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Abstract 

Epigenetic therapies are being investigated for the treatment of cancer, cognitive disorders, metabolic alterations and 
autoinmune diseases. Among the different epigenetic target families, protein lysine methyltransferases (PKMTs), are 
especially interesting because it is believed that their inhibition may be highly specific at the functional level. Despite 
its relevance, there are currently known inhibitors against only 10 out of the 50 SET-domain containing members of 
the PKMT family. Accordingly, the identification of chemical probes for the validation of the therapeutic impact of 
epigenetic modulation is key. Moreover, little is known about the mechanisms that dictate their substrate specific-
ity and ligand selectivity. Consequently, it is desirable to explore novel methods to characterize the pharmacologi-
cal similarity of PKMTs, going beyond classical phylogenetic relationships. Such characterization would enable the 
prediction of ligand off-target effects caused by lack of ligand selectivity and the repurposing of known compounds 
against alternative targets. This is particularly relevant in the case of orphan targets with unreported inhibitors. Here, 
we first perform a systematic study of binding modes of cofactor and substrate bound ligands with all available SET 
domain-containing PKMTs. Protein ligand interaction fingerprints were applied to identify conserved hot spots and 
contact-specific residues across subfamilies at each binding site; a relevant analysis for guiding the design of novel, 
selective compounds. Then, a recently described methodology (GPCR-CoINPocket) that incorporates ligand contact 
information into classical alignment-based comparisons was applied to the entire family of 50 SET-containing proteins 
to devise pharmacological similarities between them. The main advantage of this approach is that it is not restricted 
to proteins for which crystallographic data with bound ligands is available. The resulting family organization from the 
separate analysis of both sites (cofactor and substrate) was retrospectively and prospectively validated. Of note, three 
hits (inhibition > 50% at 10 µM) were identified for the orphan NSD1.

Keywords:  Pharmacological similarity, Epigenetics, Protein lysine methyltransferase, Deorphanization, 
Polypharmacology, Protein–ligand interaction fingerprint, SET domain, SAM-competitive, Substrate-competitive

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Protein lysine methyltransferases (PKMTs) are pro-
teins that methylate histone and nonhistone proteins by 
catalyzing the transfer of the methyl group of the cofac-
tor S-adenosyl-l-methionine (SAM or AdoMet) to a 
lysine residue of its corresponding substrate and yielding 
S-adenosyl-l-homocysteine (SAH or AdoHcy). PKMTs 

consist of two classes based on the structure of their cata-
lytic domain (fold): SET domain-containing (class V) and 
Rossmann-like alpha/beta PKMTs (class I methyltrans-
ferases, MTs) [1]. The only representative member of the 
latter is the DOT1L PKMT, which is therefore structur-
ally more related to protein arginine methyltransferases 
(PRMTs). There are 50 human SET domain-containing 
PKMTs (obsolete UniProt entry Q6ZW69, correspond-
ing to ASHH1, is not human) [2, 3]. This conserved 
SET domain consists of approximately 130 amino acids 
folded into a series of β strands and a structurally vari-
able insert that surround a canonical pseudoknotmotif at 
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the C-terminal segment of SET [4, 5]. This pseudoknot-
motif contains the highly conserved NHS/CxxPN motif, 
where x is any amino acid, and is in close proximity with 
the loop having the second highly conserved ELxF/YDY 
motif (the last Y being the catalytic residue). A third 
highly conserved motif is the GxG triplet at the N-ter-
minal region. The core SET domain forms part of the 
catalytic domain and is flanked by non-conserved set of 
regions like the i-SET and post-SET (cSET) domain that 
form the binding groove for the substrate peptide. The 
cofactor binds at a different pocket, also partially contrib-
uted by the post-SET domain and connected by a narrow 
hydrophobic binding channel to the substrate binding 
site. Depending on the PKMT subfamily, SET domains 
can also be flanked by Pre-SET, N-SET, MYND and CTD 
domains [5].

Clinical evidence supports the implications of these 
enzymes in cancer and many other human diseases, 
including inflammation, brain disorders, metabolic and 
cardiovascular diseases, what has attracted considerable 
interest in the development of selective small molecule 
inhibitors targeting PKMTs [3, 6]. A parallelism between 
the current status with PKMT inhibitor design and that 
for kinases 20  years ago was established [7], although 
here the main current challenge is that here some PKMT 
subfamilies remain unexplored. At sight of reported 
selectivity profiles for currently available chemical probes 
and advanced compounds in clinical trials, achieving 
selectivity within the PKMT family seems a trivial task 
compared to the situation in the field of kinases, although 
the high structural conservation of substrate and cofac-
tor binding sites challenges the design of selective inhibi-
tors. Nevertheless, selectivity profiling of advanced 
compounds is expensive and unaffordable for academic 
groups. Here, rationale approaches that incorporate 
information on ligand recognition and that go beyond 
traditional sequence-based relationships between tar-
gets might be helpful to guide the identification of sur-
rogate ligands for unexplored PKMTs and/or to prioritize 
targets for selectivity screening. In this sense, previous 
efforts with well-established therapeutic targets include 
ligand-based organization of GPCRs [8], protein–ligand 
interaction fingerprint-based clustering of kinase com-
plexes [9] and cavity analysis of serine proteases [10] and 
epigenetic inhibitors [11], to mention a few. Relationships 
between different epigenetic families beyond PKMTs 
were recently explored on the basis of the chemical struc-
tures of their reported inhibitors [12]. An inconvenient of 
these approaches is that they either rely on a vast number 
of available ligands or are restricted to proteins with crys-
tallographic structures (at least in the apo form for cavity 
analysis). A novel methodology, originally named GPCR-
CoINPocket, appeared in 2017 that transfers patterns of 

ligand–residue interactions to sequence-based compari-
sons of proteins to deorphanize class A GPCRs [13].

