
Kratochvíl et al. J Cheminform (2018) 10:27
https://doi.org/10.1186/s13321-018-0282-y

SOFTWARE

Sachem: a chemical cartridge
for high‑performance substructure search
Miroslav Kratochvíl1,2, Jiří Vondrášek1 and Jakub Galgonek1*

Abstract 

Background:  Structure search is one of the valuable capabilities of small-molecule databases. Fingerprint-based
screening methods are usually employed to enhance the search performance by reducing the number of calls to the
verification procedure. In substructure search, fingerprints are designed to capture important structural aspects of the
molecule to aid the decision about whether the molecule contains a given substructure. Currently available cartridges
typically provide acceptable search performance for processing user queries, but do not scale satisfactorily with data-
set size.

Results:  We present Sachem, a new open-source chemical cartridge that implements two substructure search meth-
ods: The first is a performance-oriented reimplementation of substructure indexing based on the OrChem fingerprint,
and the second is a novel method that employs newly designed fingerprints stored in inverted indices. We assessed
the performance of both methods on small, medium, and large datasets containing 1, 10, and 94 million compounds,
respectively. Comparison of Sachem with other freely available cartridges revealed improvements in overall perfor-
mance, scaling potential and screen-out efficiency.

Conclusions:  The Sachem cartridge allows efficient substructure searches in databases of all sizes. The sublinear per-
formance scaling of the second method and the ability to efficiently query large amounts of pre-extracted informa-
tion may together open the door to new applications for substructure searches.

Keywords:  Substructure search, Small molecule databases, Molecule cartridges, Inverted indices

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Compound retrieval is one of the most common pur-
poses of chemical database cartridges. The ability of
database cartridges to process queries accurately and effi-
ciently has helped them become powerful tools to per-
form functions such as virtual screening, novelty checks,
and compound activity predictions [1, 2]. Substructure
search, in which the user inputs a part of a molecular
structure and receives a set of all molecules that contain
the given fragment as a substructure, can be valuable for
searching through chemical databases.

The time required to deliver a substructure search
result depends on the speed of the substructure matching
algorithm that determines whether the given molecular

fragment is a subgraph of a compound, and on the abil-
ity of the cartridge to quickly screen out compounds that
can be identified as unable to match the query, so that
they are not unnecessarily fetched from storage and veri-
fied by costly substructure matching. Because subgraph
matching is an instance of a relatively hard subgraph
isomorphism problem that is inherently exponential,
improvements in screening are usually the major factor
in expediting the search procedure. Screening is typically
guided by substructural fingerprints that are stored in
database indices for rapid processing [3].

Here, we present Sachem, a new open-source chemical
cartridge that aims to run substructure search queries on
the largest publicly available datasets (specifically on
more than 90 million compounds in the PubChem data-
base) in an insignificant amount of time. In addition, the
performance of the cartridge is potentially scalable to
much larger database sizes. Although the scalability of

Open Access

*Correspondence: galgonek@iocb.cas.cz
1 Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo
náměstí 2, Prague 6 166 10, Czech Republic
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-018-0282-y&domain=pdf

Page 2 of 11Kratochvíl et al. J Cheminform (2018) 10:27

cartridges is a crucial concern for long-term deploy-
ment1, it is seldom discussed in the literature, and not
sufficiently assured by available open-source software.

Development of Sachem was motivated by two major
factors: First, substructure search is sometimes used as a
frequently-called subroutine of other algorithms or anal-
yses (e. g., complex virtual screening schemes [4] or novel
interfaces for substructure search [2]); improvements
of its performance are therefore directly reflected in the
performance of the entire algorithms. Second, research-
ers usually benefit from the ability to interactively run
and refine substructure queries using a platform such as a
web service to quickly access available information about
the compounds; the performance and efficiency of the
cartridge implementation directly lower the running cost
of such a web service.

Fingerprint‑based screening
The typical abstraction that guides the screening phase
of the search is substructural fingerprints [3, 5, 6]. These
differ from other forms of fingerprints (e.g. similarity fin-
gerprints) by specifying an extra requirement: a feature
present in a structure must also be present in all its struc-
tural extensions (i.e. the set of fingerprints with a sub-fin-
gerprint relation must form a partially ordered set that is
homomorphic to the set of chemical structures partially
ordered by subgraph relation). Further we discuss only
the substructural fingerprints.

The fingerprints used in currently available cartridges
were either designed manually or generated by automati-
cally identifying and collecting features from molecule
graphs. Manual design of fingerprints usually results in a
compact feature set that captures the available domain-
specific knowledge of search-related substructures; these
include the substructural fingerprints from the CDK
library, OrChem fingerprints, CACTVS and MACCS
descriptors [7–10], and many others [6]. Fixed finger-
print content is not future-proof—new features or sta-
tistical changes in the data require the fingerprint to be
re-designed. This drives the need to generate fingerprints
automatically, using only general assumptions. Typical
auto-generated fingerprints include descriptors based on
atom-count, atom-pairs, atom-paths, sub-graphs, wild-
card patterns, and ring-connectivity [11, 12].

Technically, fingerprints are representable either as bit
vectors, in which each bit marks the presence of a feature;
or numeric vectors that also encode repetitions of each
feature, which can also be encoded as bit vectors [13].
The optimal method of storage and indexing depends

1  The growing demand for cartridge capacity is illustrated by the molecule
count in PubChem, which has been doubling in size every 3 years. The
growth is not expected to halt.

on the fingerprint properties. Vectors of hand-designed
fingerprints (typically identifying at most thousands of
features) can be stored as simple relational-database col-
umns and indexed by B-trees [8], stored as arrays and
indexed by generalized inverted search-tree indices [14],
or stored as inverted feature vectors or bitmap indices to
allow rapid processing [15].

Auto-generated fingerprints typically produce vectors
with large numbers of descriptors: for example, in the
ChEBI compound database [16] (which currently con-
tains cca. 105 compounds), we can identify hundreds of
different atom variants (atomic numbers, isotopes, and
charges), approximately 103 different ring structures,
8 · 10

5 different radial structures2 of radius 4, and 1.5 · 106
different graph substructures with a maximum of 6
bonds. Cartridges usually exploit the sparsity of the
resulting vectors to store them efficiently and represent
each vector as a list of feature indices, or more generally,
index-count pairs.

