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Abstract 

Chemical named entity recognition (NER) is an active field of research in biomedical natural language processing. To 
facilitate the development of new and superior chemical NER systems, BioCreative released the CHEMDNER corpus, 
an extensive dataset of diverse manually annotated chemical entities. Most of the systems trained on the corpus rely 
on complicated hand-crafted rules or curated databases for data preprocessing, feature extraction and output post-
processing, though modern machine learning algorithms, such as deep neural networks, can automatically design 
the rules with little to none human intervention. Here we explored this approach by experimenting with various deep 
learning architectures for targeted tokenisation and named entity recognition. Our final model, based on a combina-
tion of convolutional and stateful recurrent neural networks with attention-like loops and hybrid word- and character-
level embeddings, reaches near human-level performance on the testing dataset with no manually asserted rules. 
To make our model easily accessible for standalone use and integration in third-party software, we’ve developed a 
Python package with a minimalistic user interface.

Keywords:  Named entities recognition, Tokenisation, Chemical, Text mining, Deep learning, Recurrent neural 
network, Convolutional neural network, Biocreative, Chemdner, Conditional random fields, Neural attention

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Modern data-generation capabilities have clearly sur-
passed our capacity to manually analyse published data, 
which is ever-more evident in the era of high-throughput 
methods. Naturally, this fuels the development of auto-
matic natural language processing (NLP) systems capable 
of extracting and transforming specific information from 
a body of literature with human-level precision. Among 
all the subtasks NLP introduces, named entity recog-
nition (NER)—aiming to identify objects of particular 
semantic value (e.g. chemical compounds)—is one of the 
most fundamental for higher level event-focused analy-
ses. Traditionally, chemical NER systems have relied on 
curated dictionaries and hand-crafted rules (e.g. regular 
expressions for systematic IUPAC names or databases of 

trivial names and identifiers), which are hard to develop 
and maintain due to diverse morphology and rich vocab-
ulary of biomedical literature. On the other hand, various 
machine learning (ML) models can automatically infer 
efficient rules (input transformations) from annotated 
corpora reducing development and maintenance costs. 
In ML terms named entity recognition is a supervised 
labelling problem.

To facilitate the development of new and superior 
NER systems, BioCreative announced the CHEMD-
NER challenge, which ended in 2015 [1]. As part of this 
task, a team of experts has produced an extensive manu-
ally annotated corpus covering various chemical entity 
types, including systematic and trivial names, abbrevia-
tions and identifiers, formulae and phrases. Due to many 
difficulties inherent to chemical entity detection and 
normalisation [1], even manual annotation yields the 
inter-annotator agreement score of 91%, which can be 
regarded as the theoretical limit for any automatic system 
trained on this corpus. Twenty six teams have submitted 
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their NER systems for the challenge, best of which have 
reached the F1 score of ∼72–88% [2–9] on two subtasks: 
chemical entity mention (CEM) and chemical document 
indexing (CDI).

The systems were quite diverse in terms of text pre-
processing, which is a separate NLP problem in its own 
right. Obviously, it’s possible to represent any text as 
a raw sequence of characters (e.g. byte-like sequences 
or Unicode character codes), yet it is more common to 
break the characters into word-like structures known as 
tokens, which can be further normalised and/or encoded. 
Although tokenisation typically reduces the number of 
time-steps in the sequence, thus reducing the input com-
plexity, it can introduce severe artefacts, e.g. merged/
overlapping entities [5, 9]. It makes it essential to use an 
adequate tokeniser with rules finely adjusted for the task 
at hand.

