Detailed
input/output communication, parallelization and process control as well as internal logging capabilities for debug-
ging purposes are supported. The new kernel may be utilized in different simulation environments ranging from
flexible scripting solutions up to fully integrated “all-in-one” simulation systems.

Keywords:  Dissipative particle dynamics, Simulation, Molecular, Mesoscopic, Kernel

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Mesoscopic simulation aims at describing supramolecu-
lar phenomena at the nanometer (length) and microsec-
ond (time) scale for large interacting physical ensembles
(representing millions of atoms) within comparatively
short computational time frames (hours) by “coarse
grained” neglect of uninteresting degrees of freedom.
Dissipative Particle Dynamics (DPD) is a mesoscopic
simulation technique for isothermal complex fluids and
soft matter systems that combines features from Molec-
ular Dynamics (MD), Langevin Dynamics and Lattice-
Gas Automata [1–5]. It satisfies Galilean invariance and
isotropy, conserves mass and momentum and achieves a
rigorous sampling of the canonical ensemble due to soft
particle pair potentials that diminish entanglements or
caging effects. DPD is expected to show correct hydrody-
namic behavior and to obey the Navier–Stokes equations.

Whereas DPD particles in general may be arbitrarily
defined “fluid packets” [2] the Molecular Fragment DPD
variant [5–12] identifies each particle with a distinct

small molecule of molar mass in the order of 100 Da.
Larger molecules are composed of adequate “molecu-
lar fragment” particles that are bonded by harmonic
springs to mimic covalent connectivities and spatial
3D conformations. Thus this variant may be regarded
as a chemically intuitive and molecular accurate “fine
grained” version of the intrinsically “coarse grained” DPD
technique.

A simulation kernel software comprises the fundamen-
tal data structures and numerical calculation algorithms
that are necessary to approximate the temporal evolution
of a defined particle ensemble. DPD (as well as similar
MD) code consists basically of a main loop over (non-
parallelizable) successive simulation steps in which (par-
allelizable) particle pair force evaluations are the most
time-consuming part [13, 14]. Thus parallelization efforts
focus mainly on these force calculations in order to speed
up simulations.

The new Jdpd library enriches the small set of existing
commercial [15, 16], open general [17–22] and hardware
specific DPD kernels [23, 24]. It is (to our knowledge) the
first pure Java implementation for Molecular Fragment
DPD leveraging inherent Java strengths like cross-plat-
form portability, parallelized computations, automatic
memory management or object-oriented plus functional
programming capabilities, see Fig. 1. In addition Jdpd

Open Access

*Correspondence: achim.zielesny@w‑hs.de
3 Institute for Bioinformatics and Chemoinformatics, Westphalian
University of Applied Sciences, August‑Schmidt‑Ring 10,
45665 Recklinghausen, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0722-4229
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-018-0278-7&domain=pdf

Page 2 of 6van den Broek et al. J Cheminform (2018) 10:25

may help to tackle problems of polyglot programming
where a simulation kernel may be coded in C/C++ or
FORTRAN with a managerial software layer written in a
different language (like “universal” Java).

Computational methods, implementation details
and performance results
DPD particle trajectories are guided by Newton’s equa-
tion of motion [3, 5]:

mi, ri, mass and position vector of particle i; t, time; Fi,
total force on particle i exerted by other particles j; N ,
number of particles in simulation; FC

ij , F
D
ij , F

R
ij , conserva-

tive, dissipative and random force on particle i exerted by
particle j.

Dissipative (frictional) and random forces oppose
each other and act as a thermostat conserving the total
momentum and introducing Brownian motion into
the system. The conservative forces comprise soft DPD
particle repulsions (with a common cut-off length of 1
DPD unit), harmonic springs between bonded particles
and electrostatic interactions between charged parti-
cles (the implemented model for the latter is an ad-hoc
approach to take electrostatic long-range interactions
between “a few” charged particles in the simulation box

mi
d2ri
dt2

= Fi =
N∑

j=1
j �=i

(

FC
ij + FD

ij + FR
ij

)

into account—details are outlined in [12] where an appli-
cation to biological membranes and protein models is
described. A theoretically more sound treatment of elec-
trostatic interactions like those proposed in [25–27] may
be addressed by future developments with the current
technical implementation of electrostatics interactions as
a useful blueprint to alleviate coding efforts):

FC ,DPD
ij , FC ,Bond

ij , FC ,Estat
ij , soft repulsive DPD force, har-

monic bond force and electrostatic force on particle i
exerted by particle j; aij , maximum isotropic repulsion
between particles i and j; rij = ri − rj = rij r

0
ij ; r

0
ij , unit

vector; kBond , spring constant of bond; rBond , bond length.
Dissipative force

γ , friction coefficient; ωD
(
rij
)
, dissipative force distance

variation; vi, velocity of particle i; vij = vi − vj .