There are two common approaches for storing sparse
fingerprints. The indices may be folded down by hashing
feature indices to smaller integers, possibly using tech-
niques similar to Bloom filters [18, sec. 5.3]. The result-
ing reduction in dimensionality makes it possible to store
the folded vectors using the same methods as for short
feature vectors [6]. Alternatively, the unfolded feature
lists can be stored in inverted indices as is, without infor-
mation loss caused by possible hash collisions in folding
[13, discussion on p.12]. Indexing methods available in
text-search databases (e. g. Apache Lucene, Lucy, Solr
[19–21], and ElasticSearch [22]) scale well to the required
count of distinct features and molecules. Inverted indices
usually exploit statistical properties of the data to reduce
the consumption of storage: posting lists of text-search
databases typically contain small delta-encoded integers;
similar encodings have been used for chemical databases
[23].

Sometimes a mixed approach for reducing the dimen-
sionality of the fingerprints is taken. Machine learning
methods can be used to simulate expert decisions about
the viability of individual fingerprint keys, and the result-
ing fingerprint may be as good and compact as a hand-
designed one [24–26].

Available open‑source cartridges
There are several available open-source cartridges that
support molecule storage in a database retrieval using
a substructure search query. These currently include

2  Radial and ECFP-like fingerprints [17] implicitly encode atom valences
and thus are not generally applicable for substructure screening; a minor
modification allows them to be used for queries in which the exact valence
of atoms is requested.

Page 3 of 11Kratochvíl et al. J Cheminform (2018) 10:27

OrChem [8], RDKit [27], Bingo [15], pgchem [14] and
Mychem [28].

OrChem uses Oracle as the back-end database. Its 789-
bit fingerprint contains hashes of three-atom SMILES
substructures in the first 95 bits; the rest of the bits is
specified manually, in many cases using structural pat-
terns. OrChem also stores 15 integer values for each mol-
ecule that describe counts of specific atoms and bond
types. Each fingerprint bit and integer value is stored
in a separate table column, and these columns are then
indexed using a B-tree index.

RDKit provides a cartridge functionality with the Post-
greSQL database. Fingerprints used for screening are
pattern fingerprints, which hash several common struc-
tural features defined by SMARTS patterns. The size of
the fingerprint can be customized, by default the hashes
are folded to a 2048-bit array. Substructural fingerprints
are indexed in a custom GiST index.

Bingo uses a 2584-bit substructural fingerprint based
on hashed cyclic subgraphs (up to 8 atoms) and hashed
sub-trees (up to 7 atoms). A small part of the fingerprint
is reserved to count atom types, charges, and isotopes.
Bingo can use Oracle, PostgreSQL, or SQL Server as a
back-end. Fingerprints are indexed using a custom index
type.

pgchem uses slightly modified FP2 and FP3 fingerprints
from OpenBabel [29] concatenated to one 1536-bit fin-
gerprint. FP2 is a path fingerprint that indexes linear sub-
graphs with a maximal length of 7 atoms, FP3 is based
on manually defined SMARTS patterns. Fingerprints are
stored as a custom data type with a GiST index.

Mychem is a chemical cartridge for MySQL. It allows
computation of FP2, FP3, and FP4 fingerprints from
OpenBabel. Mychem does not provide any direct way to
index the fingerprints to allow substructure screening.

Implementation
In this paper, we describe the implementation of Sachem,
a new cheminformatic cartridge. Two different finger-
prints and corresponding indexing and searching meth-
ods implemented in Sachem can be used.

The first method, called Sachem/OrChem, is a major
performance-oriented modification of the substructure-
search part of the OrChem database cartridge [8]. The
second method, Sachem/Lucy, is an extension of the pre-
vious, designed to maximize the search screen-out rate
by indexing a large number of automatically specified
substructural fingerprint bits in a text-search database.

Subgraph matching
Sachem was originally intended as a port of OrChem to
the PostgreSQL database, which was motivated by licens-
ing considerations. The subgraph matching functionality

is therefore based on the original OrChem approach.
However, we made multiple optimizations, which led to a
complete rewrite of the matching part.

The text-based molecule storage format of OrChem
was replaced with a compact binary format that allows
faster fetching and processing of the molecular data in
the substructure matching algorithm (many other car-
tridges take a similar approach for preparing the data).
The compacted molecules are automatically stored in a
static memory-mapped index file, so that the required
data can be accessed without substantial overhead. The
VF2 algorithm implementation was ported to C lan-
guage and optimized for performance, resulting in a
total speedup of more than 103 . Two major speed-ups
were achieved by avoiding all memory allocations in the
performance-critical part of substructure matching, and
by precomputing and caching all data required by the
matching algorithm. In the original OrChem, some fre-
quently accessed properties of atoms and molecules, such
as implicit hydrogen counts, were unnecessarily recom-
puted several times during each substructure match.

Fingerprint structure
Sachem/OrChem uses the fingerprints that were defined
in the original OrChem but modified to support CDK
2.0 and use the aromaticity detection algorithm that was
newly added to CDK to allow contributions from exocy-
clic π-bonds.

The fingerprints used in Sachem/Lucy are defined as
follows:

• • The occurrence of each distinct atom type found in a
compound is considered as a distinct fingerprint bit.

• • Using the SSSR algorithm [30], we retrieved all small-
est rings of all compounds in the ChEBI [16] data-
base. Each distinct discovered ring is considered a
substructural pattern for a fingerprint bit.

• • All connected subgraphs of non-hydrogen atoms
with a maximum of one ring and a limited num-
ber of bonds were also considered a fingerprint bit.
The bond limit is parameterized as the GraphSize
parameter, set to 7 by default. The single ring con-
dition was selected to efficiently solve canonization
problems with multi-ring structures. For the finger-
print, the subgraph is converted to a number using
a tree-hashing algorithm that consecutively removes
leaves until only the ring remains; the ring is then
hashed in its lexically minimal rotation.

