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Abstract 

Background:  Structure search is one of the valuable capabilities of small-molecule databases. Fingerprint-based 
screening methods are usually employed to enhance the search performance by reducing the number of calls to the 
verification procedure. In substructure search, fingerprints are designed to capture important structural aspects of the 
molecule to aid the decision about whether the molecule contains a given substructure. Currently available cartridges 
typically provide acceptable search performance for processing user queries, but do not scale satisfactorily with data-
set size.

Results:  We present Sachem, a new open-source chemical cartridge that implements two substructure search meth-
ods: The first is a performance-oriented reimplementation of substructure indexing based on the OrChem fingerprint, 
and the second is a novel method that employs newly designed fingerprints stored in inverted indices. We assessed 
the performance of both methods on small, medium, and large datasets containing 1, 10, and 94 million compounds, 
respectively. Comparison of Sachem with other freely available cartridges revealed improvements in overall perfor-
mance, scaling potential and screen-out efficiency.

Conclusions:  The Sachem cartridge allows efficient substructure searches in databases of all sizes. The sublinear per-
formance scaling of the second method and the ability to efficiently query large amounts of pre-extracted informa-
tion may together open the door to new applications for substructure searches.
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Background
Compound retrieval is one of the most common pur-
poses of chemical database cartridges. The ability of 
database cartridges to process queries accurately and effi-
ciently has helped them become powerful tools to per-
form functions such as virtual screening, novelty checks, 
and compound activity predictions [1, 2]. Substructure 
search, in which the user inputs a part of a molecular 
structure and receives a set of all molecules that contain 
the given fragment as a substructure, can be valuable for 
searching through chemical databases.

The time required to deliver a substructure search 
result depends on the speed of the substructure matching 
algorithm that determines whether the given molecular 

fragment is a subgraph of a compound, and on the abil-
ity of the cartridge to quickly screen out compounds that 
can be identified as unable to match the query, so that 
they are not unnecessarily fetched from storage and veri-
fied by costly substructure matching. Because subgraph 
matching is an instance of a relatively hard subgraph 
isomorphism problem that is inherently exponential, 
improvements in screening are usually the major factor 
in expediting the search procedure. Screening is typically 
guided by substructural fingerprints that are stored in 
database indices for rapid processing [3].

Here, we present Sachem, a new open-source chemical 
cartridge that aims to run substructure search queries on 
the largest publicly available datasets (specifically on 
more than 90 million compounds in the PubChem data-
base) in an insignificant amount of time. In addition, the 
performance of the cartridge is potentially scalable to 
much larger database sizes. Although the scalability of 
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cartridges is a crucial concern for long-term deploy-
ment1, it is seldom discussed in the literature, and not 
sufficiently assured by available open-source software.

Development of Sachem was motivated by two major 
factors: First, substructure search is sometimes used as a 
frequently-called subroutine of other algorithms or anal-
yses (e. g., complex virtual screening schemes [4] or novel 
interfaces for substructure search [2]); improvements 
of its performance are therefore directly reflected in the 
performance of the entire algorithms. Second, research-
ers usually benefit from the ability to interactively run 
and refine substructure queries using a platform such as a 
web service to quickly access available information about 
the compounds; the performance and efficiency of the 
cartridge implementation directly lower the running cost 
of such a web service.

Fingerprint‑based screening
The typical abstraction that guides the screening phase 
of the search is substructural fingerprints [3, 5, 6]. These 
differ from other forms of fingerprints (e.g. similarity fin-
gerprints) by specifying an extra requirement: a feature 
present in a structure must also be present in all its struc-
tural extensions (i.e. the set of fingerprints with a sub-fin-
gerprint relation must form a partially ordered set that is 
homomorphic to the set of chemical structures partially 
ordered by subgraph relation). Further we discuss only 
the substructural fingerprints.