Random force

FC
ij = FC ,DPD

ij + FC ,Bond
ij + FC ,Estat

ij

FC ,DPD
ij

(

rij

)

=
{
aij

(
1− rij

)
r0ij for rij < 1

0 for rij ≥ 1

FC ,Bond
ij = −kBond

(
rij − rBond

)
r0ij

FD
ij

(

rij , vij

)

= −γ ωD
(
rij
) (

r0ij · vij
)

r0ij

FR
ij

(

rij

)

= σ ωR
(
rij
) ζij√

�t
r0ij

Fig. 1  DPD simulation architecture(s) with Jdpd: A job execution management layer may run several parallelized Jdpd instances with different
simulation jobs (denoted 1 to N) where every Jdpd instance itself may use several parallelized internal calculation threads (denoted Calc 1 to M)

Page 3 of 6van den Broek et al. J Cheminform (2018) 10:25

σ , noise amplitude; ωR
(
rij
)
, random force distance vari-

ation; ζij , random number with zero mean and unit vari-
ance; �t, integration time step depend on each other in
a canonical NVT ensemble (again a cut-off length of 1
DPD unit is applied) [5].

kB, Boltzmann constant; T , thermodynamic temperature.
The sketched forces and corresponding potentials are

implemented in calculation classes of the packages har-
monicBonds, dpdCutoff1 and electrostatics. An additional
gravitational acceleration that acts on particle masses
may be defined for every direction. All calculation classes
for DPD and electrostatics forces and potentials extend
abstract class ParticlePairInteractionCalculator of pack-
age interactions which itself implements a cut-off length
based simulation box cell partitioning [13]: The result-
ing cell linked-list method allows a (near) linear scaling
detection of interacting particle pairs within neighbored
cells—a task that otherwise would be quadratically scal-
ing with the number of particles. In addition the simu-
lation box cells are grouped in (3*3*2=)18 parallelizable
chunks (each cell is surrounded by 26 neighbor cells,
every third cell in every of the three spatial directions has
no common neighbor cell but due to symmetric forces
every second cell can be used in one of the three direc-
tions, see method getParallelisationSafeCellChunks of
class CellBox in package utilities): These chunks guaran-
tee a separated non-overlapping access of internal force
array elements from parallelized calculation threads so
that fast lock-free array manipulations become possible
(all particle related arrays are located in class ParticleAr-
rays of package parameters). An analogue lock-free par-
allelization feature with separated parallelizable bond
chunks is realized within the bond related calculation
classes (see package harmonicBonds).

Another significant performance improvement is
achieved by efficiently caching the already evaluated
interacting particle pairs for reuse throughout different
force calculations within a single simulation step (see use
of caching class ParticlePairDistanceParameters in pack-
age utilities). This caching avoids the time-consuming
recalculation of particle pair distances (see relative per-
formance factors of the different implemented integra-
tion schemata below): The saved number of expensively
safe-guarded particle pair distance calculations may
be (empirically) evaluated to be about 7 times the total
number of particles in simulation for a common DPD
particle density of 3. An upper bound for this empirical

γ =
σ 2

2 kBT

ωR
(
rij
)
=

√

ωD
(
rij
)
=

{
1− rij for rij < 1

0 for rij ≥ 1

number may be deduced from the average number of all
neighbor-cell particle pairs which is 40 times the number
of particles in the simulation (which overestimates the
number of relevant particle pair distances since—incor-
rectly—particle pairs with a distance above the cut-off
length of 1 DPD unit are included):

N , number of particles; ρDPD, DPD density;
〈
Nij

〉

ρDPD
,

average number of particle pairs for specific DPD density.
Since (unlike MD) dissipative DPD forces depend on

relative particle velocities the common Velocity-Verlet
(VV) integration of the equations of motion [13, 14]
has to be modified (abbreviated MVV). Jdpd consists
of optimized implementations of four DPD integra-
tion schemata (located in package integrationType) that
cover different integration techniques: (1) The origi-
nal Groot-Warren scheme (GWMVV) [5, 28, 29] which
depends on a tuning parameter where GWMVV equals
VV integration for a value of 0.5, (2) the self-consistent
scheme (SCMVV) [28–30] with an adjustable number of
self-consistent dissipative force iterations where a single
iteration leads to the DPDMVV variant, (3) Shardlow’s
S1 scheme (S1MVV) [31, 32] and (4) the Nonsymmetric
Pairwise Noose-Hoover-Langevin thermostat (PNHLN)
[33] that requires the definition of an additional coupling
parameter.