• • Multiplicity of features was encoded by creating a
new fingerprint bit for each power of 2 of the rep-
etitions. Other systems (including OrChem [8] and
RDKit [27]) use a similar encoding of multiplicity.

Page 4 of 11Kratochvíl et al. J Cheminform (2018) 10:27

The resulting fingerprints are suitable for storage in text-
search databases. In the PubChem database, the Sachem/
Lucy method identified 18.7 million distinct feature
descriptors with approximately 860 identified features
per compound on average, which is comparable to natu-
ral-language data at which text-search databases are
targeted.3

Storage, indexing, and processing details
In addition to using a different database back-end and
matching algorithm, Sachem/OrChem differs from the
original OrChem in the indexing method used. Instead of
B-tree based indices, Sachem/OrChem uses a memory-
mapped inverted bitmap index to speed up searching in
fixed-size fingerprints.

Sachem/Lucy uses fingerprints as defined in "Finger-
print structure" section instead of OrChem fingerprints,
and indexes them in the Apache Lucy database [20]
(hence the name). Apache Lucy is a port of the well-
established Apache Lucene [19] text-search database
to C. Our choice of Apache Lucy was motivated by the
relative efficiency of C implementation compared to
alternatives.

The fingerprints were adapted for storage in Apache
Lucy as follows: identification of each fingerprint bit is
encoded to a 36-bit integer and converted into a corre-
sponding 6-byte base64 word suitable for being stored
as a term in text documents. The resulting keywords are
concatenated to a space-separated string and indexed as
documents using a simple whitespace analyzer. The over-
all process is shown in Fig. 1.

From the user’s point of view, this adaptation to exter-
nal indexing is called transparently from the PostgreSQL
interface, which is common to both implementations.

Screening performance optimization by bit selection
In text-search databases, the presence of a keyword in
the query forces the database to traverse the correspond-
ing part of the inverted index, which is particularly costly
for long lists associated with frequently occurring key-
words. This introduces a tradeoff—in our setting, speci-
fying a more precise query by including more fingerprint
bits may improve the screen-out rate, but at the cost of
increased overhead to process more data.

To balance the factors in this tradeoff and accelerate
the querying process, our method simply discards the
bits from the query fingerprint that are not significant in
terms of filtering power. Using the resulting filtered query
dramatically reduces the overhead needed to traverse

3  For comparison, Webster’s Third New International Dictionary reports
around a half million keywords in English language alone.

the indices, and causes only a small increase in false
positives. The query fingerprint bit-reduction algorithm
performs the discarding in two steps: 1) it uses the infor-
mation about subsumption to discard redundant bits and
2) it decides whether to discard less relevant bits based
on their statistical relevance for search.

The first step of discarding is implemented in the query
fingerprinting procedure, and is performed separately for
all fingerprint types and repetition encoding. The proce-
dures discard fingerprint bits if their presence is directly
subsumed by others. This step does not lead to any addi-
tional false positives.

The second step attempts to discard bits that are
expected not to contribute significantly to screen-out.

O

O

O O

C7

b9UbWB cH1bdC
R7jYKC 4s3FrD

Dgz+cC oyyu5A

7rZcNC lg+kIB

...

O + O

O C C

C C

O C3

O C O2

O O2

"pTvE5C"
AND

"nyIlID"

Apache Lucy

finger-
printing

hashing to
keywords

indexing

finger-
printing

query
filtering

hashing to
keywords
in query

query string
search

Compound indexing Query

Fig. 1  Fingerprint processing in Sachem/Lucy. The left box shows a
molecule from the compound database being broken into distinct
substructural features by fingerprinting (only 4 are shown for
demonstration); these are converted to keyword-like descriptors by
hashing and stored in Apache Lucy. The right box shows the query-
ing process. The query is broken into substructural features. These are
then filtered to only include features with reasonable filtering power;
the result is converted to keyword descriptors to build a text query,
which is in turn run on Apache Lucy

Page 5 of 11Kratochvíl et al. J Cheminform (2018) 10:27

The decision about discarding individual bits uses a pre-
computed table with the relative filtering power of each
distinct bit and extra information that connects query
bits to corresponding “covered” query atoms. We consid-
ered an atom to be covered by a fingerprint bit if it is con-
tained in part of the molecule that has caused the bit to
be non-zero. From this information, the algorithm finds

a small set of fingerprint bits that is expected to cover the
query well and have sufficiently high filtering power to
keep the resulting decrease in screen-out ratio relatively
low. The bit-selection algorithm for the second step of fin-
gerprint bit-reduction is detailed in Fig. 2.

Results and discussion
We performed a comprehensive benchmark to assess the
performance and scaling advantages of Sachem and com-
pare it with other available cartridges.

Benchmark setup
We ran the same benchmark—storing a dataset in a car-
tridge and running a set of substructure queries on it—on
all combinations of cartridges and datasets.

We recorded the time needed for overall query pro-
cessing and for the screening phase. We counted the
compounds that passed the screening and verification
phases to compute screening precision and selectivity.

Benchmarked cartridges
We benchmarked three variants of Sachem: the two
versions described in this work, Sachem/OrChem and
Sachem/Lucy, as well as Sachem/eCDK, which is a
modification of Sachem/OrChem that differs only in
fingerprinting procedure—it uses the ExtendedFin-
gerprinter from the CDK library instead of OrChem
fingerprints.

For our comparison, we focused on methods that are
available in the form of cartridges with a SQL-based
front-end. We included OrChem [8] (version 1.3.1),
RDKit [27] (the PostgreSQL-based cartridge imple-
mentation with 2048-bit fingerprint, version 2017.09.1),
Bingo [15] (the PostgreSQL-based cartridge variant, ver-
sion 1.8.0-beta) and pgchem [14] (version 1.3-GiST).

All these cartridges use PostgreSQL, version 9.6, as a
back-end database, except for OrChem, which we ran on
Oracle database, version 12c.

Thorough comparisons of many other cartridges are
available elsewhere [31–34], and these can be used to
relate the performance of Sachem to cartridges not
included in our benchmark.