The fingerprints used in currently available cartridges 
were either designed manually or generated by automati-
cally identifying and collecting features from molecule 
graphs. Manual design of fingerprints usually results in a 
compact feature set that captures the available domain-
specific knowledge of search-related substructures; these 
include the substructural fingerprints from the CDK 
library, OrChem fingerprints, CACTVS and MACCS 
descriptors [7–10], and many others [6]. Fixed finger-
print content is not future-proof—new features or sta-
tistical changes in the data require the fingerprint to be 
re-designed. This drives the need to generate fingerprints 
automatically, using only general assumptions. Typical 
auto-generated fingerprints include descriptors based on 
atom-count, atom-pairs, atom-paths, sub-graphs, wild-
card patterns, and ring-connectivity [11, 12].

Technically, fingerprints are representable either as bit 
vectors, in which each bit marks the presence of a feature; 
or numeric vectors that also encode repetitions of each 
feature, which can also be encoded as bit vectors [13]. 
The optimal method of storage and indexing depends 

1  The growing demand for cartridge capacity is illustrated by the molecule 
count in PubChem, which has been doubling in size every 3 years. The 
growth is not expected to halt.

on the fingerprint properties. Vectors of hand-designed 
fingerprints (typically identifying at most thousands of 
features) can be stored as simple relational-database col-
umns and indexed by B-trees [8], stored as arrays and 
indexed by generalized inverted search-tree indices [14], 
or stored as inverted feature vectors or bitmap indices to 
allow rapid processing [15].

Auto-generated fingerprints typically produce vectors 
with large numbers of descriptors: for example, in the 
ChEBI compound database [16] (which currently con-
tains cca. 105 compounds), we can identify hundreds of 
different atom variants (atomic numbers, isotopes, and 
charges), approximately 103 different ring structures, 
8 · 10

5 different radial structures2 of radius 4, and 1.5 · 106 
different graph substructures with a maximum of 6 
bonds. Cartridges usually exploit the sparsity of the 
resulting vectors to store them efficiently and represent 
each vector as a list of feature indices, or more generally, 
index-count pairs.

There are two common approaches for storing sparse 
fingerprints. The indices may be folded down by hashing 
feature indices to smaller integers, possibly using tech-
niques similar to Bloom filters [18, sec. 5.3]. The result-
ing reduction in dimensionality makes it possible to store 
the folded vectors using the same methods as for short 
feature vectors [6]. Alternatively, the unfolded feature 
lists can be stored in inverted indices as is, without infor-
mation loss caused by possible hash collisions in folding 
[13, discussion  on p.12]. Indexing methods available in 
text-search databases (e.  g. Apache Lucene, Lucy, Solr 
[19–21], and ElasticSearch [22]) scale well to the required 
count of distinct features and molecules. Inverted indices 
usually exploit statistical properties of the data to reduce 
the consumption of storage: posting lists of text-search 
databases typically contain small delta-encoded integers; 
similar encodings have been used for chemical databases 
[23].

Sometimes a mixed approach for reducing the dimen-
sionality of the fingerprints is taken. Machine learning 
methods can be used to simulate expert decisions about 
the viability of individual fingerprint keys, and the result-
ing fingerprint may be as good and compact as a hand-
designed one [24–26].

Available open‑source cartridges
There are several available open-source cartridges that 
support molecule storage in a database retrieval using 
a substructure search query. These currently include 

2  Radial and ECFP-like fingerprints [17] implicitly encode atom valences 
and thus are not generally applicable for substructure screening; a minor 
modification allows them to be used for queries in which the exact valence 
of atoms is requested.
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OrChem [8], RDKit [27], Bingo [15], pgchem [14] and 
Mychem [28].

OrChem uses Oracle as the back-end database. Its 789-
bit fingerprint contains hashes of three-atom SMILES 
substructures in the first 95 bits; the rest of the bits is 
specified manually, in many cases using structural pat-
terns. OrChem also stores 15 integer values for each mol-
ecule that describe counts of specific atoms and bond 
types. Each fingerprint bit and integer value is stored 
in a separate table column, and these columns are then 
indexed using a B-tree index.

RDKit provides a cartridge functionality with the Post-
greSQL database. Fingerprints used for screening are 
pattern fingerprints, which hash several common struc-
tural features defined by SMARTS patterns. The size of 
the fingerprint can be customized, by default the hashes 
are folded to a 2048-bit array. Substructural fingerprints 
are indexed in a custom GiST index.