While there are many token encoding strategies, they 
all can be divided into two major groups: morphology 
aware (character-level) and unaware (word-level). In the 
latter case, one usually builds a vocabulary of all tokens 
occurring in a corpus and applies a minimal frequency 
cutoff to remove noisy entries (e.g. misspelled words and 
typos). Consequently, all tokens in the vocabulary get a 
unique identifier t ∈ N+ , while all out-of-vocabulary 
(OOV) tokens get a special shared identifier. The vocabu-
lary itself can be represented as a matrix T = (t1, . . . , tT ) 
of orthogonal unit vectors (also known as one-hot encod-
ings), both sparse and purely categorical: their pair-wise 
distances carry no underlying information about seman-
tical similarity. In their chemical NER system, Lu et  al. 
[9] successfully used the skip-gram embedding model 
to overcome these limitations. The model uses context 
information and a shallow neural network to embed 
high-dimensional one-hot encoded vectors in a lower-
dimensional vector space, wherein pair-wise distances 
represent semantical similarity [10, 11]. Despite this 
strategy’s increasing popularity, few CHEMDNER task 
participants have employed it for morphology unaware 
encoding, relying instead on manually selected features 
to expand token identifiers into feature vectors. While 
word-level encodings are efficient for morphologically 
rigid corpora (e.g. standard English texts), morphologi-
cally rich biomedical and chemical literature introduces 
many infrequent words and word-forms, resulting in 
high out-of-vocabulary (OOV) rates [12, 13]. Conse-
quently, most CHEMNDER participants have addition-
ally (or exclusively) used morphology aware-encodings, 
targeting various manually designed character-level fea-
tures. Machine-learning models were far less diverse: 
since textual data are sequential, that is a value ti at time-
step i can be conditioned on the values occurring before 
and after the time-step, it is only natural to use sequential 

models for NER problems. Although many such models 
exist, most of the top-scoring ML-based tools submitted 
for the CHEMDNER task utilised conditional random 
fields (CRF), which are traditionally used for sequence 
labelling. CRFs are graphical models related to hidden 
Markov models (HMMs). They take a sequence of fea-
ture vectors as inputs and generate a sequence of labels, 
which can be further modified during post-processing. 
The participants used hand-crafted post-processing rules 
as diverse as the preprocessing procedures.

From this brief overview of the NER systems submit-
ted for the CHEMDNER task, it becomes quite evident 
that, despite the introduction of machine learning meth-
ods, in many ways these systems remain conceptually 
close to manually curated sets of rules (feature extrac-
tors). This might explain why LeadMine [8] (another con-
tender), a purely rule-based system, outperforms most of 
the submitted ML-based counterparts. At the same time, 
it is possible to reduce manual interventions to the bare 
minimum by treating tokenisation, word encoding and 
feature extraction as subtasks in a global machine learn-
ing task, and this is exactly the kind of problems that 
deep artificial neural networks (ANNs) excel at. As we 
have already mentioned, neural networks can automati-
cally learn morphology unaware word representations, 
and the same is true about morphology aware encodings. 
Furthermore, deep convolutional neural networks can 
automatically optimise feature extraction during training 
[14]. Most importantly, the labelling itself can be done by 
recurrent neural networks. Recurrent networks are natu-
rally sequential and Turing-complete, extremely power-
ful in sequence-to-sequence (also known as seq2seq or 
many-to-many) modelling (including labelling) [15]. In 
an unreviewed paper by Rei et al. [16] the authors have 
experimented with deep-learning applications in NER 
on several datasets, including CHEMDNER. Some of 
their models used a bidirectional RNN for character-
level word embedding combined with a variation of 
the attention technique used to choose between word-
level and character-level embeddings, though the label-
ling itself was done by a CRF. Convolutional networks 
have also been used for biomedical NER. Zhu et al. [17] 
have applied a deep CNN to automatically infer local 
context-sensitive features fed into a CRF classifier. In an 
unreviewed article Chiu and colleagues have showcased 
a complete ANN-only design, based on a combination 
of convolutional and recurrent layers [18]. The model 
uses word-level and character-level token embeddings. 
While the former were pretrained, the latter were opti-
mised during training by transforming a word’s matrix 
of per-character linear embeddings into a single vector 
using a bidirectional RNN. Concatenated word-level and 
character-level embeddings were then fed into a CNN to 
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extract local features. In contrast with the former exam-
ples, this model opted for a deep RNN instead of a CRF 
for sequence labelling. The authors claim state-of-the-art 
performance on the datasets they’ve used, though quite 
unfortunately they have not tried to apply their model to 
a chemical dataset. All these examples make it self-evi-
dent that a pure ANN specifically targeting the CHEMD-
NER CEM subtask can perform as well (if not better) that 
conventional models, whilst relying on no imposed rules 
or databases whatsoever. Having set this as the main pur-
pose of this study, we have developed a highly modular 
deep-learning model incorporating multiple novel fea-
tures, including trainable targeted tokenisation.