Datasets
To assess the performance scaling behavior of the car-
tridges, we ran the benchmarks on three datasets of dif-
ferent size. The 94M dataset consists of all compounds
in the PubChem database snapshot from August 2017
(PubChem contained just under 94 million molecules at
the time). We randomly selected 10 million compounds
from the 94M dataset to form the 10M dataset, which
was further randomly reduced to 1 million compounds in
the 1M dataset.

Input: fingerprint bits q, set of query atoms A
Input: mapping M from the query fingerprint bits to corre-

sponding covered atoms
Input: parameters MaxBits and MinCover
Output: reduced fingerprint r

Require: map F from fingerprint bits to their filtering
power

1: procedure SelectQueryBits(q, A,M)
2: r ← ∅ � Resulting bit set, initially empty
3: c ← empty dictionary of A → N � Atom coverage
4: u ← |A| � Count of uncovered atoms
5: for all a ∈ A do
6: c[a] ← 0
7: end for
8: q′ ← sortF (q) � Sort by F (q) in descending order
9: for all b ∈ q′ do � Iterate through query bits
10: if u = 0 ∨ |r| ≥ MaxBits then
11: return r
12: end if
13: f ← False
14: for all a ∈ M(b) do � Update coverage
15: if c[a] < MinCover then
16: f ← True � Set “found” flag
17: c[a] ← c[a] + 1
18: if c[a] = MinCover then
19: u ← u − 1
20: end if
21: end if
22: end for
23: if f then
24: r ← r ∪ b
25: end if � Add the bit to the result
26: end for
27: return r
28: end procedure

Fig. 2  Algorithm to select fingerprint bits most relevant to the
given query. Upon input, it receives set q of fingerprint bits from the
first step of the fingerprint reduction algorithm, set A of atoms that
are in the query, and mapping M from the query fingerprint bits to
corresponding covered atoms. The algorithm is parameterized by
the positive integers MaxBits and MinCover. The MaxBits parameter is
a hard limit on the count of bits in the reduced fingerprint, and the
MinCover parameter sets the minimal count of distinct fingerprint bits
in the reduced fingerprint that cover each atom present in the query
molecule. The algorithm assigns a covering counter (initially set to
zero) to each atom of the query molecule. The query fingerprint bits
are then traversed in descending order of filtering power. For each
bit, it is determined whether there exists a query atom that is covered
by the bit information. If its associated counter is less than MinCover,
all counters of atoms covered by the bit are increased, and the bit is
added to the resulting reduced query fingerprint; otherwise, the bit is
discarded. During the development, we experimentally determined
that 2 and 32 are suitable values for MinCover and MaxBits, respec-
tively. The filtering power of distinct bits (function F) is obtained
by counting the relative occurrences of the bits in the dataset. The
resulting F is portable to other datasets; re-computation is needed
only after substantial statistical changes in data

Page 6 of 11Kratochvíl et al. J Cheminform (2018) 10:27

We chose to select the 1M dataset as a subset of 10M
to avoid the effect of outliers (described in more detail in
"Performance outliers" section). Because some queries
take much longer than average to be processed on cer-
tain molecules (e. g. cases in Fig. 4a, b), an unfortunate
selection of molecules in the 1M dataset could make
cartridges perform worse on it than on the 10M dataset.
Selection as a subset ensures that the 10M dataset is at
least as hard to process as the 1M dataset.

Some cartridges failed to index several molecules
from the datasets; these errors are briefly summarized in
Table 1.

Query set
Design of a good, unbiased query set for benchmarks is
complicated. It is not possible to derive such a set from
a pre-existing statistic of common user queries, which
favors popular queries viable for recently conducted
research, or from identified features in the database,
which favors queries based on the feature identification
method and produces a bias towards database content.

To more easily draw comparisons with our systems, we
re-used queries that have been benchmarked by other
researchers available in Substructure Query Collection
(SQC) [35]. SQC includes queries used by Ehrlich and
Matthias [36] for a systematic benchmark for substruc-
ture search algorithms, and user queries collected from
live software testing.

The collected queries are slightly biased toward simpler
‘explorative’ queries, but still represent a valid sample of
queries in a publicly accessible database.

Of the 3488 queries present in the SQC query set, we
removed 159 that are not supported by some of the car-
tridges; details can be found in Table 1.

Benchmarking hardware
All benchmarks were performed on CentOS Linux 7.4
running on virtualized Intel Haswell CPUs clocked at 2.6
GHz with 512 GB RAM; benchmarked software parts
were run single-threaded. Results from the first runs of
the benchmarks were discarded to allow the programs to
cache hot data.

Overall query performance
The overall timing results are summarized in plots in
Fig. 3.

OrChem-based variants of Sachem outperformed all
cartridges except Sachem/Lucy on all datasets. Sachem/
OrChem was faster by an average factor 8× than Bingo,
which slightly outperformed the RDKit and pgchem car-
tridges. The ordering of cartridges by performance was
often mixed—RDKit clearly performed better than Bingo
on faster queries, but the performance advantage was lost
on complicated queries.

Thanks to improvements in screening (measured sep-
arately as described in "Screening efficiency" section),
Sachem/Lucy outperformed all other cartridges on the
largest dataset by a wide margin. This advantage was par-
tially lost on smaller datasets on fast queries, for which
the Sachem/Lucy processing time was dominated by pre-
paring the complicated fingerprint (less than 10 ms in
most cases) and by increased overhead for the inverted
index processing. However, as the performance disadvan-
tage of Sachem/Lucy is at most approximately 10 ms for
the majority of queries, we do not consider it to be a sig-
nificant drawback. See Fig. 3d for a side-by-side compari-
son on all dataset sizes.

The same plot also illustrates the scalability improve-
ment in Sachem/Lucy. While the time required by
Sachem/OrChem to answer all queries was roughly lin-
ear with increasing dataset size, Sachem/Lucy behaved
more efficiently. The query processing time in Sachem/
Lucy scaled sub-linearly with dataset size, showing only
around 2× slowdown on a 10× larger dataset on median
queries.