Bingo uses a 2584-bit substructural fingerprint based 
on hashed cyclic subgraphs (up to 8 atoms) and hashed 
sub-trees (up to 7 atoms). A small part of the fingerprint 
is reserved to count atom types, charges, and isotopes. 
Bingo can use Oracle, PostgreSQL, or SQL Server as a 
back-end. Fingerprints are indexed using a custom index 
type.

pgchem uses slightly modified FP2 and FP3 fingerprints 
from OpenBabel [29] concatenated to one 1536-bit fin-
gerprint. FP2 is a path fingerprint that indexes linear sub-
graphs with a maximal length of 7 atoms, FP3 is based 
on manually defined SMARTS patterns. Fingerprints are 
stored as a custom data type with a GiST index.

Mychem is a chemical cartridge for MySQL. It allows 
computation of FP2, FP3, and FP4 fingerprints from 
OpenBabel. Mychem does not provide any direct way to 
index the fingerprints to allow substructure screening.

Implementation
In this paper, we describe the implementation of Sachem, 
a new cheminformatic cartridge. Two different finger-
prints and corresponding indexing and searching meth-
ods implemented in Sachem can be used.

The first method, called Sachem/OrChem, is a major 
performance-oriented modification of the substructure-
search part of the OrChem database cartridge [8]. The 
second method, Sachem/Lucy, is an extension of the pre-
vious, designed to maximize the search screen-out rate 
by indexing a large number of automatically specified 
substructural fingerprint bits in a text-search database.

Subgraph matching
Sachem was originally intended as a port of OrChem to 
the PostgreSQL database, which was motivated by licens-
ing considerations. The subgraph matching functionality 

is therefore based on the original OrChem approach. 
However, we made multiple optimizations, which led to a 
complete rewrite of the matching part.

The text-based molecule storage format of OrChem 
was replaced with a compact binary format that allows 
faster fetching and processing of the molecular data in 
the substructure matching algorithm (many other car-
tridges take a similar approach for preparing the data). 
The compacted molecules are automatically stored in a 
static memory-mapped index file, so that the required 
data can be accessed without substantial overhead. The 
VF2 algorithm implementation was ported to C lan-
guage and optimized for performance, resulting in a 
total speedup of more than 103 . Two major speed-ups 
were achieved by avoiding all memory allocations in the 
performance-critical part of substructure matching, and 
by precomputing and caching all data required by the 
matching algorithm. In the original OrChem, some fre-
quently accessed properties of atoms and molecules, such 
as implicit hydrogen counts, were unnecessarily recom-
puted several times during each substructure match.

Fingerprint structure
Sachem/OrChem uses the fingerprints that were defined 
in the original OrChem but modified to support CDK 
2.0 and use the aromaticity detection algorithm that was 
newly added to CDK to allow contributions from exocy-
clic π-bonds.

The fingerprints used in Sachem/Lucy are defined as 
follows:

• • The occurrence of each distinct atom type found in a 
compound is considered as a distinct fingerprint bit.

• • Using the SSSR algorithm [30], we retrieved all small-
est rings of all compounds in the ChEBI [16] data-
base. Each distinct discovered ring is considered a 
substructural pattern for a fingerprint bit.

• • All connected subgraphs of non-hydrogen atoms 
with a maximum of one ring and a limited num-
ber of bonds were also considered a fingerprint bit. 
The bond limit is parameterized as the GraphSize 
parameter, set to 7 by default. The single ring con-
dition was selected to efficiently solve canonization 
problems with multi-ring structures. For the finger-
print, the subgraph is converted to a number using 
a tree-hashing algorithm that consecutively removes 
leaves until only the ring remains; the ring is then 
hashed in its lexically minimal rotation.

