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Abstract 

We propose a molecular generative model based on the conditional variational autoencoder for de novo molecular 
design. It is specialized to control multiple molecular properties simultaneously by imposing them on a latent space. 
As a proof of concept, we demonstrate that it can be used to generate drug-like molecules with five target properties. 
We were also able to adjust a single property without changing the others and to manipulate it beyond the range of 
the dataset.
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Background
The ultimate goal of molecular design for new materi-
als and drugs is to directly generate molecules with the 
desired properties. This is apparently challenging work 
because a molecular space is extraordinarily vast, dis-
crete, and disorganized with diverse types of molecules. 
For instance, 108 molecules have been synthesized [1], 
whereas it is estimated that there are 1023–1060 drug-like 
molecules [2]. Despite advances in experimental tech-
niques, it is too demanding to find molecules suitable for 
specific applications only through experiments.

Computer-aided molecular design has attracted much 
attention as a promising solution to overcome the experi-
mental limitation [3–6]. Fast calculation methods along 
with reasonable accuracy and very low cost enable high-
throughput virtual screening to find molecules with 
target properties. A common strategy is to select com-
putationally top molecules out of millions of molecules 
in a virtual library and then verify them experimentally, 
leading to a significant reduction in time and efforts. 
Molecules in the library may not meet the given crite-
ria. In this case, traditional optimization methods such 

as a genetic algorithm can be used to further improve 
molecular properties beyond the criteria by structural 
modifications [7–9]. However, they have a fundamental 
limitation in terms of efficiency because many trials and 
errors are inevitable to optimize molecular properties in 
a huge molecular space.

Recently emerging generative models based on deep 
learning techniques may offer a viable solution for more 
efficient molecular design. Gómez-Bombarelli et  al. 
adopted a variational autoencoder [10] to optimize the 
molecular properties in a latent space in which mole-
cules are expressed as a real vector [11]. The key advan-
tage of this method is that a gradient-based optimization 
becomes feasible because the latent space is continuous 
and differentiable. It has been successfully applied to 
improving the partition coefficient of drug candidates 
and the delayed fluorescent emission rate of organic light 
emitting diode candidates. Blaschke et  al. employed the 
adversarial autoencoder [12] (AAE) and the Bayesian 
optimization to generate ligands specific to the dopamine 
type 2 receptor [13]. Kadurin et  al. [14] compared the 
VAE and AAE as a molecular generation model in terms 
of the reconstruction error and variability of the output 
molecular fingerprints. In addition to those autoencoder-
based models, a generative model developed for natural 
language processing has also been used for molecular 
design [15–18]. Molecular structures can be expressed 
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with SMILES. Then, this model learns the probabil-
ity distribution of the next character of a given piece of 
SMILES. Yuan et  al. [16] designed potential inhibitors 
for a target protein and tested them in experiments. 
Based on the natural language processing model, Segler 
et al. [17] and Gupta et al. [18] applied transfer learning 
to molecular design for certain biological activities. This 
approach is especially useful when there is not enough 
data to train artificial neural networks in the normal way. 
Olivecrona et  al. [19], Guimaraes et  al. [20], and Jaques 
et al. [21] proposed a reinforcement learning method to 
modify a pre-trained molecular generative model so as to 
impose several properties in molecules generated from 
the generative model.

We note that various molecular properties are cor-
related with each other. Therefore, adjusting one target 
property by structural modifications may cause an unde-
sired change in other properties. To avoid this problem 
in rational molecular design, one has to control several 
properties at the same time. Here, we propose a molec-
ular generative model using the conditional variational 
autoencoder (CVAE) [22] suitable for multivariable con-
trol. In addition to the advantages of using the latent 
space, our method can incorporate the information of 
molecular properties in the encoding process and manip-
ulate them in the decoding process.

As a proof of concept, we used the CVAE to generate 
drug-like molecules satisfying five target properties at the 
same time: molecular weight (MW), partition coefficient 
(LogP), number of hydrogen bond donor (HBD), number 
of hydrogen acceptor (HBA), and topological polar sur-
face area (TPSA). We were able to produce a number of 
molecules with the specific values of the five target prop-
erties within a given range. It was also possible to adjust 
a single target property without changing the others. Fur-
thermore, we were able to generate molecules with prop-
erties beyond the range of the database.