Here, we propose a novel pharmacological organi-
zation of PKMTs according to the experimental inter-
actions detected in both, the SAM and the substrate 
binding sites, by using an adaptation of the GPCR-CoIN-
Pocket methodology for the analysis of PKMTs (hereafter 
referred to as PKMT-CoINPocket). Unexpected similari-
ties between PKMTs emerged from the resulting family 
arrangements of the separate analysis of both sites that 
were retrospective and prospectively validated, leading 
to the identification of three hits targeting the orphan 
NSD1.

Methods
PDB compilation
Given the diversity of alternative names for methyl-
transferases [14], sequence names follow the HUGO 
Gene Nomenclature Committee standard gene names 
[15]. For each PKMT, we retrieved all the PDB entries 
(as for August 2017) [16]. Crystal structures lacking the 
methyltransferase (MT) domain or crucial residues in 
the cofactor or substrate binding cavities and apo struc-
tures were excluded. A total of 104 PDB entries, repre-
sentative of 23 PKMTs, were compiled (Additional file 1: 
Table S1). In 101 out of the 104 PDB entries, the cofactor 
binding site is occupied by either SAM (41), SAH (41), 
sinefungin inhibitor (a nucleoside derivative of SAM, 6), 
other nucleoside-based SAM-like inhibitors (11) or non-
nucleoside based small molecules (2). Of note, for the 
cofactor-binding site analysis we considered all crystals, 
independently of whether they had cofactors alone or 
also ligands in the substrate cavity. For the substrate bind-
ing cavity, 32 complexes are co-crystallized with small 
molecule substrate-competitive inhibitors which are 
representative of 7 different PKMTs: EHMT2, EHMT1, 
SETD7, KMT5A, KMT5B, SMYD2 and SMYD3. The 
phylogenetic tree in Fig. 1 represents the distribution of 
available crystals depending on bound ligands for all 50 
SET-containing PKMTs. The corresponding chemical 
structures of small molecule inhibitors and biochemical 
profiling are given in Additional file  1: Table  S2. Com-
pound MTF003, (PDB entry 5WCG), is a bisubstrate 
SMYD2 inhibitor, so it was contemplated in the analysis 
of both binding pockets (resulting in 33 complexes for 
the substrate cavity). There are four pairs of PDB entries 
that share the same chemical structure bound to EHMT1 
and EHMT2 (5TTG/5TTF; 5TUZ/5TUY; 5VSD/5VSC 
and 5VSF/5VSE). Moreover, for the pair 5TTG/5TTF 
structures, the X-ray resolved ligand structure does not 
match the original structures and differs between them, 
so the number of structurally different substrate-compet-
itive ligands is 30. In any case, the 33 PDB entries were 
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kept for protein–ligand interaction analysis of the sub-
strate binding site. Most complexes correspond to human 
PKMTs, with the exception of 5 (mus musculus) and 1 
(Homo sapiens Anolis carolinensis) complexes. With the 
exception of PRDM9 (86.8%), the remaining PKMTs have 
> 90% sequence identity with its human homolog (Addi-
tional file 1: Table S1). As PRDM9 crystal structure is the 
only representative crystal among PRDMs (Fig. 1), it was 
kept for analysis.

PDB preparation
Downloaded PDBs were manually processed with MOE 
2016.0801 to correct relevant residues with missing 
atoms, missing residues in small gaps and wrong ligand 
connectivity. Irrelevant ligands and waters were removed. 
Ligands were protonated at pH = 7. Only one chain per 
PDB entry was kept.

Alignment
The performance of protein–ligand interaction finger-
prints and alignment-based recognition of pharmaco-
logical similarities mostly relies on the quality of the 
alignment that captures similarities in the binding site 

of the analyzed ligands. Structural superposition of the 
104 PDB entries based on a full length global sequence 
alignment downloaded from ChromoHub database 
[17, 18] did not reflect the similarities and relation-
ships at the cofactor binding site (Additional file 1: Fig-
ure S1) [5, 19]. Thus, the ClustalW alignment of the MT 
domain (alone) of PKTMs at the ChromoHub database 
was finally chosen [17, 18]. This alignment was manu-
ally refined in MOE to include some single missing resi-
dues at the end of the MT domain that matched residues 
for other MTs present in the alignment or small obvi-
ous misaligned gaps (Additional file  2). Then, each of 
the 104 PDB entries were aligned and superposed with 
MOE against the sequence alignment. Here, the degree 
of overlap between SAM/SAH/SAM-competitive inhibi-
tors and peptide substrates (Additional file 1: Figures S2 
and S3) strongly supports the goodness of the alignment: 
mean RMSD among all SAH molecules of 0.26 ± 0.28 Å, 
taking SAH conformation in EHMT2 PDB entry 2O8J as 
reference, and of 0.30 ± 0.30 Å for the SAM conforma-
tions compared to that of SAM in SUV39H2 PDB entry 
in 2R3A. Also, the RMSD of superposition between the 
101 structures complexed with SAM/SAH and analogues 

Fig. 1  Phylogenetic tree of 50 SET domain-containing PKMTs with circles indicating co-crystallized ligands
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is low, especially for gapless residues in the alignment 
(< 2 Å, Additional file  1: Figure S4). Residue UID num-
bers were transformed into position alignment numbers. 
Additional file  1: Tables S3, S4 have the corresponding 
translation for relevant PKMTs discussed below.

Protein ligand interaction fingerprints (PLIF)
Protein ligand interaction fingerprints (PLIF), as imple-
mented in MOE 2016.0801 [20] were generated for each 
complex, using default settings of minimal and maximal 
contact energies. Two different analyses were run for 
each binding pocket (101 cofactor bound complexes for 
23 PKMTs and 33 substrate bound complexes covering 
7 PKMTs). For analysis of the interactions, we counted 
the number of PLIF-detected interactions that occur 
according to its type of interaction: hydrogen bond donor 
(HBD), hydrogen bond acceptor (HBA), ionic, surface 
contacts and arene attraction (these two last correspond-
ing to hydrophobic interactions). For HBD, HBA and 
ionic interactions, if the ligand establishes multiple inter-
actions with a given residue, the interaction was counted 
only once and no matter if the contact is established with 
the side chain or the backbone of the protein.