• • Multiplicity of features was encoded by creating a 
new fingerprint bit for each power of 2 of the rep-
etitions. Other systems (including OrChem [8] and 
RDKit [27]) use a similar encoding of multiplicity.
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The resulting fingerprints are suitable for storage in text-
search databases. In the PubChem database, the Sachem/
Lucy method identified 18.7 million distinct feature 
descriptors with approximately 860 identified features 
per compound on average, which is comparable to natu-
ral-language data at which text-search databases are 
targeted.3

Storage, indexing, and processing details
In addition to using a different database back-end and 
matching algorithm, Sachem/OrChem differs from the 
original OrChem in the indexing method used. Instead of 
B-tree based indices, Sachem/OrChem uses a memory-
mapped inverted bitmap index to speed up searching in 
fixed-size fingerprints.

Sachem/Lucy uses fingerprints as defined in "Finger-
print structure" section instead of OrChem fingerprints, 
and indexes them in the Apache Lucy database [20] 
(hence the name). Apache Lucy is a port of the well-
established Apache Lucene [19] text-search database 
to C. Our choice of Apache Lucy was motivated by the 
relative efficiency of C implementation compared to 
alternatives.

The fingerprints were adapted for storage in Apache 
Lucy as follows: identification of each fingerprint bit is 
encoded to a 36-bit integer and converted into a corre-
sponding 6-byte base64 word suitable for being stored 
as a term in text documents. The resulting keywords are 
concatenated to a space-separated string and indexed as 
documents using a simple whitespace analyzer. The over-
all process is shown in Fig. 1.

From the user’s point of view, this adaptation to exter-
nal indexing is called transparently from the PostgreSQL 
interface, which is common to both implementations.

Screening performance optimization by bit selection
In text-search databases, the presence of a keyword in 
the query forces the database to traverse the correspond-
ing part of the inverted index, which is particularly costly 
for long lists associated with frequently occurring key-
words. This introduces a tradeoff—in our setting, speci-
fying a more precise query by including more fingerprint 
bits may improve the screen-out rate, but at the cost of 
increased overhead to process more data.

To balance the factors in this tradeoff and accelerate 
the querying process, our method simply discards the 
bits from the query fingerprint that are not significant in 
terms of filtering power. Using the resulting filtered query 
dramatically reduces the overhead needed to traverse 

3  For comparison, Webster’s Third New International Dictionary reports 
around a half million keywords in English language alone.

the indices, and causes only a small increase in false 
positives. The query fingerprint bit-reduction algorithm 
performs the discarding in two steps: 1) it uses the infor-
mation about subsumption to discard redundant bits and 
2) it decides whether to discard less relevant bits based 
on their statistical relevance for search.

The first step of discarding is implemented in the query 
fingerprinting procedure, and is performed separately for 
all fingerprint types and repetition encoding. The proce-
dures discard fingerprint bits if their presence is directly 
subsumed by others. This step does not lead to any addi-
tional false positives.

The second step attempts to discard bits that are 
expected not to contribute significantly to screen-out. 
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Fig. 1  Fingerprint processing in Sachem/Lucy. The left box shows a 
molecule from the compound database being broken into distinct 
substructural features by fingerprinting (only 4 are shown for 
demonstration); these are converted to keyword-like descriptors by 
hashing and stored in Apache Lucy. The right box shows the query-
ing process. The query is broken into substructural features. These are 
then filtered to only include features with reasonable filtering power; 
the result is converted to keyword descriptors to build a text query, 
which is in turn run on Apache Lucy
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The decision about discarding individual bits uses a pre-
computed table with the relative filtering power of each 
distinct bit and extra information that connects query 
bits to corresponding “covered” query atoms. We consid-
ered an atom to be covered by a fingerprint bit if it is con-
tained in part of the molecule that has caused the bit to 
be non-zero. From this information, the algorithm finds 

a small set of fingerprint bits that is expected to cover the 
query well and have sufficiently high filtering power to 
keep the resulting decrease in screen-out ratio relatively 
low. The bit-selection algorithm for the second step of fin-
gerprint bit-reduction is detailed in Fig. 2.

Results and discussion
We performed a comprehensive benchmark to assess the 
performance and scaling advantages of Sachem and com-
pare it with other available cartridges.

Benchmark setup
We ran the same benchmark—storing a dataset in a car-
tridge and running a set of substructure queries on it—on 
all combinations of cartridges and datasets.