Materials and methods
Problem formulation
We consider named entity recognition as a combination 
of two problems: segmentation and sequence labelling. 
Given:

• • an ordered set of N character sequences 
X = (X1, . . . ,XN ) , where Xi = (ic1, . . . ,

i cn) is a 
character sequence;

• • an ordered set of N annotations Y = (Y1, . . . ,YN ) , 
where Yi is a sequence Yi = (iy1, . . . ,

i yn) and iyj is a 
tuple of two boolean labels (isj ,i ej) showing whether 
the corresponding character is the beginning of a 
chemical entity and/or part of one, respectively;

our task is to create a predictor P : X → Ŷ  , where Ŷ  is a 
set of inferred annotations similar to Y. We also introduce 
a tokeniser T : X → X̃ , where X̃ is an ordered sequence of 
character subsequences (tokens), thus slightly redefining 
the objective function to target per-token annotations. 
Provided that the tokeniser is fine enough to avoid tokens 
with overlapping annotations, this redefined problem is 
equivalent to the original one.

Datasets
We used the CHEMDNER corpus [1] to train and vali-
date our models. The corpus contains ten thousand 
abstracts from eleven chemistry-related fields of science 
with over 84k manually annotated chemical entities (20k 
unique) of eight types:

• • ABBREVIATION (15.55%)
• • FAMILY (14.15%)
• • FORMULA (14.26%)
• • IDENTIFIER (2.16%)
• • MULTIPLE (0.70%)
• • SYSTEMATIC (22.69%)
• • TRIVIAL (30.36%)
• • NO CLASS (0.13%)

The MULTIPLE class represents phrases containing sev-
eral entities of other classes separated by non-chemical 
words. The CHEMDNER corpus comprises three parts: 
training (3.5k abstracts), development (3.5k) and testing 
(3k) datasets. We joined the first two datasets, randomly 
shuffled the result and separated 10% for a validation 
dataset to monitor overfitting. The other part of the split 
was used for training. We only used the official test data-
set to estimate performance upon training completion.

Design choices
Deep-learning models We have utilised three types of 
neural networks: one-dimensional (1D) convolutional 
neural networks (CNN), recurrent neural networks 
(RNN) and time-distributed dense (fully-connected) 
networks (TDD). In their essence, one-dimensional con-
volutional neural networks are trainable feature extrac-
tors applied along a sequence evolving in time. A deep 
CNN [14] trains to extract time-invariant hierarchies 
of features at each time-step while optimising an objec-
tive function. Since texts are sequential, that is a value ti 
at time-step i can be conditioned on the previous and/or 
the following time-steps, a time-invariant model alone 
is not sufficient. We used recurrent neural networks—
highly powerful trainable state machines theoretically 
capable of modelling relationships of arbitrary depth—to 
process CNN-extracted features. These networks train by 
back-propagating the error through time, which in deep 
sequences may lead to vanishing or exploding gradients. 
Several types of RNNs have been developed to better 
handle long-term dependencies, most notably the long 
short time memory network (LSTM) and gated recurrent 
unit network (GRU) [19]. Both architectures use train-
able gates controlling the data flow and memory updates. 
The GRU architecture is a newer and lighter alternative 
to the widely adopted LSTM, with two trainable gates 
instead of the latter’s three resulting in less parameters to 
optimise, a desirable trait when training data are scarce. 
Comparative studies haven’t found any consistent perfor-
mance advantages of either GRUs or LSTMs, though the 
former tend to converge faster [20]. To further improve 
performance, it is common to use bidirectional RNNs 
(biRNNs) “reading” sequences in both directions. Finally, 
we used a time-distributed fully connected network [21] 
(also known as dense networks or multilayer percep-
trons) with the sigmoid activation function to gener-
ate label probabilities. In contrast with traditional bulky 
dense networks that process the entire input at once, 
TDDs apply a lightweight multi-layer perceptron (MLP) 
to each time-step in a sequence, drastically reducing the 
number of parameters and making it possible to analyse 
variable-length inputs.
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Stateful learning Texts come in all sizes, which is 
quite problematic for most machine-learning methods. 
Although one of the RNNs’ key selling points is their abil-
ity to naturally handle variable-size inputs, it’s hard to 
implement an RNN in a way that takes full advantage of 
this feature whilst staying computationally efficient. Two 
mainstream solutions exist. The most natural (and argu-
ably the least computationally efficient) solution implies 
grouping and encoding (i.e. representing as numeric ten-
sors) equally sized texts together. This method introduces 
a lot of extremely small sample batches greatly increas-
ing gradient variance and, by extension, hindering model 
convergence. Alternatively, one can use zero-padding 
(artificially increasing length by appending zeros to 
numerically encoded sequences). This procedure greatly 
increases sparsity and the memory overhead, because 
full-sized texts can vary greatly in length. It is thus more 
efficient (and common) to break texts into individual 
sentences. Despite being more computationally efficient, 
this method is less flexible, because it introduces a sen-
tence length limit and requires a sentence segmentation 
model. It also strips aways text-wide context. Quite fortu-
nately, there is another relatively novel technique known 
as stateful learning. Although it has not yet gained any 
noticeable adoption in the community (partly due to 
complicated data handling described below), it combines 
the best of both aforementioned methods: no text-size 
restrictions, no sentence segmentation model dependen-
cies and negligible memory overhead. Normally RNNs 
only keep their state within a single batch of samples and 
reset it between batches, because there is no guaran-
tee that the next batch is somehow related to the previ-
ous one. In contrast with conventional setups, an RNN 
configured for stateful learning treats a sample (row) 
j in batch i + 1 as the direct continuation of sample j in 
batch i, making it possible to break long sequences into 
fixed-size windows without resetting the context when 
moving from one batch to another. Simply put, state-
ful learning allows RNNs to transcend the batch bar-
rier and, in theory, keep track of the context as long as 
required. To make it technically possible, the batch-size 
must be fixed at construction time and the data must 
be preprocessed to satisfy the aforementioned property. 
We ve developed a bin packing-based data preprocess-
ing algorithm to achieve this goal. Given a batch size of n, 
we distribute input texts into n bins while trying to keep 
the accumulated lengths equal between all bins. We then 
concatenate texts inside each bin into super-sequences, 
stack them and break into chunks of l time-steps. This 
procedure is easily reversible, making it possible to 
recover annotations for individual texts. Additionally, 
since in bidirectional RNNs it only makes sense to keep 
track of the forward-evolving state, we have developed 