PLIF clustering
For each set of complexes, we carried out an all-against-
all comparison by calculating the pairwise Tanimoto 
coefficient between any two PLIF values. The R software 
[21] was used to cluster and draw the hierarchical tree 
using the average linkage clustering method (function 
hclust) and the PLIF similarity (previous conversion to 
distance).

FCFP_4‑based ligand similarity
The Tanimoto pairwise similarity for the 30 substrate-
competitive inhibitors in Additional file 1: Table S2 was 
calculated using FCFP-4 [22] as implemented in Pipeline 
Pilot [23].

Implementation of PKMT–CoINPocket
A workflow similar to that described by Ngo et  al. [13] 
for determining GPCR-CoINPocket score was followed 
that consists of the following steps: (1) Determination 
of ligand contact-strength profiles as calculated with 
BaSiLiCo [24–26] and (2) Sequence-based compari-
son of PKMT-binding sites using the calculated ligand 
contact-strength profiles. For the first part, ICM binary 
files prepared with ICM software [27, 28] were inputted 
to BaSiLico. Given a ligand-protein complex, for each 
pair or non-hydrogen ligand and protein atoms sepa-
rated by interatomic distance d, its contact strength is a 
function of interatomic distance and distributed within 
range of 0–1, with linear decrease from 3.23 to 4.63  Å. 

If d > 4.63 Å, the two atoms are not considered to be in 
contact. In the original paper describing GPCR–CoIN-
Pocket methodology [13], only side chain atom contacts 
were considered in the final consensus fingerprint. Here, 
because of relevant interactions between backbone atoms 
of PKMTs with ligands (see “Results and discussion”), the 
total contact strength T was considered. For a particular 
PKMT-binding site, if different complexes were avail-
able, all separate complexes were aggregated into a single 
ICM file and BaSiLiCo was run with ensemble mode to 
avoid redundancy in the contact patterns. Extended TSV 
files with information on the contact fingerprint were 
exported for each PKMT-binding site complex (here-
after referred to as the projected binding site positional 
fingerprint vector, following original GPCR–CoINPocket 
nomenclature). Then, given a sequence alignment of pro-
teins, a vector or pairwise per-residue similarities was 
calculated as:

where i and j are amino acids at a given position of the 
alignment between two sequences and M is the Gonnet 
[29] residue comparison matrix. This calculation was 
obtained with MOE using a customized SVL script that 
writes a CSV file that stores, per each residue in the ref-
erence sequence, its non-normalized Gonnet coefficient 
against every other sequence in the alignment. These 
CSV files were processed with Pipeline Pilot to carry out 
PKMT–CoINPocket calculation. Here, the per-residue 
Gonnet similarities (Sij) between a couple of sequences 
seq1 and seq2 in the alignment were multiplied, element-
wise by the projected binding site positional fingerprint 
vector obtained for each of the proteins for which contact 
strengths were calculated (i.e. proteins for which there is 
crystallographic information available of protein-ligand 
complexes). Then, GonnetPFP_L, the similarity between 
seq1 and seq2 for a given projected binding site positional 
fingerprint vector of protein L was calculated as the sum 
of this vector over all residues. Note that due to the dif-
ferent lengths of the PKMTs (and alignment gaps), not all 
contact residues could be propagated. Then, GonnetPFP_L 
values were standardized into Z-scores for each binding-
site fingerprint and the final profiled PKMT–CoINPocket 
score for a pair of proteins seq1 and seq2 in the align-
ment was calculated as the average of the Z-scores across 
the different binding profiles (23 and 7 for cofactor- and 
substrate-binding sites, respectively). Finally, to convert 
PKMT–CoINPocket scores to distances, the respective 
value was first normalized to be in the range of 0 to 1. A 
PKMT-CoINPocket score was calculated for each bind-
ing site. Due to the nature of the PKMT-CoINPocket 

Sij = Mij/

√

(Mij ×Mij)
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approach, distances are fully dependent on the set (pro-
teins or binding site) under study, and comparisons 
cannot be directly translated among different sets. For 
comparison purposes, the classical Gonnet similarity 
matrix was separately calculated for all residues within 
4.5 Å of each set of ligands (co-factor and substrate sites, 
separately).

PKMT–CoINPocket clustering and trees
The matrix of normalized PKMT–CoINPocket scores for 
all pairwise comparisons of sequences in the alignment 
was converted into distances (1-corresponding similarity 
score) and used to cluster PKMTs using the unweighted 
pair group method with arithmetic mean (UPGMA) 
algorithm [30], as implement in R [21]. Dendrograms 
obtained from clustering were saved as Newick files and 
trees were obtained with iTOL [31].

CheMBL data set compilation for retrospective validation
ChEMBL [32, 33] database was queried (as in Septem-
ber 2017) to retrieve ligands with inhibitory activity 
against any of the different PKMTs in Additional file  1: 
Table  S1. Only data for human proteins and activities 
given as IC50, inhibition, Kd or Ki were retained. A total 
of 1712 data points were retrieved, associated to 908 dif-
ferent compounds. However, only for 43 out of the 908 
compounds, there is available data on more than one sin-
gle target. Allosteric compounds, compounds without a 
well-defined binding site (e.g. chaetocin and derivatives 
potentially binding to cysteine-rich regions) [34, 35], 
inactive compounds against all PKMTs and compounds 
already in Additional file  1: Table  S2 or their very close 
analogues with similar selectivity profiles were discarded. 
After this refining, only the substrate-competitive inhibi-
tor Cyproheptadine and the SAM-competitive EZH2 
inhibitor GSK343 remained. Lastly, in order to enlarge 
the data set, 5 additional inhibitors with selectivity pro-
files were rescued from literature [3]. The chemical struc-
tures and biochemical profiles of these 7 structures are 
given in Additional file 1: Table S5.