A single simulation task is performed by instantiat-
ing a DpdSimulationTask (which implements a Callable
interface, see package jdpd) that may be submitted to an
appropriate thread executor service to be invoked. The
DpdSimulationTask constructor requires six configuration
objects: (1) An (optional) RestartInfo instance that con-
tains information about a possible simulation job restart
(all Jdpd jobs may be restarted with altered settings which
allows flexible job execution chains), (2) an input instance
that implements the IInput interface with all simulation
settings (e.g. particle types and their interactions, initial
particle positions within the simulation box, additional
properties like molecule boundaries etc.), (3) an output
instance implementing the IOutput interface for all out-
put data, (4) a progress monitor instance implementing
the IProgressMonitor interface for real-time simulation
progress information, (5) an ILogger instance for log-level

�
Nij

�

ρDPD
=

N

ρDPD
� �� �

Number of
cells











ρ2
DPD − ρDPD

2
� �� �

Number of particle pairs
within single cell

+ 13ρ2
DPD

� �� �

Particle pairs of single cell
with 13 of its 26 neighbor cells

(no double counts)











=
27ρDPD − 1

2
N

�
Nij

�

3
= 40N

Page 4 of 6van den Broek et al. J Cheminform (2018) 10:25

dependent accumulation of detailed internal calculation
progress information and (6) a ParallelizationInfo instance
that describes internal settings for parallelized calculations.
All interfaces are located in package interfaces and possess
concrete sample implementations like classes FileInput
and FileOutput of package samples that implement file-
based I/O methods. The RestartInfo and ParallelizationInfo
classes are found in package parameters.

An IInput object contains a Factory instance (located
in package utilities) that implements enumerated type
definitions for random number generation, DPD and
electrostatics calculations, harmonic bonds or integra-
tion schemata. The factory pattern allows a simple exten-
sion or replacement of computational algorithms used
throughout the whole simulation kernel, e.g. the imple-
mented random numbers generators [34–36] may be
supplemented by alternative methods with a few addi-
tional lines of code in the Factory class. An IInput object
also provides detailed molecular information (see class
MoleculeDescription in package utilities): These molecu-
lar descriptions differentiate between topological bonds
of a molecules’ particles for an adequate description of
covalent connectivity and bonds between backbone par-
ticles that maintain a defined spatial 3D structure, e.g.
ring systems or secondary and tertiary structures of pro-
teins. As a matter of course both bond types are treated
equally throughout calculations.

For software programs with extensive parallelized
numerical calculations the debugging facilities of cur-
rent integrated development environments are often not
sufficient to tackle subtle errors. Thus Jdpd comprises
(extensible) loggers (see classes FileLogger and Memory-
Logger in package logger) with different (extensible) log-
levels to obtain detailed information about the simulation
progress.

Jdpd efficiently calculates kinetic and potential ener-
gies, average kinetic temperatures [14], surface tensions
along the simulation box axes [14, 37] or particle based
radii of gyration [38]. In addition a fast parallelized par-
ticle and molecule based nearest-neighbor analysis for
the whole simulation process is implemented which
allows a detailed temporal monitoring of changing aver-
aged particle’s and molecule’s vicinities. Initial force
steps for potential energy minimization to improve start
geometries may be defined and velocities may be scaled
to keep a desired temperature. Molecule specific posi-
tion or velocity fixation is provided with the additional
option to define molecule specific boundaries in form of
reflective virtual walls within the simulation box to con-
fine molecules to a desired subspace. Molecule specific
periodic “force kicks” may be defined to “smoothly drive”
molecules into a desired direction. Periodic boundary
conditions as well as reflective box walls are supported.
Implemented safeguards try to tackle common problems

Fig. 2  Jdpd performance snapshots in dependence of the number of simulated particles (see legend on the right) and the number of parallelized
calculation threads for 13.000 simulation steps (corresponding to a physical time period of one microsecond) with integration type GWMVV

Page 5 of 6van den Broek et al. J Cheminform (2018) 10:25

like unfavorable simulation box start configurations with
unphysical (high or low) particle densities.