Method
Conditional variational autoencoder (CVAE)
We selected the CVAE as a molecular generator. It is one 
of the most popular generative models which generates 
objects similar to but not identical to a given dataset. In 
particular, it is distinguished from the VAE in that it can 
impose certain conditions in the encoding and decoding 
processes. To elucidate the difference between VAE and 
CVAE, we compared their objective functions with one 
another. The objective function of the VAE is given by

where E denotes an expectation value, P and Q are prob-
ability distributions, DKL is the Kullback-Leibler diver-
gence, and X and z indicate the data and latent spaces, 

E[logP(X |z)] − DKL[Q(z|X) � P(z)],

respectively. The first and second terms are often called 
the reconstruction error and the KL term, respectively. In 
an autoencoder, Q(z|X) and P(X|z) are approximated by 
an encoder and a decoder, respectively. A key difference 
of the CVAE from the VAE is to embed the conditional 
information in the objective function of the VAE, leading 
to the revised objective function as follow:

where c denotes a condition vector. The condition vector 
c is directly involved in the encoding and decoding pro-
cesses. In our model, the molecular properties we want 
to control were represented as the condition vector. As a 
result, the CVAE can generate molecules with the target 
properties imposed by the condition vector.

Incorporating molecular properties in the VAE to 
generate molecules with desirable properties are also 
possible through a two-step model proposed by Gómez-
Bombarelli et  al. In this method,  the VAE is trained 
jointly with an additional neural network for property 
prediction. Subsequently, a Gaussian process model cre-
ates a mapping from the resulting latent space to the 
associated molecular properties. Finally, property opti-
mization in the resulting latent space is performed by a 
gradient descent optimization method.

The key difference of our CVAE model from the jointly 
trained VAE model is that the molecular properties are 
directly incorporated into both the encoder and decoder. 
The resulting latent vector is composed of two parts: the 
first part is for the target molecular properties, while the 
second part involves the molecular structures and the 
other properties. Therefore, the desired molecular prop-
erties can be embedded in a target molecular structure 
simply by setting a condition vector. In other words, 
one can control the structure and the properties inde-
pendently except for some cases in which the proper-
ties are strongly coupled to a molecular scaffold. This is 
particularly useful to incorporate a certain property in a 
given molecule just with a marginal structure modifica-
tion. After all, the CVAE is less sensitive to the continu-
ity and smoothness of the latent space, because it does 
not require the derivative of the latent space with respect 
to the latent vector of the molecular structure. Another 
technical difference of the CVAE from the jointly trained 
VAE is that it does not need any further optimization 
process, which is inevitable in the jointly trained VAE for 
each different property value.

Molecular representation and model construction
We represented molecules with SMILES codes to take 
advantage of state-of-the-art deep learning techniques 
that are specialized in dealing with texts and sequences. 
Each SMILES code was canonicalized for a unique 

E[logP(X |z, c)] − DKL[Q(z|X , c) � P(z|c)],
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molecular representation. One ‘E’ was padded on the 
end of the SMILES code to indicate the end of the string. 
Subsequently, each character including ‘E’ is represented 
with a one-hot vector, resulting in an input matrix. Each 
one-hot vector of the input matrix is transformed to an 
embedding vector with the size of 300, and then the input 
matrix is concatenated with a predefined condition vec-
tor. The first, second, and last entries of the condition 
vector are filled with information consisting of the MW, 
LogP, and TPSA, respectively, while the remaining two 
entries are labeled by the HBD and HBA as shown in 
Fig. 1. The values of MW, logP, and TPSA are normalized 
from -1.0 to 1.0. HBD and HBA are expressed with a one-
hot vector, because they are integer numbers.