Inhibitory activity assays for prospective validation
The synthesis and biological activity of the three proprie-
tary compounds CM-272, CM-679 and CM-986 has been 
reported [36–39]. Chemical structures and IC50 values 
against EHMT2 (G9a) and DNMT1 are given in Fig. 12a. 
Inhibitory assays against SETD2, KMT2A, KMT5C, 
NSD1 and NSD2 were performed by Eurofins (https​://
www.eurof​ins.com/) with radioligand binding assays 
([3H] SAM and different substrates: nucleosome (SETD2, 
NSD1, KMT5C), core histone (NSD2) and histone H3 
full length (KMT2A) at 10 µM and 100 µM and tested in 
duplicates.

Results and discussion
This section is structured as follows. For each bind-
ing site (cofactor and substrate), an updated analysis of 
detected interactions of bound ligands is firstly discussed, 
with emphasis on novel (un)conserved interaction pat-
terns undisclosed in previous analysis because of the 
higher number of available crystal structures. Second, 
the results of the PKMT-CoINPocket approach are pre-
sented, to end up with the validation cases.

Cofactor binding site
Analysis of bound ligand interactions
A comprehensive study of the cofactor binding cavity 
(without ligands) of 10 SET PKMTs, 3 classical PRMTs 
and the non-SET PKMT DOT1L was done by Cam-
pagna-Slater et al. in 2011 using GRID maps [19]. Here, 
a network of six hydrogen bonds for the cofactor was 
established as a motif present in all studied SET PKMTs. 
Our analysis of explicit interactions for the 23 SET-
domain containing PKMTs reveals that most of the 1320 
residue-based contacts detected with PLIF correspond 
to hydrogen–bond interactions (86%), with a preference 
for the ligand being HBD (50.6%) versus HBA (35.4%). 
Hydrophobic interactions, quantified as the number of 
surface contacts and arene attraction, account for only 
11% of the interactions. These contacts are widely distrib-
uted across a set of 30 residues in the alignment (here-
after referred to as PLIF interacting residues, Fig. 2a and 
details in Additional file 1: Table S6).

As summarized for SAM in Fig. 2b, not all the men-
tioned six hydrogen bonds are 100% conserved in all 23 
SET PKMTs, especially with respect to the interaction 
of the amine group of the methionine, and more par-
ticularly with residue x at position 545 (GxG), which 
was detected in only 21% of the complexes and for 
10 out the 23 PKMTs. KTM5A complexed with SAM 
exemplifies well the conservation of this HB interac-
tion network as well as other hydrophobic interac-
tions (Fig.  3a). In contrast, the PRDM9-SAH complex 
exhibits fewer explicit interactions, with the residue at 
position 559 (Gly257) replacing HB contacts at 557, so 
basically only the HB interactions of the adenine ring 
with residues at 1362 and 1361 are conserved (Fig. 3c). 
Examples for six additional PKMT complexes, rep-
resentative of different patterns of interactions, are 
given in Additional file  1: Figure S5. From the view-
point of non-nucleoside competitive inhibitors design, 
the two structures of EZH2 complexed with pyridone 
inhibitors (Additional file 1: Table S2) suggest that tar-
geting the residue at position 557 of the GxG motif 
(Trp624 in EZH2) is more relevant than blocking the 

https://www.eurofins.com/
https://www.eurofins.com/
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hydrogen-bond network of the adenine ring of SAM/
SAH with residues NH (1361–1362) of the pseudoknot-
motif of the SET domain (Asn688 and His689 in EZH2) 
(see individual 2D maps of interactions for the bound 
ligands, Additional file  1: Figure S6). More interest-
ingly, our analysis of PLIF interacting residues reveals 
other highly conserved interactions between SAM/
SAH cofactors and analogues that might be relevant 
for the design of SAM competitive inhibitors. Specifi-
cally, we mean the role of the N1 and N3 atoms of the 
adenine ring and the hydroxyl groups of the ribose ring 
of SAM/SAH and analogues. In 14 PKMTs, a biden-
tate hydrogen bond interaction is established between 
(1) the N1 of the adenine ring and the backbone of 
non-sequence conserved residue at alignment posi-
tion 1619 of the C-terminal region and (2) the –NH2 
group of the adenine nucleotide and the conserved 
Cys at 1612 (side chain contact) (Fig.  3d for KMT5B). 
These 14 PKMTs (KMT5B, KMT5C, EHMT1, EHMT2, 
SETMAR, SUV39H2, ASH1L, SETD2, NSD1, NSD2, 
NSD3, KMT2A, KMT2C, KMT2D) are representative 
of different subfamilies in the phylogenetic tree (Fig. 1). 

For EZH2, only the contact at Cys at 1612 is observed 
(Fig.  3b). Thus, this N1 contact is non-exclusive of 
PRMTs [19], but also present in many SET domains, 
and not only as a potential interaction HB hot spot for 
SET domains [19], but as a real contact that might dif-
ficult the design of PKMT over PRMT selective SAM 
competitive inhibitors. Concerning the N3 atom of 
the adenine ring, it is mainly involved in hydropho-
bic contacts. However, KMT5B presents a unique fea-
ture: it is the only PKMT HB bounded to N3 through 
the side chain of Ser205 (residue alignment position 
549, Fig.  3d). Thus, in contrast with previous analysis, 
the potential HB hot spot around this N3 region is not 
restricted to PRMTs [19], but has been experimentally 
found for at least one PKMT. The hydroxyl groups of 
the ribose ring also establish key hydrogen bonds with 
many different residues. There are four possible pat-
terns: (1) PKMTs without a direct HB interaction (but 
possibly water mediated, as observed in specific PDB 
entries such as 2RFI of EHMT1) with these hydrox-
yls (SUV39H2, KMT2D, KMT2A, KMT2C, PRDM9 in 
Fig.  3c); (2) PKMTs with the hydroxyl group on the 3’ 