For testing purposes Jdpd contains two appropriate
packages tests and tests.interactions that contain Unit test
code e.g. for a command file driven Jdpd usage.

Jdpd offers a satisfactory performance for various sci-
entific applications with workstation computers that are
commonly available in scientific institutions (where the
computational speed of Java just-in-time compiled Jdpd
is in the ballpark of comparable ahead-of-time com-
piled FORTRAN or C/C++ code) but does not explic-
itly exploit specific hardware environments or devices
like graphics processing units (thus Jdpd may be orders
of magnitude slower than hardware specific high per-
formance computing implementations—but future Java
Virtual Machines may address these hardware accelera-
tion options [39, 40]): As a rule of thumb a one-million-
particle/one-microsecond simulation using 8 parallelized
calculation threads consumes about one gigabyte of
memory and takes less than 3 h to finish on standard
multicore processors, e.g. an Intel Xeon E5-2697 v2 CPU
[41] used for the performance snapshots shown in Fig. 2.
Up to the studied 8 parallelized calculation threads Jdpd
computational periods scale inversely proportional with
the thread number exhibiting scaling exponents between
− 0.92 and − 1.09. The corresponding scaling with a
growing simulated particle number is near-proportional
with scaling exponents between 1.17 and 1.39 (thus well
below quadratic scaling). The relative performance fac-
tors of the different implemented integration schemata is
GWMVV (1.0) < S1MVV (1.1) < DPDMVV (1.4) < S1MVV
without cache (1.8) < PNHLN (1.9) < DPDMVV without
cache (2.2) < SCMVV with 5 iterations (2.3) < PNHLN
without cache (2.8) < SCMVV with 5 iterations without
cache (4.8). These findings correspond to those reported
in [28, 29, 32, 33].

Conclusions
Jdpd is a new open DPD simulation kernel completely
written in Java that complements the small available set
of general purpose DPD kernels. It especially supports
molecular fragment structures and offers parallelizable
force calculation plus efficient caching options with an
interface and factory-pattern driven design for comforta-
ble and low expenditure code extensions, customizations
or replacements. Detailed input/output communication,
parallelization and process control as well as internal log-
ging capabilities for debugging purposes are supported.
The new kernel may be utilized in different simulation
environments ranging from flexible scripting solutions
up to fully integrated “all-in-one” simulation systems
described in [11] where it may help to avoid polyglot
programming.

The Jdpd library uses the Apache Commons RNG
libraries [34] and is publically available as open source
published under the GNU General Public License version
3 [42]. The Jdpd repository on GitHub comprises the Java
bytecode libraries (including the Apache Commons RNG
libraries), the Javadoc HTML documentation [43] and
the Netbeans [44] source code packages including Unit
tests.

Authors’ contributions
KvdB and AZ designed, implemented and tested the Jdpd related code. HK
and AZ conceived the Jdpd approach and lead the project development. All
authors read and approved the final manuscript.

Author details
1 Inorganic Chemistry and Center for Nanointegration, University of Duisburg-
Essen, Essen, Germany. 2 CAM-D Technologies, Essen, Germany. 3 Institute
for Bioinformatics and Chemoinformatics, Westphalian University of Applied
Sciences, August‑Schmidt‑Ring 10, 45665 Recklinghausen, Germany.

Acknowledgements
The authors like to thank Matthias Epple for helpful discussions, kind support
and continual encouragement as well as Marc Hamm and the reviewers
for helpful suggestions. The support of GNWI – Gesellschaft für naturwis-
senschaftliche Informatik mbH, Oer-Erkenschwick, Germany, is gratefully
acknowledged.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Project name: Jdpd, Project home page: Jdpd repository at https​://githu​
b.com/ziele​sny/Jdpd, Operating system(s): Platform independent, Program-
ming language: Java, Other requirements: Java 1.8 or higher, Apache Com-
mons RNG libraries, License: GNU General Public License version 3.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 5 January 2018 Accepted: 28 April 2018

References
	1.	 Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydro-

dynamic phenomena with dissipative particle dynamics. Europhys Lett
19(3):155–160

	2.	 Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulations of hard-
sphere suspensions under steady shear. Europhys Lett. 21(3):363–368