We recorded the time needed for overall query pro-
cessing and for the screening phase. We counted the 
compounds that passed the screening and verification 
phases to compute screening precision and selectivity.

Benchmarked cartridges
We benchmarked three variants of Sachem: the two 
versions described in this work, Sachem/OrChem and 
Sachem/Lucy, as well as Sachem/eCDK, which is a 
modification of Sachem/OrChem that differs only in 
fingerprinting procedure—it uses the ExtendedFin-
gerprinter from the CDK library instead of OrChem 
fingerprints.

For our comparison, we focused on methods that are 
available in the form of cartridges with a SQL-based 
front-end. We included OrChem [8] (version 1.3.1), 
RDKit [27] (the PostgreSQL-based cartridge imple-
mentation with 2048-bit fingerprint, version 2017.09.1), 
Bingo [15] (the PostgreSQL-based cartridge variant, ver-
sion 1.8.0-beta) and pgchem [14] (version 1.3-GiST).

All these cartridges use PostgreSQL, version 9.6, as a 
back-end database, except for OrChem, which we ran on 
Oracle database, version 12c.

Thorough comparisons of many other cartridges are 
available elsewhere [31–34], and these can be used to 
relate the performance of Sachem to cartridges not 
included in our benchmark.

Datasets
To assess the performance scaling behavior of the car-
tridges, we ran the benchmarks on three datasets of dif-
ferent size. The 94M dataset consists of all compounds 
in the PubChem database snapshot from August 2017 
(PubChem contained just under 94 million molecules at 
the time). We randomly selected 10 million compounds 
from the 94M dataset to form the 10M dataset, which 
was further randomly reduced to 1 million compounds in 
the 1M dataset.

Input: fingerprint bits q, set of query atoms A
Input: mapping M from the query fingerprint bits to corre-

sponding covered atoms
Input: parameters MaxBits and MinCover
Output: reduced fingerprint r

Require: map F from fingerprint bits to their filtering
power

1: procedure SelectQueryBits(q, A,M)
2: r ← ∅ � Resulting bit set, initially empty
3: c ← empty dictionary of A → N � Atom coverage
4: u ← |A| � Count of uncovered atoms
5: for all a ∈ A do
6: c[a] ← 0
7: end for
8: q′ ← sortF (q) � Sort by F (q) in descending order
9: for all b ∈ q′ do � Iterate through query bits
10: if u = 0 ∨ |r| ≥ MaxBits then
11: return r
12: end if
13: f ← False
14: for all a ∈ M(b) do � Update coverage
15: if c[a] < MinCover then
16: f ← True � Set “found” flag
17: c[a] ← c[a] + 1
18: if c[a] = MinCover then
19: u ← u − 1
20: end if
21: end if
22: end for
23: if f then
24: r ← r ∪ b
25: end if � Add the bit to the result
26: end for
27: return r
28: end procedure

Fig. 2  Algorithm to select fingerprint bits most relevant to the 
given query. Upon input, it receives set q of fingerprint bits from the 
first step of the fingerprint reduction algorithm, set A of atoms that 
are in the query, and mapping M from the query fingerprint bits to 
corresponding covered atoms. The algorithm is parameterized by 
the positive integers MaxBits and MinCover. The MaxBits parameter is 
a hard limit on the count of bits in the reduced fingerprint, and the 
MinCover parameter sets the minimal count of distinct fingerprint bits 
in the reduced fingerprint that cover each atom present in the query 
molecule. The algorithm assigns a covering counter (initially set to 
zero) to each atom of the query molecule. The query fingerprint bits 
are then traversed in descending order of filtering power. For each 
bit, it is determined whether there exists a query atom that is covered 
by the bit information. If its associated counter is less than MinCover, 
all counters of atoms covered by the bit are increased, and the bit is 
added to the resulting reduced query fingerprint; otherwise, the bit is 
discarded. During the development, we experimentally determined 
that 2 and 32 are suitable values for MinCover and MaxBits, respec-
tively. The filtering power of distinct bits (function F) is obtained 
by counting the relative occurrences of the bits in the dataset. The 
resulting F is portable to other datasets; re-computation is needed 
only after substantial statistical changes in data
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We chose to select the 1M dataset as a subset of 10M 
to avoid the effect of outliers (described in more detail in 
"Performance outliers" section). Because some queries 
take much longer than average to be processed on cer-
tain molecules (e.  g. cases in Fig.  4a, b), an unfortunate 
selection of molecules in the 1M dataset could make 
cartridges perform worse on it than on the 10M dataset. 
Selection as a subset ensures that the 10M dataset is at 
least as hard to process as the 1M dataset.