Performance outliers
Despite the performance improvements in the cartridges,
there are several types of slow queries that are unlikely
to be made more efficient by further development. Exam-
ples from the three main classes of such outliers are dis-
played in Fig. 4:

(a)	Matching long cycles in dense structure graphs may
cause an unavoidable complexity explosion, which is
a problem inherent to graph substructure matching.
Several examples of such dense graphs appear in the
datasets.

Table 1  Overview of indexing and searching errors

Measurements are slightly influenced by errors that some cartridges exhibited
during benchmarking, due to both indexing and searching errors. Indexing
errors are primarily reported as unacceptable data in the SDF files from
PubChem, most frequently as invalid atom valences or stereochemistry. Note
that Bingo beta version can lower the number of indexing errors by using
algorithms that work with ‘incorrect’ structures (this feature is disabled by
default)

Cartridge Indexing failures Rejected queries

1M 10M 94M n reason

Bingo 105 1024 9754 0

OrChem 2 4 – 12 Unsupported aromatic bond in
SMILES

pgchem 30 255 2527 146 Fragmented SMILES, queries with
[*]

RDKit 72 707 6911 4 Chemical structure considered
invalid

Sachem 0 0 0 0

Page 7 of 11Kratochvíl et al. J Cheminform (2018) 10:27

(b)	Matching multi-fragment queries in which each frag-
ment may fit into multiple positions in the target
causes a backtracking explosion, which takes O(mn)
time, where n is the number of fragments and m is
the number of different embeddings of each frag-
ment in the target.

(c)	Screening can not reach the desired efficiency on
queries that do not contain substructures with
enough filtering power. These queries cause the car-
tridges to fetch large amounts of data from storage
and run the verification algorithm on each of many
identified positives.

Screening efficiency
We compared the efficiencies of fingerprint-based
screening processes in all cartridges in terms of preci-
sion (defined as the ratio of true positives to all identified
positives identified by screening) and false positive rate
(FPR, also known as fallout, defined as the ratio of false
positives identified by screening to all negatives). Note
that because the results from all cartridges differ slightly
due to factors such as different perception of aromaticity
and charges, the exact counts of positives and negatives
are specific to each cartridge.

Plots for FPR and precision of all measured cartridges,
displayed in Fig. 5, show the advantage of the screening

1
2

5
10

20
50

10
0

time (ms)

qu
er

ie
s

no
t f

in
is

he
d

(%
)

a Dataset 1M

1 10 100 1000 10000 100000

Sachem/Lucy
Sachem/OrChem
Sachem/eCDK
Bingo
RDKit
pgchem
OrChem 1

2
5

10
20

50
10

0

time (ms)

qu
er

ie
s

no
t f

in
is

he
d

(%
)

b Dataset 10M

1 10 100 1000 10000 100000

Sachem/Lucy
Sachem/OrChem
Sachem/eCDK
Bingo
RDKit
pgchem
OrChem

1
2

5
10

20
50

10
0

time (ms)

qu
er

ie
s

no
t f

in
is

he
d

(%
)

c Dataset 94M

1 10 100 1000 10000 100000

Sachem/Lucy
Sachem/OrChem
Sachem/eCDK
Bingo
RDKit
pgchem 1

2
5

10
20

50
10

0

time (ms)

qu
er

ie
s

no
t f

in
is

he
d

(%
)

d Sachem scalability

1 10 100 1000 10000 100000

Sachem/Lucy
Sachem/OrChem
Dataset 1M
Dataset 10M
Dataset 94M

Fig. 3  Overall performance comparison. Log-times in milliseconds are plotted on the x axis and log-percent of queries that took more than the
plotted time are plotted on the y axis. Plots a–c show the performance comparison of Sachem/Lucy and Sachem/OrChem to other benchmarked
cartridges on all datasets. The original OrChem was not benchmarked on the largest dataset due to the lengthy time that would be required to
finish the benchmark. Plot d is a comparison of timings for Sachem/Lucy and Sachem/OrChem on all datasets that shows the scaling advantage of
Sachem/Lucy

Page 8 of 11Kratochvíl et al. J Cheminform (2018) 10:27

method used in Sachem/Lucy over all other cartridges.
Sachem/Lucy is followed by Bingo in terms of both pre-
cision and FPR. The remaining cartridges perform simi-
larly, except for minor advantages of Sachem/eCDK and
pgchem in precision.

Parameters of Sachem/Lucy
We focused specifically on how varying the Sachem/Lucy
parameters affects screening efficiency.

Reducing the GraphSize fingerprint parameter caused
an expected increase in false positives, which projected
to an increased query processing time (Fig. 6a). The
default value GraphSize = 7 allows the implementa-
tion to pick fewer, more precise fingerprint bits. Specific
deployments of Sachem might benefit from lowering the
the graph size parameter to save storage space.

Query filtering had a considerable effect on query pro-
cessing time. Although it caused a minor increase in false
positives (as seen in Fig. 5b, d), it increased overall query
performance. Because the processing time of unfiltered
queries is, in most cases, clearly dominated by screening
time, trading off some screening precision is beneficial.
Setting the MinCover parameter to values as low as 1
can induce 10× median speedup over unfiltered queries
(see Fig. 6b). Screening time increases when the parame-
ter is increased, but the overall query time does not seem
seriously affected for values MinCover ≤ 5.

Although setting MinCover = 1 might seem opti-
mal based on the results from the used query set, we
use MinCover = 2 in Sachem/Lucy by default. This is
substantiated by benchmarks on query sets that include
larger queries, where the tradeoff is balanced differently.

For example, finding a random subset of PubChem
compounds in the 94M dataset runs optimally with
parameter MinCover = 3, which is closely followed by
MinCover = 2 (roughly 4% slower) and MinCover = 4
and 5 (9% and 15% slower). Setting MinCover = 1 is, in
this case, almost 25% slower.

Possible extensions and future goals
Sachem could easily be extended to similarity searches.
The used text-search databases already recognize sev-
eral notions of similarity measures, thresholds and top-N
queries; after plugging in a matching similarity finger-
print, this functionality could be easily applied to high-
performance similarity queries.