The resulting matrix is subjected to the encoder of the 
CVAE to generate a latent vector. We adopted the so-
called recurrent neural network (RNN) with an LSTM 
cell for both the encoder and decoder of the CVAE [23]. 
They are made of a 3-layer RNN with 500 hidden nodes 
on each layer. A softmax layer was used in each output of 
the decoder cell, and a cross entropy was used as the cost 
function of the reconstruction error. The latent vector 
concatenated with the condition vector becomes an input 
of the decoder at each time step of the RNN cell. Finally, 
the output vector of each decoder cell is transformed to 
a vector whose size is equal to that of the one-hot vec-
tor of the input matrix. The softmax activation function 
is applied to each transformed vector. The encoder and 
decoder are optimized to minimize the cost function of 
the CVAE. To generate a molecule with the target prop-
erties imposed by the condition vector, the cell of the 
RNN decoder are unrolled for 120 times. All characters 
before ‘E’ were taken in the stochastic write-out process, 
and if ‘E’ did not appear in the 120 characters, the result 
was considered as invalid. Each output vector of the 
decoder cell represents the probability distribution of the 
SMILES code characters and ‘E’. Finally, the output vector 
is converted to a SMILES code. It should be noted that 

even a single wrong character in the resulting SMILES 
code gives rise to an invalid molecule. To increase the 
rate of valid SMILES codes, we used the stochastic write-
out method which samples each character of SMILES 
according to a probability distribution. As a result, a sin-
gle set of latent and condition vectors may give a number 
of different molecules. We performed 100 times the sto-
chastic write-out per one latent vector and took all valid 
molecules except duplicated ones for later analysis.

Dataset and hyperparameters
RDKit [24], an open source cheminformatics package, 
was used for checking out the validity of the generated 
SMILES codes and calculating the five target properties 
of the molecules.

The total dataset is made of molecules randomly 
selected from the ZINC dataset [25]. Generally, with 
more data, the performance becomes better. Typical deep 
learning models need hundreds of thousands of data 
points. We checked out the convergence of the results 
with respect to the size of the data in our case. The use of 
5,000,000 ZINC molecules did not increase both the vali-
dation and the success rates of generating molecules with 
the target properties compared to those from 500,000 
ZINC molecules. Thus, we adopted the dataset of the 
500,000 molecules, 80% of which were used for train-
ing, and the rest was used for the test. The distribution 
of the five target properties in the total dataset is shown 
in Fig.  2. The learning rate was set to 0.0001 and expo-
nentially decayed at a rate of 0.97. The model was trained 
until converged. In the performance evaluation of the 
CVAE, if each target property of the generated molecules 
was different from the given target value with the 10% 

Fig. 1  Schematic representation of conditional variational 
autoencoder for molecular design

Fig. 2  Distribution of molecular weight, LogP, HBD, HBA, and TPSA in 
the total dataset (500,000)
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error range of the average value of the total dataset, we 
regarded those molecules as successful. The source code 
is available from GitHub (https​://githu​b.com/jaech​angli​
m/CVAE). 

Result
As the first application, we demonstrated that the CVAE 
method can generate molecules with specific values 
for the five target properties by applying it to Aspirin 
and Tamiflu. The values of the (MW, LogP, HBD, HBA, 
and TPSA) for Aspirin and Tamiflu are (180.04, 1.31, 1, 
3, and 63.6) and (312.2, 1.285, 2, 5, and 90.64), respec-
tively. The condition vector of each molecule was made 
by those values. Latent vectors to be concatenated with 
the condition vector were sampled by adding a Gauss-
ian type noise to the latent vector of a molecule selected 
randomly in the training set. Figure 3a, b show nine mol-
ecules produced with the condition vector of Aspirin and 
Tamiflu, respectively. All of them had similar properties 
to those of Aspirin and Tamiflu within an error range of 
10%, respectively. However, the molecular structures in 
Fig. 3 are considerably different from those of the original 
molecules because of the latent vectors chosen randomly 
from the training set.

The second application was to generate molecules 
similar in both properties and structure to the mother 
molecule by sampling latent vectors around that of the 
mother. Figure 4 shows the molecules generated in such 
a way from Aspirin. They look very similar to Aspirin and 
also have similar properties with those of Aspirin within 
an error range of 10%. 