	3.	 Espanol P, Warren P (1995) Statistical mechanics of dissipative particle
dynamics. Europhys Lett. 30(4):191–196

	4.	 Espanol P (1995) Hydrodynamics from dissipative particle dynamics. Phys
Rev E 52(2):1734–1742

	5.	 Groot RD, Warren P (1997) Dissipative particle dynamics: bridging
the gap between atomistic and mesoscopic simulation. J Chem Phys
107(11):4423–4435

	6.	 Groot RD, Madden TJ (1998) Dynamic simulation of diblock copolymer
microphase separation. J Chem Phys 105(20):8713–8724

	7.	 Ryjkina E, Kuhn H, Rehage H, Müller F, Peggau J (2002) Molecular dynamic
computer simulations of phase behavior of non-ionic surfactants. Angew
Chem Int Ed. 41(6):983–986

https://github.com/zielesny/Jdpd
https://github.com/zielesny/Jdpd

Page 6 of 6van den Broek et al. J Cheminform (2018) 10:25

	8.	 Schulz SG, Kuhn H, Schmid G, Mund C, Venzmer J (2004) Phase behavior
of amphiphilic polymers: a dissipative particles dynamics study. Colloid
Polym Sci 283:284–290

	9.	 Truszkowski A, Epple M, Fiethen A, Zielesny A, Kuhn H (2013) Molecu-
lar fragment dynamics study on the water–air interface behavior of
non-ionic polyoxyethylene alkyl ether surfactants. J Colloid Interface Sci
410:140–145

	10.	 Vishnyakov A, Lee M-T, Neimark AV (2013) Prediction of the critical micelle
concentration of nonionic surfactants by dissipative particle dynamics
simulations. J Phys Chem Lett 4:797–802

	11.	 Truszkowski A, Daniel M, Kuhn H, Neumann S, Steinbeck C, Zielesny A,
Epple M (2014) A molecular fragment cheminformatics roadmap for
mesoscopic simulation. J Cheminf 6:45

	12.	 Truszkowski A, van den Broek K, Kuhn H, Zielesny A, Epple M (2015) Meso-
scopic simulation of phospholipid membranes, peptides, and proteins
with molecular fragment dynamics. J Chem Inf Model. 55:983–997

	13.	 Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford
University Press, Oxford

	14.	 Frenkel D, Smit B (2002) Understanding molecular simulation: from algo-
rithms to applications, 2nd edn. Academic Press, London

	15.	 BIOVIA Materials Studio. http://accel​rys.com. Accessed 18 April 2018
	16.	 CULGI. http://culgi​.com. Accessed 18 April 2018
	17.	 ESPResSo. http://espre​ssomd​.org. Accessed 18 April 2018
	18.	 LAMMPS. http://lammp​s.sandi​a.gov. Accessed 18 April 2018
	19.	 Gromacs. http://www.groma​cs.org. Accessed 18 April 2018
	20.	 DL_MESO. http://www.cse.scite​ch.ac.uk/ccg/softw​are/DL_MESO.

Accessed 18 April 2018
	21.	 DPDmacs. http://www.apmat​hs.uwo.ca/~mkart​tu/dpdma​cs.shtml​.

Accessed 18 April 2018
	22.	 SYMPLER. http://sympl​er.org. Accessed 18 April 2018
	23.	 USER-MESO. http://www.cfm.brown​.edu/repo/relea​se/USER-MESO.

Accessed 18 April 2018
	24.	 GPU package in LAMMPS. http://lammp​s.sandi​a.gov/doc/accel​erate​

_gpu.html. Accessed 18 April 2018
	25.	 Groot RD (2003) Electrostatic interactions in dissipative particle dynam-

ics—simulation of polyelectrolytes and anionic surfactants. J Chem Phys
118(24):11265–11277

	26.	 González-Melchor M, Mayoral E, Velázquez ME, Alejandre J (2006) Electro-
static interactions in dissipative particle dynamics using the Ewald sums.
J Chem Phys 125:224

	27.	 Ibergay C, Malfreyt P, Tildesley DJ (2009) Electrostatic interactions in
dissipative particle dynamics: toward a mesoscale modeling of the poly-
electrolyte brushes. J Chem Theory Comput. 5(12):3245–3259

	28.	 Besold G, Vattulainen I, Karttunen M, Polson JM (2000) Towards better
integrators for dissipative particle dynamics simulations. Phys Rev E
62(6):7611–7614

	29.	 Vattulainen I, Karttunen M, Besold G, Polson JM (2002) Integration
schemes for dissipative particle dynamics simulations: from softly inter-
acting systems towards hybrid models. J Chem Phys 116(10):3967–3979