The ability to store and efficiently query fingerprints
with a large number of keys is beneficial for several appli-
cations. For example, possible complications of substruc-
ture searches that arise from tautomerism or different
perceptions of aromaticity could be resolved without sig-
nificant impact on search performance. Simply indexing
all possible tautomers or aromaticity variants is possible,
at the cost of some storage space. An upper bound on the
additional storage requirements can be estimated from
the results of Sitzmann et al. [37].

Similarly, many non-structural and quantitative meas-
ures of molecules can be encoded to bit fingerprints,
which can greatly simplify the processing of queries with
heterogeneous parameters (sometimes called hybrid
queries [38, section 2.4]). Consider a realistic query in
which a researcher asks for a slightly alkaline compound
with several substructures, available results in bioassays
with high activity, limited molecular weight, and known

H

H

H

H

H

H

H

H

H

H

H

H

H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H

H

H

H

H

H

H

H

H

H

H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

a b c
Fig. 4  Noteworthy samples from three main classes of performance outliers identified during development: a PubChem compound CID20652954
(together with many similar compounds) is likely not a real molecule. Nevertheless, since there is no general method to identify a non-existent
compound, it is not possible to reliably filter them out from the database. Trying to find an odd-length carbon cycle substructure in CID20652954
causes a complexity explosion; for example, matching the cycloheptadecane structure in it takes tens of minutes in all available cartridges before
failing. b Matching a query that contains n benzene rings (above) in a compound that contains n or more benzene rings, but can only accom-
modate n− 1 non-overlapping benzene rings (below) backtracks 12 times for each possible individual benzene position in the target molecule. In
total, O((12n)n) different atom permutations must be examined before the query fails. c A multi-fragment query that is too simple to produce any
fingerprint information with enough filtering power for efficient screening. The performance of evaluating such queries mainly depends on the
efficiency of data serialization and deserialization at the software interfaces between the back-end database and user

Page 9 of 11Kratochvíl et al. J Cheminform (2018) 10:27

binding with a protein. As this information is avail-
able in public databases, it could be easily converted to
bit fingerprints and aggregated in a modified version of
Sachem/Lucy. The resulting cartridge could answer any
such query with similar performance as on the queries
benchmarked in this paper. Alternative approaches to
efficient querying of heterogeneous datasets in RDBMS
include e. g. planner optimizations using cost estimation
[39].

A simple adaptation to arbitrary fingerprints may also
benefit drug discovery. Given the results of a bioassay,
it is not known which feature of the molecule causes

the desired activity, nor whether the activity is caused
by anything relatable to an extant molecular fingerprint
that could in turn be used to screen new candidates from
molecule databases. Not being restricted by fingerprint
size allows the researcher to easily define better finger-
prints, in which individual bits may a have better chance
to match the cause of the activity. Sachem can index
compounds using even very large fingerprints, making
such results of screening and analyses quickly available to
the researcher.

Finally, the horizontal scaling potential of text-search
databases like ElasticSearch or Solr [21, 22] could be

1
2

5
10

20
50

false positive rate

qu
er

ie
s

w
ith

 h
ig

he
r f

al
se

 p
os

iti
ve

 ra
te

 (%
)

a False positive rates of benchmarked cartridges

0.00001 0.0001 0.001 0.01 0.1 1.0

Sachem/Lucy
Sachem/OrChem
Sachem/eCDK
Bingo
RDKit
pgchem

1
2

5
10

20
50

false positive rate

qu
er

ie
s

w
ith

 h
ig

he
r f

al
se

 p
os

iti
ve

 ra
te

 (%
)

b False positive rates of Sachem/Lucy variants

0.00001 0.0001 0.001 0.01 0.1

GraphSize=5, MinCover=2
GraphSize=6, MinCover=2
GraphSize=7, MinCover=1
GraphSize=7, MinCover=2
GraphSize=7, MinCover=3
GraphSize=7, MinCover=5
GraphSize=7, unfiltered

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

precision

qu
er

ie
s

w
ith

 h
ig

he
r p

re
ci

si
on

 (%
)

c Precisions of benchmarked cartridges

Sachem/Lucy
Sachem/OrChem
Sachem/eCDK
Bingo
RDKit
pgchem

0.0 0.2 0.4 0.6 0.8 1.0

40
50

60
70

80
90

10
0

precision

qu
er

ie
s

w
ith

 h
ig

he
r p

re
ci

si
on

 (%
)

d Precisions of Sachem/Lucy variants

GraphSize=5, MinCover=2
GraphSize=6, MinCover=2
GraphSize=7, MinCover=1
GraphSize=7, MinCover=2
GraphSize=7, MinCover=3
GraphSize=7, MinCover=5
GraphSize=7, unfiltered

Fig. 5  Screening efficiencies of different cartridges plotted as false positive rate and precision. OrChem values are not plotted because they are the
same as those of Sachem/OrChem, which uses the same fingerprint. a Comparison of screening FPR for all queries in all cartridges; lower is better.
Plotted values are the percent of queries from the query set that have a higher FPR when executed in given cartridge. For example, in Sachem/Lucy
only 5% of the queries have FPR worse than 10−3 , and just under 80% of the queries have negligible FPR (less than 10−5 ). b Same comparison for dif-
ferent parameters of Sachem/Lucy. The solid red line indicates the default parameters of Sachem/Lucy. c Comparison of the screening precision of
all cartridges; higher is better. Plotted values are the percent of queries in the corresponding cartridge that have at least the given precision. d Same
comparison for different variants of Sachem/Lucy

Page 10 of 11Kratochvíl et al. J Cheminform (2018) 10:27

easily exploited to provide a Google-like experience on
a full-scale chemical substructure and similarity search.
This is further supported by the fact that the software
already supports Top-N queries and optimizations that
are usually required to efficiently handle internet traffic.

Conclusions
We have introduced Sachem, a new open-source chem-
informatic cartridge oriented toward substructure search
that improves the performance and scalability of sub-
structural query processing.

Improvements in the OrChem-based indexing method
enable Sachem/OrChem to process queries more than
50-fold faster than the original OrChem implementation.
However, our results indicate that the original OrChem
fingerprint design is still a viable choice for substructure
screening.