As the third case study, we tested whether the CVAE 
method can change only a single property without chang-
ing the others. The condition vector was constructed 
with the MW, HBD, HBA, and TPSA of Tamiflu, and we 
varied LogP from 0.0 to 3.0. Latent vectors were sampled 
around that of Tamiflu. Figure 5 shows the result. All the 
molecules have similar properties to the original ones 
except LogP as desired. The molecules from the top left 
to the bottom right have gradually increasing LogP val-
ues from − 0.23 to 3.55. In some cases, however, such a 
delicate control of individual properties was not possi-
ble. For instance, we could not generate molecules with a 
LogP beyond 4.0. It is probably because LogP is not com-
pletly independent from the other four properties, so a 
substantial change in LogP entails a change in the other 
properties. Moreover, it was difficult to adjust the MW 
and TPSA independently because the MW and TPSA are 
highly correlated with one another.

Finally, we investigated the possibility to change a 
specific molecular property beyond the range of a train-
ing set. Latent vectors were sampled around molecules 
in the training set. In the condition vector, the four 

Fig. 3  Molecules generated by the CVAE with the condition vector 
made of the five target properties of a Aspirin and b Tamiflu

Fig. 4  Molecules generated by the CVAE with the condition vector 
made of the five target properties of Aspirin and the latent vector 
slightly modified from that of Aspirin

https://github.com/jaechanglim/CVAE
https://github.com/jaechanglim/CVAE
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properties were given randomly except for a single tar-
get property. The target property was set to 10% larger 
than its maximum value in the training set (e.g., 5.5 for 

LogP and 165 for TPSA). Figure 6 shows the resulting 
molecules. Indeed, it was able to generate molecules 
with a LogP larger than 5.5 (Fig. 6a) and molecules with 

Fig. 5  Molecules generated by the CVAE with the condition vector made of MW, HBD, HBA, and TPSA of Tamiflu and continuously changing LogP
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a TPSA larger than 165 (Fig.  6b). We compared the 
distribution of the LogP and TPSA for 1000 randomly 
selected molecules from the training set and 1000 gen-
erated molecules with property values outside of the 
range of the dataset (toward larger values). Figure  7 
shows that the distribution of the target properties are 
shifted to larger values, leading to an increased ratio of 
molecules with property values outside of the range. 
The rate of valid molecules is relatively low compared 
to the case of generating molecules with property val-
ues in the range of the dataset.  

We analyzed the latent space constructed by the 
CVAE. Two principle axes were extracted by principal 

component analysis. Figure  8 shows the two compo-
nents of the latent vectors of 1000 randomly selected 
molecules from the test set with their MW,  LogP and 
TPSA values. Molecules with similar properties are 
likely located around a same region of the latent space 
in the jointly trained VAE. In our CVAE model, the 
latent vector is comprised of two parts as explained in 
the method section. Therefore, a specific region in the 
latent space does not necessarily have a correlation with 
the target molecular properties which are controlled by 
the condition vector. This is good because the separa-
tion of information enables a more flexible control of 
the molecular structure and properties when generat-
ing new molecules.

Apart from the successful applications of the CVAE 
method, it has a drawback that should be resolved. The 
success rate of generating desirable molecules is very 
low. We tested how many attempts were  required to 
generate 100 molecules with the five desired properties 
and how many valid molecules were  generated during 
those attempts. We also compared when the condition 
vector is set randomly or to target properties to show 
the effect of the condition vector for generating desir-
able molecules.

Table 1 summarizes the number of attempts for gen-
erating 100 molecules whose five properties are same 
as those of aspirin, Tamiflu, Lenalidomide, Rivaroxa-
ban, and Pregabalin, respectively. Lenalidomide, Rivar-
oxaban, and Pregabalin are top selling small molecule 
drugs in 2016 [26]. In Table  1, ‘condition’ means that 
the condition vector was set as the five properties of 
the target molecules, whereas ‘random’ means that the 
condition vector was randomly made. The number of 
valid molecules in Table 1 indicates the number of valid 
molecules generated during the attempts to create mol-
ecules with the five desired properties. For example, 
100 aspirin-like molecules and 32,567 valid moleculces 
were obtained from 28,840 attempts to create aspirin-
like molecules. The reason why the number of valid 
molecules is larger than the number of attempts is that 
the stochastic write-out process is performed 100 times 
for each attempt. All successful molecules (100 per 
each target molecule) are reported in the Supporting 
Information. It should be noted that the success rate 
dramatically dropped when the condition vector is ran-
domly set. It clearly manifests that the successful mol-
ecules generated by the CVAE in the example studies 
were not the result of many random trials.