Some cartridges failed to index several molecules 
from the datasets; these errors are briefly summarized in 
Table 1.

Query set
Design of a good, unbiased query set for benchmarks is 
complicated. It is not possible to derive such a set from 
a pre-existing statistic of common user queries, which 
favors popular queries viable for recently conducted 
research, or from identified features in the database, 
which favors queries based on the feature identification 
method and produces a bias towards database content.

To more easily draw comparisons with our systems, we 
re-used queries that have been benchmarked by other 
researchers available in Substructure Query Collection 
(SQC) [35]. SQC includes queries used by Ehrlich and 
Matthias [36] for a systematic benchmark for substruc-
ture search algorithms, and user queries collected from 
live software testing.

The collected queries are slightly biased toward simpler 
‘explorative’ queries, but still represent a valid sample of 
queries in a publicly accessible database.

Of the 3488 queries present in the SQC query set, we 
removed 159 that are not supported by some of the car-
tridges; details can be found in Table 1.

Benchmarking hardware
All benchmarks were performed on CentOS Linux 7.4 
running on virtualized Intel Haswell CPUs clocked at 2.6 
GHz with 512 GB RAM; benchmarked software parts 
were run single-threaded. Results from the first runs of 
the benchmarks were discarded to allow the programs to 
cache hot data.

Overall query performance
The overall timing results are summarized in plots in 
Fig. 3.

OrChem-based variants of Sachem outperformed all 
cartridges except Sachem/Lucy on all datasets. Sachem/
OrChem was faster by an average factor 8× than Bingo, 
which slightly outperformed the RDKit and pgchem car-
tridges. The ordering of cartridges by performance was 
often mixed—RDKit clearly performed better than Bingo 
on faster queries, but the performance advantage was lost 
on complicated queries.

Thanks to improvements in screening (measured sep-
arately as described in  "Screening efficiency" section), 
Sachem/Lucy outperformed all other cartridges on the 
largest dataset by a wide margin. This advantage was par-
tially lost on smaller datasets on fast queries, for which 
the Sachem/Lucy processing time was dominated by pre-
paring the complicated fingerprint (less than 10 ms in 
most cases) and by increased overhead for the inverted 
index processing. However, as the performance disadvan-
tage of Sachem/Lucy is at most approximately 10 ms for 
the majority of queries, we do not consider it to be a sig-
nificant drawback. See Fig. 3d for a side-by-side compari-
son on all dataset sizes.

The same plot also illustrates the scalability improve-
ment in Sachem/Lucy. While the time required by 
Sachem/OrChem to answer all queries was roughly lin-
ear with increasing dataset size, Sachem/Lucy behaved 
more efficiently. The query processing time in Sachem/
Lucy scaled sub-linearly with dataset size, showing only 
around 2× slowdown on a 10× larger dataset on median 
queries.

Performance outliers
Despite the performance improvements in the cartridges, 
there are several types of slow queries that are unlikely 
to be made more efficient by further development. Exam-
ples from the three main classes of such outliers are dis-
played in Fig. 4:

(a)	Matching long cycles in dense structure graphs may 
cause an unavoidable complexity explosion, which is 
a problem inherent to graph substructure matching. 
Several examples of such dense graphs appear in the 
datasets.