The Sachem/Lucy variant, which is based on inverted
indices, scales to very large datasets with similar or bet-
ter performance than Sachem/OrChem on most dataset
sizes. Compared to OrChem and other benchmarked
methods, the Sachem/Lucy approach improves the pre-
cision of fingerprint-based screening. This variant stores
a large fingerprint that identifies more than 107 distinct
features. The ability to store and efficiently query finger-
prints of this size may benefit potential future applica-
tions of this method to more complicated datasets.

Both Sachem variants were benchmarked against other
currently available open-source cartridges, using the

PubChem database as a dataset and the SQC query set
as queries. Sachem variants clearly outperformed other
cartridges on most queries. Moreover, the performance
of Sachem/Lucy was less affected by dataset size and fin-
gerprint complexity, which is a required property to effi-
ciently handle extremely large compound databases.

We expect that improvements in the performance and
applicable size of screening fingerprints will simplify the
deployment of substructure searches in new contexts,
especially in prediction systems and heterogeneous data-
bases .

Availability and requirements
Project name: sachem
Project home page: http://bioin​fo.uochb​.cas.cz/sache​m/
Operating system(s): Linux
Programming language: C, C++, Java, SQL
Other requirements: Java 8 or higher, PostgreSQL 9.6 or
higher.
License: GNU GPLv2
Any restrictions to use by non-academics: none other
than those specified by the license.

Authors’ contributions
JG and JV designed the study. JG implemented the Sachem cartridge and
Sachem/OrChem indexing method. MK implemented the Sachem/Lucy
indexing method. JG performed the programming optimizations of Sachem
code. JG implemented the benchmarking suite and processed the bench-
marks. MK wrote the manuscript. All authors participated in preparing the
manuscript. JG and JV supervised the project and revised the manuscript. All
authors read and approved the final manuscript.

1
2

5
10

20
50

10
0

time (ms)

qu
er

ie
s

no
t f

in
is

he
d

(%
)

a Effect of the graph size parameter

10 100 1000 10000 100000

GraphSize=5
GraphSize=6
GraphSize=7
screen−out time
total time

1
2

5
10

20
50

10
0

time (ms)

qu
er

ie
s

no
t f

in
is

he
d

(%
)

b Effect of query filtering

10 100 1000 10000 100000

MinCover=1
MinCover=2
MinCover=3
MinCover=5
unfiltered
screen−out time
total time

Fig. 6  Effect of different choices of GraphSize and MinCover parameters on screening performance in Sachem/Lucy. a Increasing the fingerprint
parameter GraphSize produces a larger fingerprint and larger indices, but overall performance is improved, thanks to the ability to choose a better
set of fingerprints for screening. Note the log-time is plotted. b The same plot illustrating different choices of the MinCover parameter for the query
filtering parameter. Unfiltered queries lose performance due to the overhead of storage access. Query filtering reduces this overhead while increas-
ing the rate of false positives, thus increasing verification time. While MinCover = 1 might seem optimal, a larger value is beneficial for processing
more complicated queries

http://bioinfo.uochb.cas.cz/sachem/

Page 11 of 11Kratochvíl et al. J Cheminform (2018) 10:27

Author details
1 Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo
náměstí 2, Prague 6 166 10, Czech Republic. 2 Department of Software Engi-
neering, Faculty of Mathematics and Physics, Charles University, Malostranské
náměstí 25, Prague 1 118 00, Czech Republic.

Acknowledgements
This work was supported by ELIXIR CZ research infrastructure project (MEYS
Grant No: LM2015047) including access to computing and storage facilities.

Availability of data and materials
Molecular data used in the benchmarks are publicly available from the
PubChem database; exact query sets, datasets and CIDs of the molecules
that were randomly selected for the benchmarks described in the paper are
published on the project web site.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Funding
This project was supported by ELIXIR CZ (MEYS), Grant number LM2015047.
Funding for open access publication was provided by the Institute of Organic
Chemistry and Biochemistry of the CAS (RVO), project number 61388963.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 27 November 2017 Accepted: 16 May 2018

References
	1.	 Venkatraman V, Pérez-Nueno VI, Mavridis L, Ritchie DW (2010) Com-

prehensive comparison of ligand-based virtual screening tools against
the DUD data set reveals limitations of current 3D methods. J Chem Inf
Model 50(12):2079–2093. https​://doi.org/10.1021/ci100​263p

	2.	 Weskamp N (2016) Guided iterative substructure search (GI-SSS)-a new
trick for an old dog. Mol Inform 35(6–7):286–292

	3.	 Barnard JM (1993) Substructure searching methods: old and new. J Chem
Inf Comput Sci 33(4):532–538

	4.	 Zhuang C, Narayanapillai S, Zhang W, Sham YY, Xing C (2014) Rapid
identification of Keap1-Nrf2 small-molecule inhibitors through structure-
based virtual screening and hit-based substructure search. J Med Chem
57(3):1121–1126

	5.	 Sheridan RP, Kearsley SK (2002) Why do we need so many chemical
similarity search methods? Drug Discov Today 7(17):903–911

	6.	 Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas
G (2015) Molecular fingerprint similarity search in virtual screening.
Methods 71:58–63

	7.	 Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006)
Recent developments of the chemistry development kit (CDK)-an
open-source java library for chemo-and bioinformatics. Curr Pharm Des
12(17):2111–2120

	8.	 Rijnbeek M, Steinbeck C (2009) OrChem—an open source chemistry
search engine for Oracle®. J Cheminform 1(1):17

	9.	 Ihlenfeldt WD, Takahashi Y, Abe H, Sasaki Si (1994) Computation and man-
agement of chemical properties in CACTVS: an extensible networked
approach toward modularity and compatibility. J Chem Inf Comput Sci
34(1):109–116

	10.	 Brown RD, Martin YC (1996) Use of structure- activity data to compare
structure-based clustering methods and descriptors for use in com-
pound selection. J Chem Inf Comput Sci 36(3):572–584

	11.	 Yap CW (2011) PaDEL-descriptor: an open source software to calculate
molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474

	12.	 Liu P, Agrafiotis DK, Rassokhin DN (2011) Power Keys: a novel class of
topological descriptors based on exhaustive subgraph enumeration
and their application in substructure searching. J Chem Inf Model
51(11):2843–2851