a “half-stateful” bidirectional RNN wrapper layer (HS-
biRNN) that takes care of forward inter-batch state trans-
fers and can be used with any RNN architecture (e.g. 
LSTM or GRU).

Text preprocessing
We have done no text-preprocessing except for tokenisa-
tion. Accurate tokenisation is highly important in token-
level NLP tasks [5]. On the one hand, this process can 
isolate semantically and morphologically stable character 
sequences, making it easier for the model to focus on the 
data. On the other, tokenisation may lead to overlapping 
annotations if the rules fail to separate several adjoint 
entities or non-entity characters from entities. Most 
popular tokenisers rely on a hierarchy of rules optimised 
for standard English, though there are some specifically 
designed for biomedical and chemical texts. For example, 
the tokeniser implemented in the ChemDataExtractor 
package [22] overrides some rules in the Penn Treebank 
policy to better handle chemical entities:

Tokens are split on all whitespace and most punc-
tuation characters, with exceptions for brackets, 
colons, and other symbols in certain situations to 
preserve entities such as chemical names as a single 
token.

In other words, as with any rule-based technique, it’s 
notoriously hard to create an optimal tokeniser equally 
adequate for recovering standard vocabulary and diverse 
chemical entities, because they have different underlying 
morphology -  a tokeniser has to be context-aware. We 
believe that instead of trying to manually create a gen-
eral-purpose tokeniser one can use an alternative specifi-
cally trained to accurately recover target entities. Such a 
tokeniser will only be used to preprocess text for a sub-
sequent NER model alleviating the need to recover irrel-
evant words. Since we have found little to no research on 
trainable tokenisers, we have developed our own model 
based on a “break and stitch” strategy: a primary extra-
fine segmentation followed by a refinement step trying 
to recover target entities (Fig. 1). We have used the fol-
lowing Perl-style regular expression to carry out the first 
step: \w+ |[∧\s\w] . The expression groups together 
Unicode word characters (i.e. most characters that can 
be seen in a word in any language, including numbers) 
and separates all other characters. For example, it breaks 
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine 
into nineteen fragments: 2, -, amino, -, 1, -, methyl, 
-, 6, -, phenylimidazo, [, 4, ,, 5, -, b, ], pyridine. As 
expected, the result is heavily over-fragmented. On the 
bright side, our analyses of the tokenised CHEMDNER 
corpus showed a near-complete absence of tokens over-
lapping several entities, making it possible to accurately 
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reconstruct large entity tokens by stitching several frag-
ments together. To detect stitch points we have designed 
a lightweight stateful sequence-to-sequence CNN-RNN 
model processing raw untokenised text. The model con-
sists of a linear character encoding layer, two consecutive 
1D CNN layers, each with 256 (3-characters wide) filters, 
followed by two half-stateful bidirectional GRU layers (32 
cells each) and a time-distributed sigmoid classifier that 
outputs a binary tag for each character in the sequence. 
Positive tags mark stitch points. We have used the same 
training and validation splits to train this tokeniser along-
side the NER model.