Table 1  Overview of indexing and searching errors

Measurements are slightly influenced by errors that some cartridges exhibited 
during benchmarking, due to both indexing and searching errors. Indexing 
errors are primarily reported as unacceptable data in the SDF files from 
PubChem, most frequently as invalid atom valences or stereochemistry. Note 
that Bingo beta version can lower the number of indexing errors by using 
algorithms that work with ‘incorrect’ structures (this feature is disabled by 
default)

Cartridge Indexing failures Rejected queries

1M 10M 94M n reason

Bingo 105 1024 9754 0

OrChem 2 4 – 12 Unsupported aromatic bond in 
SMILES

pgchem 30 255 2527 146 Fragmented SMILES, queries with 
[*]

RDKit 72 707 6911 4 Chemical structure considered 
invalid

Sachem 0 0 0 0
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(b)	Matching multi-fragment queries in which each frag-
ment may fit into multiple positions in the target 
causes a backtracking explosion, which takes O(mn) 
time, where n is the number of fragments and m is 
the number of different embeddings of each frag-
ment in the target.

(c)	Screening can not reach the desired efficiency on 
queries that do not contain substructures with 
enough filtering power. These queries cause the car-
tridges to fetch large amounts of data from storage 
and run the verification algorithm on each of many 
identified positives.

Screening efficiency
We compared the efficiencies of fingerprint-based 
screening processes in all cartridges in terms of preci-
sion (defined as the ratio of true positives to all identified 
positives identified by screening) and false positive rate 
(FPR, also known as fallout, defined as the ratio of false 
positives identified by screening to all negatives). Note 
that because the results from all cartridges differ slightly 
due to factors such as different perception of aromaticity 
and charges, the exact counts of positives and negatives 
are specific to each cartridge.

Plots for FPR and precision of all measured cartridges, 
displayed in Fig. 5, show the advantage of the screening 
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method used in Sachem/Lucy over all other cartridges. 
Sachem/Lucy is followed by Bingo in terms of both pre-
cision and FPR. The remaining cartridges perform simi-
larly, except for minor advantages of Sachem/eCDK and 
pgchem in precision.

Parameters of Sachem/Lucy
We focused specifically on how varying the Sachem/Lucy 
parameters affects screening efficiency.

Reducing the GraphSize fingerprint parameter caused 
an expected increase in false positives, which projected 
to an increased query processing time (Fig.  6a). The 
default value GraphSize  =  7 allows the implementa-
tion to pick fewer, more precise fingerprint bits. Specific 
deployments of Sachem might benefit from lowering the 
the graph size parameter to save storage space.

Query filtering had a considerable effect on query pro-
cessing time. Although it caused a minor increase in false 
positives (as seen in Fig. 5b, d), it increased overall query 
performance. Because the processing time of unfiltered 
queries is, in most cases, clearly dominated by screening 
time, trading off some screening precision is beneficial. 
Setting the MinCover parameter to values as low as 1 
can induce 10× median speedup over unfiltered queries 
(see Fig. 6b). Screening time increases when the parame-
ter is increased, but the overall query time does not seem 
seriously affected for values MinCover ≤ 5.

Although setting MinCover  =  1 might seem opti-
mal based on the results from the used query set, we 
use MinCover =  2 in Sachem/Lucy by default. This is 
substantiated by benchmarks on query sets that include 
larger queries, where the tradeoff is balanced differently. 

For example, finding a random subset of PubChem 
compounds in the 94M dataset runs optimally with 
parameter MinCover = 3, which is closely followed by 
MinCover = 2 (roughly 4% slower) and MinCover = 4 
and 5 (9% and 15% slower). Setting MinCover = 1 is, in 
this case, almost 25% slower.

Possible extensions and future goals
Sachem could easily be extended to similarity searches. 
The used text-search databases already recognize sev-
eral notions of similarity measures, thresholds and top-N 
queries; after plugging in a matching similarity finger-
print, this functionality could be easily applied to high-
performance similarity queries.

The ability to store and efficiently query fingerprints 
with a large number of keys is beneficial for several appli-
cations. For example, possible complications of substruc-
ture searches that arise from tautomerism or different 
perceptions of aromaticity could be resolved without sig-
nificant impact on search performance. Simply indexing 
all possible tautomers or aromaticity variants is possible, 
at the cost of some storage space. An upper bound on the 
additional storage requirements can be estimated from 
the results of Sitzmann et al. [37].