	13.	 O’Boyle NM, Sayle RA (2016) Comparing structural fingerprints using a
literature-based similarity benchmark. J Cheminform 8(1):36

	14.	 pgFoundry::pgChem::Tigress [Web page] (2011) http://pgfou​ndry.org/
proje​cts/pgche​m/. Accessed 9 Apr 2018

	15.	 Pavlov D, Rybalkin M, Karulin B (2010) Bingo from SciTouch LLC: chemistry
cartridge for Oracle database. J Cheminform 2:1–1

	16.	 Degtyarenko K, De Matos P, Ennis M, Hastings J, Zbinden M, McNaught
A et al (2007) ChEBI: a database and ontology for chemical entities of
biological interest. Nucleic Acids Res 36(suppl-1):D344–D350

	17.	 Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf
Model 50(5):742–754

	18.	 Broder A, Mitzenmacher M (2004) Network applications of Bloom filters: a
survey. Internet Math 1(4):485–509

	19.	 Białecki A, Muir R, Ingersoll G (2012) Lucid Imagination. Apache lucene 4.
In: SIGIR 2012 workshop on open source information retrieval, p 17

	20.	 Apache Lucy [Web page] (2017) https​://lucy.apach​e.org/. Accessed 9 Apr
2018

	21.	 Smiley D, Pugh E, Parisa K, Mitchell M (2015) Apache Solr enterprise
search server. Packt Publishing Ltd, Birmingham

	22.	 Kuc R, Rogozinski M (2013) Elasticsearch server. Packt Publishing Ltd,
Birmingham

	23.	 Liu P, Agrafiotis DK, Rassokhin DN, Yang E (2011) Accelerating chemical
database searching using graphics processing units. J Cem Inf Model
51(8):1807–1816

	24.	 Tao L, Zhang P, Qin C, Chen S, Zhang C, Chen Z et al (2015) Recent
progresses in the exploration of machine learning methods as in-silico
ADME prediction tools. Adv Ddrug Deliv Rev 86:83–100

	25.	 Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-
Guzik A et al. (2015) Convolutional networks on graphs for learning
molecular fingerprints. In: Advances in neural information processing
systems, pp 2224–2232

	26.	 Lavecchia A (2015) Machine-learning approaches in drug discovery:
methods and applications. Drug Discov Today 20(3):318–331

	27.	 Landrum G et al. (2006) RDKit: open-source cheminformatics
	28.	 MyChem [Web page] (2015) http://myche​m.sourc​eforg​e.net/. Accessed 9

Apr 2018
	29.	 O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison

GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3(1):33
	30.	 Zamora A (1976) An algorithm for finding the smallest set of smallest

rings. J Chem Inf Comput Sci 16(1):40–43
	31.	 O’Boyle NM, Guha R, Willighagen EL, Adams SE, Alvarsson J, Bradley JC

et al (2011) Open data, open source and open standards in chemis-
try: the blue obelisk five years on. J Cheminform 3(1):37. https​://doi.
org/10.1186/1758-2946-3-37

	32.	 Martin E, Monge A, Duret JA, Gualandi F, Peitsch MC, Pospisil P (2012)
Building an R&D chemical registration system. J Cheminform 4(1):11.
https​://doi.org/10.1186/1758-2946-4-11

	33.	 Guilloux VL, Arrault A, Colliandre L, Bourg S, Vayer P, Morin-Allory L (2012)
Mining collections of compounds with screening assistant 2. J Chemin-
form 4(1):20. https​://doi.org/10.1186/1758-2946-4-20

	34.	 May J, Sayle R (2015) Substructure search faceoff; 2015. Cambridge
cheminformatics network meeting. https​://www.slide​share​.net/NextM​
oveSo​ftwar​e/subst​ructu​re-searc​h-faceo​ff. Accessed 9 Apr 2018

	35.	 Dalke A (2014) Substructural query collection; 2014. https​://bitbu​cket.
org/dalke​/sqc. Accessed 09 Apr 2018

	36.	 Ehrlich HC, Rarey M (2012) Systematic benchmark of substructure search
in molecular graphs-from Ullmann to VF2. J Cheminform 4(1):13

	37.	 Sitzmann M, Ihlenfeldt WD, Nicklaus MC (2010) Tautomerism in large
databases. J Comput-Aid Mol Des 24(6–7):521–551

	38.	 Krallinger M, Rabal O, Lourenço A, Oyarzabal J, Valencia A (2017) Informa-
tion retrieval and text mining technologies for chemistry. Chem Rev
117(12):7673–7761

	39.	 Agrafiotis DK, Lobanov VS, Shemanarev M, Rassokhin DN, Izrailev
S, Jaeger EP et al (2011) Efficient substructure searching of large
chemical libraries: the ABCD chemical cartridge. J Chem Inf Model
51(12):3113–3130

https://doi.org/10.1021/ci100263p
http://pgfoundry.org/projects/pgchem/
http://pgfoundry.org/projects/pgchem/
https://lucy.apache.org/
http://mychem.sourceforge.net/
https://doi.org/10.1186/1758-2946-3-37
https://doi.org/10.1186/1758-2946-3-37
https://doi.org/10.1186/1758-2946-4-11
https://doi.org/10.1186/1758-2946-4-20
https://www.slideshare.net/NextMoveSoftware/substructure-search-faceoff
https://www.slideshare.net/NextMoveSoftware/substructure-search-faceoff
https://bitbucket.org/dalke/sqc
https://bitbucket.org/dalke/sqc

	Sachem: a chemical cartridge for high-performance substructure search
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Fingerprint-based screening
	Available open-source cartridges

	Implementation
	Subgraph matching
	Fingerprint structure
	Storage, indexing, and processing details
	Screening performance optimization by bit selection

	Results and discussion
	Benchmark setup
	Benchmarked cartridges
	Datasets
	Query set
	Benchmarking hardware

	Overall query performance
	Performance outliers

	Screening efficiency
	Parameters of SachemLucy

	Possible extensions and future goals

	Conclusions
	Availability and requirements
	Authors’ contributions
	References