Fig. 2  a Percentage of cofactor and SAM-competitive inhibitors that interact with a given PLIF interacting residue according to interaction 
type. b Summary of detected HB interactions for SAM. Circles represent PLIF interacting residues: numbers correspond to residue alignment 
position (conserved residues are shown, if applicable) and (numbers) correspond to the number of different PKMTs for which this interaction was 
detected. Red, blue and orange colors are for backbone, side chain or both types of HB contacts, respectively. The network of six HBs described 
by Campagna-Slater et al. [19] is labeled with stars: (1) N7 of SAM as HBA with the highly conserved His (Cys in PRDM9) of the NHS/CxxPN motif 
(position 1362); (2) amine group of the adenine ring with this same residue; amine group of the methionine fragment acting as HBD (3) with the 
Asn (1361) of the NHS/CxxPN motif and (4) the x residue at position 557 of the conserved motif GxG and (5) the residue upstream of the GxG motif 
(545); (6) the carboxylate group of the methionine moiety acting as HBA with the x residue of the GxG motif (557)
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carbon of the ribose HBD (EHMT2, EHMT1, SETMAR, 
SETD7, NSD2, SETD6, SETD3, KMT5A in Fig. 3a); (3) 
or HBD with the hydroxyl group on the 4’ carbon of 
the ribose (KMT5B in Fig.  3d, KMT5C) and (4) HBD 
interaction at both hydroxyl groups (EZH2 in Fig.  3b, 
SETD2, ASH1L, NSD3, NSD1, SMYD3, SMYD2, 
SMYD1). Again, from the smaller data set of com-
plexes in the 2011 study, apparently this double inter-
action was exclusively predicted in SMYD structures, 

but current available complexes demonstrate a higher 
coverage for the different PKMTs subfamilies. Also, 
the PLIF interacting residue with these –OH groups is 
highly variable (Fig.  2b): despite some pattern conser-
vation like residues at alignment position 1117, 1119, 
1124 and 1130, there are residues that are particular to 
the SMYD subfamily (926, 928 and 1497) or KMT5B/
KMT5C (549 and 550, respectively). Moreover, con-
tacts can be established with either backbone or side 

Fig. 3  Mapping of PLIF interacting residues for 4 complexes of representative PKMTs complexed with either SAM or SAH. a KMT5A (PDB: 4IJ8; 
SAM); b EZH2 (PDB: 5HYN; SAH); c PRDM9 (PDB: 4C1Q; SAH) and d KMT5B (PDB: 5WBV; SAM). All 30 PLIF interacting residues for SAM-competitive 
inhibitors are shown, considering that the residue can be mapped in the alignment. Balls correspond to either backbone (red) or side chain (green) 
atoms establishing HB contacts or hydrophobic contacts (blue), respectively. Grey balls, marked at the Cα atom, correspond to PLIF interacting 
residues for which the corresponding ligand does not establish any interaction
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chain atoms of these residues. Finally, other frequent 
contacts include surface interactions with catalytic Tyr 
at 1473 (15 PKMTs) and HB interactions between the 
sulphur atom and/or the methyl group of SAM with 
1358 (22 PKMTs) (Fig. 2b).

In summary, the detailed analysis above demonstrates 
subtle differences in the interaction patterns of the 23 
PKMTs with SAM/SAH, despite their low RMSD of 
superposition, and, more importantly, highlights certain 
patterns of conservation of interactions across the dif-
ferent subfamilies. These semi-qualitative conclusions 
become apparent when comparing the heat maps of 
RMSD of superposition of SAM and SAH conformations 
(41 molecules in each case, Additional file 1: Figures S7 
and S9, respectively) with the pairwise PLIF-based simi-
larities between their corresponding complexes (sepa-
rately obtained, for SAM- and SAH-bound complexes in 
Additional file 1: Figures S8 and S10, respectively). While 
pairwise RMSD values are mostly < 0.5  Å, distances in 
interaction profiles range from 0 (same protein) to 1. 
These quantitative differences support the integration of 
information on protein-ligand contacts to the prediction 
of potential pharmacological neighbors. From the view-
point of selective ligand inhibitor design, these structural 
differences suggest that it is possible to achieve selectivity 

within the SAM binding pocket, as demonstrated for 
SAM-competitive inhibitors in Additional file 1: Table S2.

Prediction of pharmacological similarities 
with PKMT‑CoINPocket Model
Clustering PKMTs using PLIF fingerprints to devise simi-
larities among them is restricted to structurally solved 
proteins (< 50% of all SET-domain containing PKMTs; 
Additional file  1: Figure S11). Following the idea of 
GPCR-CoINPocket [13], the incorporation of informa-
tion on the interactions established between ligands 
and key (un)conserved residues provides an interesting 
approach to map pharmacological similarities between 
proteins. As PLIF contacts are measured in terms of 
presence/absence of interactions, we finally opted for 
incorporating contact strength information as calculated 
with BaSiLiCo in the original GPCR-CoINPocket publi-
cation [13]. This resulted in the identification of a ‘cloud’ 
of 59 residue positions (Fig. 4) around the NHS/CxxPN 
pseudoknotmotif for the 23 PKMTs with available crys-
tals. Despite differences in the number of interacting 
residues (59 for distance-based contacts with BaSiLiCo 
versus 30 for explicit hydrogen-bond/hydrophobic inter-
actions with PLIF), main hot spots discussed above (resi-
due alignment positions 545, 557, 1361, 1362, 1119, 1124, 

Fig. 4  BaSiLiCO ligand contact map of SAM-competitive inhibitors of 23 PKMTs. The area of the circles reflects the relative strength of the ligand 
contact and residue position in the alignment
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1130, 1473, 1612, 1619) are equally identified by both 
approaches (Figs. 2a and 4).