Similarly, many non-structural and quantitative meas-
ures of molecules can be encoded to bit fingerprints, 
which can greatly simplify the processing of queries with 
heterogeneous parameters (sometimes called hybrid 
queries  [38, section  2.4]). Consider a realistic query in 
which a researcher asks for a slightly alkaline compound 
with several substructures, available results in bioassays 
with high activity, limited molecular weight, and known 
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Fig. 4  Noteworthy samples from three main classes of performance outliers identified during development: a PubChem compound CID20652954 
(together with many similar compounds) is likely not a real molecule. Nevertheless, since there is no general method to identify a non-existent 
compound, it is not possible to reliably filter them out from the database. Trying to find an odd-length carbon cycle substructure in CID20652954 
causes a complexity explosion; for example, matching the cycloheptadecane structure in it takes tens of minutes in all available cartridges before 
failing. b Matching a query that contains n benzene rings (above) in a compound that contains n or more benzene rings, but can only accom-
modate n− 1 non-overlapping benzene rings (below) backtracks 12 times for each possible individual benzene position in the target molecule. In 
total, O((12n)n) different atom permutations must be examined before the query fails. c A multi-fragment query that is too simple to produce any 
fingerprint information with enough filtering power for efficient screening. The performance of evaluating such queries mainly depends on the 
efficiency of data serialization and deserialization at the software interfaces between the back-end database and user
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binding with a protein. As this information is avail-
able in public databases, it could be easily converted to 
bit fingerprints and aggregated in a modified version of 
Sachem/Lucy. The resulting cartridge could answer any 
such query with similar performance as on the queries 
benchmarked in this paper. Alternative approaches to 
efficient querying of heterogeneous datasets in RDBMS 
include e. g. planner optimizations using cost estimation 
[39].

A simple adaptation to arbitrary fingerprints may also 
benefit drug discovery. Given the results of a bioassay, 
it is not known which feature of the molecule causes 

the desired activity, nor whether the activity is caused 
by anything relatable to an extant molecular fingerprint 
that could in turn be used to screen new candidates from 
molecule databases. Not being restricted by fingerprint 
size allows the researcher to easily define better finger-
prints, in which individual bits may a have better chance 
to match the cause of the activity. Sachem can index 
compounds using even very large fingerprints, making 
such results of screening and analyses quickly available to 
the researcher.

Finally, the horizontal scaling potential of text-search 
databases like ElasticSearch or Solr [21, 22] could be 
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easily exploited to provide a Google-like experience on 
a full-scale chemical substructure and similarity search. 
This is further supported by the fact that the software 
already supports Top-N queries and optimizations that 
are usually required to efficiently handle internet traffic.

Conclusions
We have introduced Sachem, a new open-source chem-
informatic cartridge oriented toward substructure search 
that improves the performance and scalability of sub-
structural query processing.

Improvements in the OrChem-based indexing method 
enable Sachem/OrChem to process queries more than 
50-fold faster than the original OrChem implementation. 
However, our results indicate that the original OrChem 
fingerprint design is still a viable choice for substructure 
screening.

The Sachem/Lucy variant, which is based on inverted 
indices, scales to very large datasets with similar or bet-
ter performance than Sachem/OrChem on most dataset 
sizes. Compared to OrChem and other benchmarked 
methods, the Sachem/Lucy approach improves the pre-
cision of fingerprint-based screening. This variant stores 
a large fingerprint that identifies more than 107 distinct 
features. The ability to store and efficiently query finger-
prints of this size may benefit potential future applica-
tions of this method to more complicated datasets.

Both Sachem variants were benchmarked against other 
currently available open-source cartridges, using the 

PubChem database as a dataset and the SQC query set 
as queries. Sachem variants clearly outperformed other 
cartridges on most queries. Moreover, the performance 
of Sachem/Lucy was less affected by dataset size and fin-
gerprint complexity, which is a required property to effi-
ciently handle extremely large compound databases.

We expect that improvements in the performance and 
applicable size of screening fingerprints will simplify the 
deployment of substructure searches in new contexts, 
especially in prediction systems and heterogeneous data-
bases .
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