	30.	 Pagonabarraga I, Hagen MHJ, Frenkel D (1998) Self-consistent dissipative
particle dynamics algorithm. Europhys Lett 42(4):377–382

	31.	 Shardlow T (2003) Splitting for dissipative particle dynamics. SIAM J Sci
Comput 24(4):1267–1282

	32.	 Nikunen P, Karttunen M, Vattulainen I (2003) How would you integrate
the equations of motion in dissipative particle dynamics simulations?
Comput Phys Commun 153(3):407–423

	33.	 Leimkuhler B, Shang X (2015) On the numerical treatment of dissipative
particle dynamics and related systems. J Comput Phys 280:72–95

	34.	 Apache Commons RNG—random numbers generators. http://commo​
ns.apach​e.org/prope​r/commo​ns-rng/. Accessed 18 April 2018

	35.	 Minimal C implementation of PCG random number generators. http://
www.pcg-rando​m.org/. Accessed 18 April 2018

	36.	 Native seed generation according to improved initialization 2002/1/26
coded by Takuji Nishimura and Makoto Matsumoto. http://www.math.sci.
hiros​hima-u.ac.jp/~m-mat/MT/MT200​2/CODES​/mt199​37ar.c. Accessed
18 April 2018

	37.	 Walton JPRB, Tildesley DJ, Rowlinson JS, Henderson JR (1983) The pres-
sure tensor at the planar surface of a liquid. Mol Phys 48(6):1357–1368

	38.	 Flory PJ (1953) Principles of polymer chemistry. Cornell University Press,
Ithaca, New York

	39.	 Ishizaki K, Hayashi A, Koblents G, Sarkar V (2015) Compiling and optimiz-
ing Java 8 programs for GPU execution. In: Proceedings of the 24th inter-
national conference on parallel architectures and compilation techniques
(PACT 2015, October 18–21, 2015, IEEE Computer Society Washington,
DC, USA), pp 419–431

	40.	 OpenJDK Project Sumatra. https​://wiki.openj​dk.java.net/displ​ay/Sumat​ra/
Main. Accessed 18 April 2018

	41.	 Product specification Intel Xeon Processor E5 2697 v2. https​://ark.intel​ .
com/produ​cts/75283​/Intel​-Xeon-Proce​ssor-E5-2697-v2-30M-Cache​
-2_70-GHz. Accessed 18 April 2018

	42.	 GNU General Public License. http://www.gnu.org/licen​ses. Accessed 18
April 2018

	43.	 Javadoc documentation. http://www.oracl​e.com/techn​etwor​k/java/javas​
e/docum​entat​ion. Accessed 18 April 2018

	44.	 NetBeans IDE Version 8.2. https​://netbe​ans.org. Successor: https​://netbe​
ans.apach​e.org. Accessed 18 April 2018

http://accelrys.com
http://culgi.com
http://espressomd.org
http://lammps.sandia.gov
http://www.gromacs.org
http://www.cse.scitech.ac.uk/ccg/software/DL_MESO
http://www.apmaths.uwo.ca/%7emkarttu/dpdmacs.shtml
http://sympler.org
http://www.cfm.brown.edu/repo/release/USER-MESO
http://lammps.sandia.gov/doc/accelerate_gpu.html
http://lammps.sandia.gov/doc/accelerate_gpu.html
http://commons.apache.org/proper/commons-rng/
http://commons.apache.org/proper/commons-rng/
http://www.pcg-random.org/
http://www.pcg-random.org/
http://www.math.sci.hiroshima-u.ac.jp/%7em-mat/MT/MT2002/CODES/mt19937ar.c
http://www.math.sci.hiroshima-u.ac.jp/%7em-mat/MT/MT2002/CODES/mt19937ar.c
https://wiki.openjdk.java.net/display/Sumatra/Main
https://wiki.openjdk.java.net/display/Sumatra/Main
https://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
https://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
https://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://www.gnu.org/licenses
http://www.oracle.com/technetwork/java/javase/documentation
http://www.oracle.com/technetwork/java/javase/documentation
https://netbeans.org
https://netbeans.apache.org
https://netbeans.apache.org

	Jdpd: an open java simulation kernel for molecular fragment dissipative particle dynamics
	Abstract
	Introduction
	Computational methods, implementation details and performance results

	Conclusions
	Authors’ contributions
	References