Retrospective validation
Most of the SET subfamilies were grouped together 
in the PKMT-CoINPocket similarity heat map con-
sidering SAM interactions (Fig.  5 and derived 

pharmacological tree in Fig.  6), with a few surprising 
differences such as the partition of the PRDM subfam-
ily into three different clusters or the higher remote 
cluster for SETDB1/SETDB2, far away from their 
sequence-based neighbors EHMT1/EHMT2 (Figs.  6 
versus 1). Other distant sequence-based relationships, 
as for example between EZH1/EZH2 and SETD3/

Fig. 5  Heat map representation of 50 SET PKMTs based on PKMT-CoINPocket similarity for the SAM binding site. Targets discussed in the text are 
highlighted
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SETD4/SETD6 emerged by applying PKMT-CoIN-
Pocket comparisons (Fig. 6). It remains to experimen-
tally validate this pharmacological relationship for any 
of the EZH2 inhibitors in Additional file  1: Tables S2 
or S5 (e.g. for UNC1999 or GSK343, chemical struc-
tures in Fig.  8) as, to our knowledge, assays against 
any of these last three targets are not currently out-
sourceable. Other sequence-based relationships such 
as the one between SETD2 and NSDs were also cap-
tured by PKMT-CoINPocket score: SETD2 > NSD3 
(0.90) > SETMAR (0.88) > NSD1 (0.87) > NSD2 (0.86), 
what can be retrospectively acknowledged according 
to the inhibitory profile of nucleoside-analogue inhibi-
tors of SETD2 in Additional file  1: Table  S2 (5LSS, 
5LSX, 5LSY, 5LSZ, 5LT6 and 5LT7). 

Substrate binding site
Analysis of bound ligand interactions
Compared to the SAM binding site, the number of PLIF 
detected interactions between the 33 substrate-competi-
tive inhibitors and the 7 PKMTs is much reduced at the 
substrate binding site, with a total of 265 residue-based 
contacts, distributed across a total of 24 PLIF interacting 
residues (Fig. 7a. and Additional file 1: Table S7).

As for the SAM-binding cavity, a preference for polar 
contacts over hydrophobic interactions is observed, high-
lighting the electronegative character of the substrate-
binding groove [40]. Of note, there is a preference for the 
ligand acting as HBD instead of HBA: 53.6 versus 10.6%. 
Hydrophobic interactions, quantified as the number of 
surface contacts and arene attraction sum up a total of 

Fig. 6  PKMT-CoINPocket organization of 50 PKMTs for the SAM-binding site. Targets discussed in the text are highlighted
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Fig. 7  a Percentage of substrate-competitive inhibitors that interact with a given PLIF interacting residue according to interaction type. b–h 
Mapping of PLIF interacting residues for each of the seven PKMTs. Red balls correspond to residues for which at least one interaction was detected 
for all ligands (in orange) of this protein and grey balls to any of the remaining 24 different PLIF interacting residues (if conserved for the given 
PKMT at the corresponding positioning of the alignment) and for which no interaction was detected for any of the ligands of this PKMT. Note that 
because of structural protein differences in the alignment not all PLIF interacting residues could be mapped onto each protein. For reference, SAH is 
shown in blue
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33.2% of the interactions (27.5 and 5.7%, respectively) 
and explicit ionic interactions contribute to only 2.6% of 
the contacts. Next, we inspected the degree of conser-
vation of PLIF interacting residues across the 7 PKMTs 
and which amino acids contribute to specific contacts. 

Figure  7b–h show the position of each PLIF interacting 
residue for each PKMT, with all its substrate-competitive 
inhibitors superposed (2D schematic representations for 
each separate inhibitor are in Additional file  1: Figure 
S12). As the average RMSD among all crystals of a given 

Fig. 8  Chemical structures of selected PKMT inhibitors discussed in the text. Inhibitory activity against their primary target(s) (in bold if 
co-crystallized with)
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PKMT is low (< 2.5 Å for Cα (mean of 0.9 Å) and < 2.7 Å 
(mean of 1.3 Å) for all atoms, Additional file 1: Table S8), 
a unique representative crystal structure per PKMT is 
shown in Fig.  7b–h. Chemical structures of representa-
tive inhibitors discussed below are given in Fig.  8, with 
their inhibitory activity against its primary target(s).

Refer to Additional file  1: Tables S2 and S5 for full 
selectivity profiling and PDB entries. Despite all ligands 
occupying the substrate lysine binding channel (< 4 Å to 
the catalytic tyrosine of the post-SET domain at 1473—
following position alignment numbering, see Additional 
file 1: Table S4 for a translation to the corresponding PDB 
numbering), they largely differ in the occupation of the 
remaining cavity of the peptide binding groove formed 
by post-SET and i-SET domains, emphasizing opportu-
nities for the design of selective substrate competitive 
PKMT inhibitors. Conserved contacts between EHMT2, 
EHMT1 and SETD7 are clearly apparent by visual inspec-
tion of Fig.  7b–d, despite chemical differences between 
EHMT2/EHMT1 inhibitors (all of them are quinazolines 
(e.g. BIX-01294 and MS012 in Fig. 8), with the exception 
of the spiro[cyclobutane-1,3’-indole]-2’-amine of PDB 
4NVQ against EHMT2 (A-366) and the 1,2,3,4-tetrahy-
droisoquinoline-6-sulfonamide-based SETD7 inhibitors 
such as R-PFI-2 in Fig.  8 (mean FCFP_4-similarity of 
0.13 ± 0.02 between all EHMT2/EHMT1 inhibitors and 
SETD7 inhibitors, Additional file  1: Figure S13). Oppo-
site, for the quinazoline compounds targeting KMT5A 
(e.g. MS453), which have a moderate chemical similarity 
with EHMT2/EHMT1 inhibitors (mean FCFP_4-simi-
larity of 0.48 ± 0.10), an alternative binding mode to that 
observed in EHMT2/EHMT1 was found (Fig. 7f ) [41], in 
which the inhibitors enter deeper into the lysine binding 
channel and most contacts with the i-SET domain are 
lost. For the phthalazine and 1H-pyrano[2,3-c]pyrazol-
6-one KMT5B inhibitors (e.g. A-196), only surface con-
tacts at residue at position 1256 (Trp264) are detected 
according to PLIF consensus (Fig.  7e). Besides interact-
ing with the i-SET domain, SMYD2 and SMYD3 inhibi-
tors occupy an additional cavity proximal to the α-helices 
at positions 831 (Thr105 and Ser101 for SMYD2 and 
SMYD3, respectively) and 972 (Lys145 and Lys140) of the 
alignment (Fig. 7g, h). Considering the range of alterna-
tive orientations of the ligands, only a few PLIF interact-
ing residues are common to several PKMTs (Fig.  7) so 
as to stand out as hot spots. One of them is residue at 
position 1124, at the loop connecting the helix and the 
β-sheets (EHMT2, EHMT1, KMT5A and SETD7) and 
the α-helix of the i-SET domain of SMYD2. Despite 
non-sequence conservation (Asp for EHMT2/EHMT1, 
Asn for SETD7, Cys for KMT5A/SMYD2, Additional 
file  1: Table  S4) and different secondary structure (e.g. 
SMYD2), it appears as a hot spot at the entrance of the 