The NER model
All the models we trained had two input nodes: one for 
pretrained word-level embeddings and another one for 
encoded token strings. The strings were encoded as inte-
ger vectors containing character identifiers. We trained 
300-dimensional Glove embeddings with default con-
figurations [23] on a corpus of 5 · 105 random PubMed 
abstracts from the same categories as the CHEMDNER 
abstracts: BIOCHEMISTRY & MOLECULAR BIOL-
OGY, APPLIED CHEMISTRY, MEDICINAL CHEMIS-
TRY, MULTIDISCIPLINARY CHEMISTRY, ORGANIC 
CHEMISTRY, PHYSICAL CHEMISTRY, ENDOCRI-
NOLOGY & METABOLISM, CHEMICAL ENGI-
NEERING, POLYMER SCIENCE, PHARMACOLOGY 
& PHARMACY and TOXICOLOGY [1]. Character-
level embeddings were optimised during training using 
the same approach described in [18]. This block con-
sisted of a trainable linear character-embedding layer 

transforming vectors of character codes into matrices 
of 32-dimensional character embeddings. These word 
matrices are then processed by a standard biGRU (16 
cells) layer producing a 32-dimensional vector per token 
[24].

Instead of concatenating word- and character-level 
embeddings before feeding them into a single CNN 
or RNN block, we used separate two-layers deep 1D 
CNNs for each embedding type to increase the number 
of degrees of freedom without using too many convo-
lutional filters. Features extracted by these independent 
blocks were subsequently concatenated and fed into a 
two-layers deep HS-biGRU. The network then bifurcates 
again:

1	 The first branch continues with an additional HS-
biRNN followed by a time-distributed sigmoid layer. 
The layer outputs the probability that a given time-
step is a part of a named entity.

2	 The second one starts with an arithmetic node multi-
plying the probabilities produced by the other branch 
and the output from the preceding HS-biGRU block 
at each time-step. The result is then fed into a single 
HS-biRNN layer followed by a time-distributed sig-
moid layer, yielding the probability that a given time-
step is the beginning of an entity.

First of all, it’s important to show that this labelling 
method remotely resembles the widely used IOB scheme 
with three mutually exclusive labels: Inside/Outside/
Beginning (of an entity) [25]. At the same time, in 

Fig. 1  Text tokenisation. The break and stich targeted tokenisation strategy employed by our trainable tokeniser
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contrast to this scheme (or any other scheme with mutu-
ally-exclusive tags), our labels are not mutually exclusive 
and are codependent at the same time due to the multi-
plication node. Since we try to minimise both predictors 
their error is back-propagated through the graph, creat-
ing a reinforcing loop with two effects: (1) it theoretically 
encourages the part-detected to better pay more atten-
tion to single-token entities and (2) it helps the begin-
ning-detector attend to entity parts.

Here we have described all design elements of the 
final (fully-featured) NER model. We also examined the 
impact of several large-scale changes on its performance. 
In particular, we have compared GRU and LSTM archi-
tectures and tried replacing the CNNs with additional 
recurrent layers. More importantly, we have compared 
stateful and conventional biRNNs trained unsegmented 
full-sized texts and stacked sentences respectively. We 
used the GeniaSS [26] sentence segmentation model to 
carry out this comparison. Having limited computational 
resources and time constraints we have not tried to fine-
tune any hyper-parameters: all convolutional layers com-
prised 256 (3 time-steps wide) filers, and all HS-biRNN 
layers contained 32 recurrent cells.