We further analyzed the performance of the CVAE by 
investigating the change in the success rate and the num-
ber of valid molecules according to latent vector sam-
pling methods. We employed three different sampling 
methods: random, around the latent vectors of known 

Fig. 6  a Molecules with LogP larger than 5.5. b Molecules with TPSA 
larger than 165
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molecules, and around the latent vectors of target mol-
ecules. For all the sampling methods, the condition vec-
tor was constructed using the five properties of the target 
molecules. The generation process was continued until 

100 molecules with the five target properties were suc-
cessfully created from a single target molecule, and it was 
repeated for 100 different target molecules selected ran-
domly from the ZINC dataset. Table 2 shows the average 

Fig. 7  Distribution of a LogP and b TPSA for 1000 randomly selected molecules in training set and 1000 generated molecules with LogP and TPSA 
outside of the range of the dataset, respectively

Table 1  Numbers of  attempts and  valid molecules for  generating 100 molecules whose five properties are the  same 
with those of Aspirin, Tamiflu, Lenalidomide, Rivaroxaban, and Pregabalin

Condition Random

Attempts Number of valid 
molecules

Success rate (100/
attempts, %)

Attempts Number of valid 
molecules

Success rate 
(100/attempts, 
%)

Aspirin 28,840 32,567 0.34 758,199 711,660 0.014

Tamiflu 15,960 34,696 0.62 798,183 741,960 0.013

Lenalidomide 50,200 89,230 0.19 865,695 822,060 0.012

Rivaroxaban 92,620 47,574 0.11 866,205 817,800 0.012

Pregabalin 77,680 84,371 0.13 782,010 723,360 0.014

Fig. 8  The latent space of 1000 randomly selected molecules with MW, LogP and TPSA values
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values for the success rate and the number of valid mol-
ecules over the 100 target molecules. It was unexpected 
that sampling latent vectors around a target molecule 
was the most ineffective in terms of the success rate and 
valid molecules because of the high rate of duplicated 
molecules. In this case, the structure of the generated 
molecules was very similar to that of the target mole-
cule  as shown in Fig.  4. Sampling latent vectors around 
those of known molecules performed best. Because the 
known molecules were randomly selected from the ZINC 
set, their structures and properties would be consider-
ably different from those of a target molecule. Nonethe-
less, we were able to generate molecules with the desired 
properties from those latent vectors with a relatively high 
success rate. It manifests that the condition vector appro-
priately modified the molecular structures to have the 
target properties. Finally, it was also possible to generate 
desirable molecules from completely random latent vec-
tors but with a low success rate.

We suspect that at some part the overall low success 
rates regardless of the latent vector sampling methods are 
due to the strong correlation between the five target prop-
erties. In addition, it is known that the discrete nature of 
SMILES causes a high rate of invalid molecules in the 
decoding process from latent vectors to molecules [27]. 
The stochastic write-out method circumvents this prob-
lem, but more fundamental solutions should be devised. 
More severely, SMILES does not have the 3D conforma-
tional information of molecular structures. Therefore, it 
must have limitations in applications in which confor-
mational effects are critical. Molecular graph representa-
tion incorporating conformational information can be a 
promising alternative. Encoding molecular graphs seems 
to be straightforward, but decoding from a latent space to 
molecular graphs is still an open problem. Recently, sig-
nificant progress along this line has been made [28–30]. 
Such a better molecular representation may also improve 
the success rate of molecular generation. We expect that 
the success rate may be further improved by using the 
grammar variational autoencoder [27] and the reinforce-
ment learning [19, 20].

Conclusion
We proposed a new molecular design strategy based on 
the conditional variational autoencoder. Instead of high-
throughput virtual screening, our method as one of the 
deep learning-based generative models directly produces 
molecules with desirable target properties. In particu-
lar, its strength is controlling multiple target properties 
simultaneously by imposing them on a condition vector. 
We demonstrated that it was possible to generate drug-
like molecules with specific values for the five target 
properties (MW, LogP, HBD, HBA, and TPSA) within 
an error range of 10%. In addition, we were able to selec-
tively control LogP without changing the other proper-
ties and to increase a specific property beyond the range 
of the training set. Thus, this new method has attractive 
applicability for efficient molecular design.
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