lysine binding channel. A close residue at position 1130 
also establishes contacts with different PKMT inhibi-
tors: HBD, surface and HBA interactions with EHMT2, 
EHMT1, KMT5A, SMYD2 and SMYD3, respectively. 
Interestingly, this residue hot spot was also detected by 
Nguyen et al. when docking a library of fragments against 
six SET domain-containing PKMTs and its carbonyl 
group plays a role in increasing the nucleophilicity of 
SAM’s departing methyl group during catalysis [42]. The 
non-sequence conserved residue at position 1148 (L, T, 
Y, V or F) facing the catalytic Lys at 1473 and establish-
ing hydrogen bond interactions with the substrate [5, 40], 
is also hydrogen-bonded to different ligands of EHMT2/
EHMT1/SETD7 (HBD, 42%) and SMYD2/SMYD3 (HBA, 
15%), as well as by hydrophobic interactions (67%, for the 
five PKMTs mentioned above). Position 1151, at one β 
sheet of the i-SET domain, is another exploited residue 
by inhibitors of EHMT2/EHMT1/SMYD2 (via HBD) and 
SETD7/SMYD3/SMYD2 (via HBA). Finally, the catalytic 
Tyr at position 1473 is HBD targeted by EHMT2, SMYD3 
and SMYD2. When clustering these 33 complexes based 
on PLIF, the high distances among different PKMTs cor-
relate with the lack of binding mode agreement visually 
observed (Additional file 1: Figure S14).

Prediction of pharmacological similarities 
with PKMT‑CoINPocket Model
Here, the calculation of PKMT—substrate-competitive 
ligand BaSiLiCo contact strengths resulted in the iden-
tification of a ‘cloud’ of 75 residue positions that outline 
the i-SET, NHS/CxxPN pseudoknotmotif and the post-
SET domain (Fig. 9). Again, this cloud of 75 interacting 
residues detected by BaSiLiCo is much higher than the 24 
PLIF interacting residues because of differences in con-
tact definitions, although, again, main hot spots identi-
fied by both approaches and discussed above are mostly 
in common (e.g. 1124, 1130, 1148, 1151 and 1473).

As for the SAM binding site, PKMT-CoINPocket simi-
larity heat map (Fig.  10) and its derived tree (Fig.  11) 
arrange some SET-domain containing PKMTs outside of 
their subfamily, while most relationships are conserved 
(e.g. for the SMYD subfamily). For example, PRDM2 
and PRDM6 shift away from the other PRDMs and 
toward members of the Suvar3-9 subfamily (SUV39H2, 
SUV39H1, EHMT2 and EHMT1). Interestingly, all of 
them (except for PRDM6), share H3K9 as histone tar-
get. SETMAR groups with members of the SETD2 sub-
family (SETD2, NSDs and ASH1L), all of them having 
in common H3K36 as substrate. Analogously, for the 
case of SETDB2 regrouped with H3K9-targeting PRDMs 
MECOM and PRDM16. This does not mean that PKMT-
CoINPocket yields PKMT arrangement according to the 
histone substrate (Fig.  11), but simply suggests that the 
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new organization has sense from the view point of com-
mon substrates. Compared to the SAM binding site, 
the greater Z-score of the substrate binding site (3.54 
against 2.97, respectively in Figs.  5 and 10) emphasizes 
the greater diversity of this last pocket (as also observed 
when comparing the similarity matrix of both sites, Addi-
tional file  1: Figures  S15 and S16 for the co-factor and 
substrate sites, respectively).

Retrospective validation
In order to assess whether the PKMT-CoINPocket score 
reflects pharmacological relationships, the selectiv-
ity profile of substrate-competitive PKMT inhibitors in 
Additional file  1: Tables S2 and S5 was examined. Full 
profiling of most of these inhibitors is not publicly avail-
able and, if available, most of them are highly selective, 
targeting only one or at maximum two closely sequence 
related PKMTs in the low nanomolar range (e.g. EHMT1 
and EHMT2 or SMYD2 and SMYD3) and a few other 
targets in the low micromolar range (at maximum). 
Moreover, there are pairs of proteins for which truly 
selective inhibitors are available (inactive against one of 
the targets at high micromolar range) but that also share 
inhibitors able to bind to both proteins (despite selectiv-
ity higher than 3 log units). For example, among all low-
nanomolar SMYD2 inhibitors in Fig.  8 and Additional 

file 1: Table S2, A-893 and (S)-BAY-598 bind to SMYD3 
(at least in the low micromolar range) while others 
are highly selective for SMYD2 over SMYD3 (AZ-505, 
LLY-507, with IC50 against SMYD3 > 50 µM). With that 
in mind, we concentrated on experimentally detected 
non-selective profiles, understood as the ability of the 
ligand to bind even at low micromolar range. Leaving 
aside obvious relationships, some interesting predicted 
unsuspected neighbors in PKMT-CoINPocket organi-
zation such as EHMT1/EHMT2 and NSD2 (cluster in 
Fig.  10) correlate with the observed activities of BIX-
01294 and A-366 against EHMT1/EHMT2 (low nanomo-
lar) and NSD2 (micromolar). Another interesting pair, 
EHMT1/EHMT2 and SETD2 (with PKMT-CoINPocket 
similarity of 0.45) can be acknowledged by the activ-
ity of MS012 against both targets (EHMT1 IC50 = 7 nM 
and 40% inhibition of SETD2 at 10 µM). Finally, SETD7 
and EZH2 have a PKMT-CoINPocket similarity of 0.41 
(EZH2 ranked at position 5 for the most similar targets 
of SETD7 at the substrate binding site), in line with the 
activities of (R)-PFI-2 against SETD7 (IC50 = 2  nM) and 
EZH2 (~ 50% inhibition at 50 µM).