Training and testing
The project was implemented in Python 3.5 using deep-
learning frameworks Keras 2 [27] and TensorFlow 1.3 
[28]. All computations have been carried out on an 
Ubuntu Linux server with two Intel Xeon E5 CPUs (10 
cores and 20 threads each), 512GB of RAM and four 
Nvidia Titan X GPUs. We used the Adam optimiser [29] 
with default parameters recommended by the authors. 
The networks were trained for 40 epochs with a callback 
saving weights upon improvements in performance on 
the validation dataset.

During testing, we specifically targeted the CHEM-
DNER chemical entity mention (CEM) subtask. Since 
deep-learning models are inherently non-deterministic 
due to random weight initialisation and stochastic opti-
misation, we have evaluated each design variation by 
averaging estimated probabilities from 10 independently 
trained networks (as in [16]). To add some perspective, 
we report all models that have achieved a CEM F-score of 
80% and above in the CHEMDNER challenge 1, though 
their current accessibility is worth mentioning. The mod-
els introduced by teams 184, 185, 192 either have not 
been published at all or the links have become inactive. 
LeadMine (179) [8] is exclusively commercial. While 
there is a GitHub repository for the model devised by Lu 
et al. (team 231) [9, 30], it literally contains nothing but a 
link to an archive (which supposedly contains the model), 
uploaded to a file-hosting service that requires a propri-
etary application to download the archive. Since both the 

file-hosting and the application are only available in Chi-
nese, we have been unable to download the archive and 
thus consider it inaccessible. Becas (team 197) [31] and 
tmChem (team 173) [2] both provide different web-based 
APIs, making it possible to submit texts to annotation 
servers or, in case of tmChem, even download precom-
puted annotations for PubMed abstracts. With tmChem 
there is also an option to build the tool from sources, 
though the source archive does not seem to come with 
a trained model, because our stand-alone installation has 
produced random annotations. Both Chemspot (team 
198) [32] and BANNER-CHEMDNER (team 233) [33] 
are available for stand-alone installation from sources.

Apart from the models submitted for the CHEMDNER 
challenge we have also considered ChemDataExtractor 
[22], a recently introduced general purpose package for 
chemical text analyses, because its NER model is very 
much akin to [9], which is unavailable. Both utilise unsu-
pervised word-clustering and CRFs, though ChemDa-
taExtractor uses a hierarchical detection system with a 
built-in database updated in an online fashion to help it 
extract abbreviations and identifiers. ChemDataExtractor 
comes with a highly user-friendly Python API making it 
extremely easy to install and utilise. More importantly its 
overall combined CEM F-score of 87.8% puts it on top of 
all models submitted for the CHEMDNER challenge.

Results and discussion
Tokenisation, overlapping annotations and sequence 
lengths
We have processed the entire CHEMNDER testing data-
set and searched for entities with overlapping annota-
tions. Out of 25347 annotated entities in the testing 
dataset less than 0.19% spanned the same token, which 
is truly negligible. At the same time the tokeniser had a 
recall of 91.75% and precision of 93.32%. Therefore, it is 
able to accurately recover most of the annotated entities.

Performance
First of all, in terms of time required to complete one 
training epoch the reference network (Fig. 2) incorporat-
ing stateful biRNNs trained over two times faster than 
its sentence-based sibling with conventional biRNNs 
and had a lighter memory footprint. We observed no 
significant impact on the F-score, though. There was no 
observable advantage in using LSTM cells over GRUs, 
either. On the contrary, GRUs trained and converged 
faster and showed slightly better performance on the 
testing dataset. Convolutional layers were crucial for 
good performance. On average, replacing the CNN-lay-
ers with one or two hs-biGRU layers reduced the F-score 
by ∼ 1.5− 2.3% and hampered the training process.
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On the CHEMDNER CEM subtask our fully-featured 
network has gained the F-score of 88.7%. Therefore, it 
outperforms all models submitted for the CHEMD-
NER task by a significant margin, though the edge over 
ChemDataExtractor is less impressive (see Table  1 for 
more details). Considering the inter-annotator agree-
ment score of 91%, the model demonstrates near-human 
performance. Since the model does not discriminate 
between entity types, there is no way to calculate per-
class precision values and, by extension, F-scores. Never-
theless, following Krallinger et al. [30] we report per-class 
precision in Table 2. It’s important to note that following 
the CHEMDNER CEM evaluation rules we have only 
considered perfect matches. It is immediately clear that 

the model struggles greatly with rare entity types, i.e. 
NO CLASS and MULTIPLE, and excels at systematic 
and trivial names. Considering how rare the MULTIPLE 
type entities are (195 entities) and that they span several 
standard English words intertwined with different chemi-
cal entity types, this subpar performance is not surpris-
ing and is actually consistent with that of other tools 
reported in [30] (Additional file 3).