Prospective validation
We discovered novel 4-aminoquinoline inhibitors tar-
geting EHMT2 and DNMT1 at the low nanomolar 

Fig. 9  BaSiLiCO ligand contact map of substrate-competitive inhibitors of 7 PKMTs. The area of the circles reflects the relative strength of the ligand 
contact and residue position in the alignment
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range [36–39]. Because of their therapeutic relevance 
in cancer, we selected three of them (CM-272, CM-679 
and CM-986, Fig.  12a) with diverse selectivity profiles 
against their primary targets to be profiled against those 
SET-domain containing PKMTs with high PKMT-CoIN-
Pocket similarity scores for EHMT2: SETD2, KMT5C, 
KMT2A, NSD1 and NSD2 (Fig. 12b and Additional file 1: 
Table  S9). Unfortunately, assays for other PKMT-CoIN-
Pocket-similar targets to EHMT2 (PRDM2 and PRDM6) 

could not be outsourced and remain to be confirmed. For 
SETD2, the three compounds exhibited > 40% inhibition 
at 100 µM (initially, only CM-272 activity at 10 µM had 
been tested for SETD2, with negligible inhibition [36]). 
Particularly, CM-679 had the strongest effect (84% at 
100  µM). Although this concentration is not therapeu-
tically relevant, it provides a certain validation of the 
computational approach to find weak PKMT binders for 
closely pharmacologically related targets that might be 

Fig. 10  Heat map representation of 50 SET PKMTs based on PKMT-CoINPocket similarity for the substrate binding site
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useful as starting points for identifying potent chemical 
probes. For KMT5C and KMT2A, there is not a single 
pair in Additional file 1: Tables S2 and S5 supporting this 
selection, but only negative cases (e.g. MS0122, MS0124, 
UNC0224, A-366). For KMT2A, only CM-679 displays 
a weak inhibition of 48% at 100 µM. More interestingly, 
all three compounds bind at the low micromolar range 
to KMT5C. Although it is interesting because KMT5C 
substrate is H4K20 (different from the H3K9 substrate of 
EHMT2, the original target of these compounds); there 
are already nanomolar inhibitors available for KMT5C 
(e.g. A-196). This is not the case for NSD1, an oncopro-
tein overexpressed in numerous cancers such as acute 
myeloid leukemia [43] that remains orphan. All three 
compounds inhibit NSD1 higher than 50% at 10 µM and 
in a dose-response manner, especially CM-679. Interest-
ingly, very recently it was shown that the EHMT2 inhibi-
tor BIX-01294 does also inhibit NSD1 (IC50 = 112  µM) 

[44]. Taken altogether, apart from the validation of the 
PKMT-CoINPocket approach, these results open the 
door to the repurposing of EHMT2 inhibitors towards 
NSD1, at least to serve as starting points for potency 
optimization.

Conclusions
A detailed update of experimentally detected ligand inter-
actions with SET domain containing PKMTs at the SAM 
and substrate binding sites is discussed. For the SAM 
binding site, interactions of the N1 and N3 of the adenine 
ring and hydroxyl groups of the ribose of SAM/SAH 
evidence a higher similarity with PRMTs that initially 
expected [19]. This analysis also reveals interaction pat-
terns that are conserved across different subfamilies and 
that could be exploited to develop selective SAM com-
petitive inhibitors. While the analysis of substrate-bound 
inhibitors is restricted to only 7 PKMTs with ligands 

Fig. 11  PKMT-CoINPocket organization of 50 PKMTs for the substrate binding site. Known methylation sites for histone H3 and H4 tails are labeled 
[3] (*indicates that this information was directly taken from UniProt). Targets discussed in the text are highlighted
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Fig. 12  a Chemical structures and IC50 values against EHMT2 (G9a) and DNMT1 for proprietary compounds CM-272, CM-986 and CM-679. b 
Percentage of inhibition of compounds CM-272, CM-986 and CM-679 against selected targets similar to EHMT2
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occupying different sites of the cavity, some impor-
tant hot spots arise that are shared by different series of 
inhibitors. To our knowledge, this is the first study that 
applies protein ligand interaction fingerprints to the 
study of SET domain containing PKMTs. Interestingly 
PLIF approach captures changes in the interaction net-
work of SAM/SAH molecules with the different PKMTs, 
despite strong binding mode conservation, as evidenced 
by the low RMSD of superposition of the ligands. As the 
predictive power of this approach is restricted to pro-
teins for which a crystal structure is available, the novel 
GPCR-CoINPocket methodology was adapted for the 
entire family of SET domain containing proteins. For 
both sites, the novel organization retains sequence-based 
relationships, although some interesting unexpected 
similarities appeared that were confirmed experimen-
tally for a set of dual EHMT2 / DNMT1 inhibitors at the 
substrate binding site. It must be noted that during our 
initial selectivity profiling of CM-272 against 8 closely 
related PKMTs, only EHMT1 was identified [36]. Here, 
KMT5C and the orphan NSD1 were identified as alterna-
tive targets for this chemical series. This is especially rel-
evant for NSD1, as it requires deorphanization and these 
compounds could be used as starting points to develop 
chemical probes with enhanced potency and selectiv-
ity. For the retrospective study cases, it should be noted 
that because of the lack of massive ligand information, a 
comprehensive benchmarking study is still unaffordable. 
Three are the main disadvantages of this approach: it is 
very sensible to the alignment, water contacts were not 
considered and the presence of many inserts (gaps) in the 
alignment avoids translation of contact information to all 
the proteins. Moreover, in the current analysis the flex-
ibility of the proteins was not contemplated. In this sense, 
the incorporation of contact occupancies (and alternative 
explored contacts) resulting from the analysis of molecu-
lar dynamics trajectories could improve the approach. 
Finally, we think that this study provides a useful compi-
lation of available selectivity data for known inhibitors of 
PKMTs at both sites.
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