Accessibility and the user interface
While analysing the NER systems submitted for the 
CHEMDNER task, we have found that neither the source 
code, nor the trained models are available for some of 
the best-performing tools, limiting the ability to use and 

Fig. 2  Model architecture. The figure illustrates the topology and of the best-performing full-featured model. 1CNN convolutional neural network; 
2
HS-biGRU half-stateful bidirectional gated recurrent unit; 3FCN fully-connected network
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validate them. We thus made it our priority to publish all 
the source code needed to train and use our models. All 
materials are openly available on GitHub [34] in a sepa-
rate frozen branch (chemdner-pub) of a natural language 
processing package SciLK. While the package itself, being 
in the early stages of development, is bound to change, 
the separate branch will retain the version required for 
these models to work. In addition to the core library, the 
branch contains Jupyter notebooks with code and com-
mentaries sufficient to reproduce our work, i.e. train a 
tokeniser and a named entity detector, a notebook with 
usage demonstration and an archive with trained models. 
A standard dual-core laptop with 8 GB of RAM should 
be sufficient to use the models for inference. While the 
software should theoretically work under Microsoft Win-
dows, we have only tested it on machines running Mac 
OS X and GNU-Linux. Should a user want to train a sim-
ilar model, we recommend doing it on a machine with 
at least 32 GB of RAM and a graphics processing unit 

(GPU) with at least 8 GB of VRAM. Although a GPU is 
not strictly required for training, it takes roughly twice as 
much time to train a fully-featured model on a 20-core 
CPU-only system.

Conclusions
Here we have presented our deep-learning model for 
chemical named entities recognition in biomedical texts, 
trained and evaluated on the CHEMDNER corpus. Given 
its high performance, the model proves that chemical 
named entity recognition can be done efficiently with no 
manually created rules or curated databases whatsoever. 
We also showcase several novel or rarely used approaches 
and design choices that, to the best of our knowledge, 
have never been used in biomedical or chemical NER. 
Most notably, we advocate the use of specialised train-
able tokenisers and stateful recurrent neural networks. 
Nevertheless, we clearly see several directions for further 
improvement. For one, due to time constraints we have 
not investigated many hyper-parameter and topology 
options. Secondly, while avoiding complicated preproc-
essing has been one of the top-priorities, we still believe 
that additional information that cannot be extracted 
from the CHEMDNER corpus itself can further increase 
performance. In particular, we think that part of speech 
tags or other external annotations can greatly benefit the 
system. We also think that much more research should 
be done on targeted tokenisers, considering that our 
tokeniser had a rather primitive design.
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Table 1  Performance scores for  the  CHEMDNER chemical 
entity mention (CEM) subtask

CHEMDNER challenge team IDs are given in parenthesis in the Model column 
(where available; performance scores for these models have been taken from 
Table 4 in [30]). We provide ChemDataExtractor performance scores reported by 
the authors

Model Precision % Recall % F1-score %

Our model 88.6 88.8 88.7

ChemDataExtractor [22] 89.1 86.6 87.8

tmChem (173) [2] 89.2 85.8 87.4

(231) [9] 89.1 85.2 87.1

LeadMine (179) [8] 88.7 85.1 86.9

(184) 92.7 81.2 86.6

Chemspot (198) [32] 91.2 82.3 86.7

Becas (197) [31] 86.5 85.7 86.1

(192) 89.4 81.1 85.1

BANNER-CHEMDNER (233) [33] 88.7 81.2 84.8

(185) 84.5 80.1 82.2

Table 2  Recall values estimated for individual entity types

Only perfect matches were considered correct

Recall, % The number of entities

NO CLASS 63.41 41

MULTIPLE 63.59 195

IDENTIFIER 81.68 513

FORMULA 84.11 3443

FAMILY 86.28 3622

ABBREVIATION 86.15 4059

SYSTEMATIC 91.40 5666

TRIVIAL 92.78 7808
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