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Abstract 

Simplified Particle Input ConnEction Specification (SPICES) is a particle-based molecular structure representation 
derived from straightforward simplifications of the atom-based SMILES line notation. It aims at supporting tedious 
and error-prone molecular structure definitions for particle-based mesoscopic simulation techniques like Dissipative 
Particle Dynamics by allowing for an interplay of different molecular encoding levels that range from topological line 
notations and corresponding particle-graph visualizations to 3D structures with support of their spatial mapping into 
a simulation box. An open Java library for SPICES structure handling and mesoscopic simulation support in combina-
tion with an open Java Graphical User Interface viewer application for visual topological inspection of SPICES defini-
tions are provided.
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Background
A molecular simulation task comprises three successive 
steps: The definition of a simulation job with all neces-
sary input information (preparation step), the actual loop 
over discrete integration time steps to numerically solve 
the equations of motion (the actual simulation step) and 
the analysis of the simulation record with all calculated 
results (evaluation step). The first (preparation) step of 
this triad has to provide data structures that can be lev-
eraged by the algorithms of the second (simulation) step 
in an optimized manner to allow for a maximum perfor-
mance of their interplay. This is commonly achieved by 
definition of adequate sets of arrays that encode all nec-
essary molecular information like spatial positions or 
bonds of the interacting entities. The content of these 
arrays is usually provided by large tabular ASCII files that 
are often (at least partly) edited by hand. An example of 

these ASCII files may be found at [1] for 1,2-Dimyristoyl-
sn-glycero-3-phosphocholine (DMPC) phospholipid 
molecules of a bilayer-membrane simulation task where 
each line contains an interacting entity, its spatial x,y and 
z coordinates, line offsets to bonded entities and specific 
indices for additional force assignments. The manual 
creation of these machine-oriented contents is not only 
a tedious but an error-prone type of work: For all but the 
simplest molecular ensembles errors are likely to be gen-
erated that may spoil the whole simulation process. Thus 
there is a valid necessity to prevent mistakes by safe-
guarded operations and to reduce manual preparation 
overhead by adequate automation.

Cheminformatics aims at supporting efficient and 
errorless human–machine interfaces where adequate 
molecular structure representations (line notations, 
connection tables, XYZ tables or Z-matrices, frag-
ment codes or fingerprints, file formats like MOL file 
or PDB file) are at heart of the discipline [2]. The major-
ity of existing structure representations are atom-based 
descriptions that comprise characteristic properties and 
topological or spatial aspects concerning a molecule’s 
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atomic composition [2, 3] with additional approaches 
towards fragment-based molecular representations 
especially for polymers [4–8]. In order to support the 
preparation step of a molecular simulation task chem-
informatics methods allow for an effective interplay of 
different levels of molecular encoding that are constitu-
tive for a comfortable and safe human–machine inter-
face (see Fig. 1): The topological structural formula is a 
common way used by molecular scientists to represent 
a chemical compound (e.g. drawn by hand with a struc-
ture editor or manually selected from structure reposi-
tories). Alternatively the compound may be represented 
by a textual line notation—where the interplay between 
structural formula and line notation may be realized by 
mutual conversion methods like an adequate structure 
diagram layout. The following transition from topologi-
cal representations to 3D structures allows for the final 
mapping to their spatial positions within a simulation 
box which completes the preparation step. All prepared 
information may then be stored in form of the tabular 

ASCII files sketched above as an input for the actual 
simulation step.

In order to contribute to the realization of a molecular 
fragment cheminformatics roadmap [9] this work tries 
to alleviate molecular structure handling and encod-
ing for particle-based mesoscopic simulation techniques 
like Dissipative Particle Dynamics (DPD) [10–14]: These 
techniques aim at describing supramolecular phenomena 
at the nanometer (length) and microsecond (time) scale 
for large interacting physical ensembles representing mil-
lions of atoms. DPD particles in particular may be identi-
fied with distinct small molecules of molar mass in the 
order of 100 Da where larger molecules are composed of 
adequate “molecular fragment” particles that are bonded 
by harmonic springs to mimic covalent connectivities 
and spatial 3D conformations [9, 14–20]. Since no unique 
molecular fragmentation scheme exists for the vari-
ous mesoscopic simulation approaches there is nothing 
like a universal particle set. An adequate decomposition 
of a chemical compound into appropriate “molecular 

Fig. 1  Interplay between different encoding levels of molecular structures for a preparation step of a molecular simulation task (with examples of 
this work, compare Figs. 2, 4 and 5). a Structural formula of a DMPC phospholipid. b SPICES line notation of the particle-based topological DMPC 
structure with its corresponding structure diagram layout/particle graph and illustration of the particle bonds. c Conversion of the topological 
particle structure to a compressed 3D tube geometry plus spatial mapping into an oriented bilayer compartment of the simulation box
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fragment” particles is a kind of artisan craftwork which 
is guided by experience, empirical rules and field of appli-
cation. Figure  2 demonstrates a possible fragmentation 
for a DMPC phospholipid that successfully preserves its 
amphiphilic characteristics [20].

Key part of this work is a set of methods operating 
on an intuitive line notation for particle-decomposed 
molecular structures denoted SPICES (Simplified Par-
ticle Input ConnEction Specification). The SPICES 
design is derived from straightforward simplifications 
of the well-established SMILES representation for 
atom-based molecular connectivity [21–23]. The set 
of SPICES related methods supports the interplay of 

structural encoding levels (compare Fig.  1) as well as 
structure-based calculations for mesoscopic simula-
tions (length and time scales, simulation box size, com-
pound concentrations etc.): It allows for parsing and 
(graphically) analyzing the line notations, topological 
calculations (e.g. particle frequencies, particle neigh-
bors or particle paths) as well as the generation of cor-
responding 3D particle structures with support of their 
spatial mapping into the simulation box and the final 
output of tabular ASCII files with molecular informa-
tion for the following simulation step (the construction 
of the tabular ASCII file at [1] was in fact supported by 
the SPICES related code of this work).

Fig. 2  Decomposition of the DMPC phospholipid into “molecular fragment” particles [20] and illustration of the resulting bonded particles (upper 
left) with corresponding SPICES line notation (upper right): The SpicesViewer GUI generated visual particle graph surrounds the “molecular fragment” 
particle identification
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Concept, feature overview and implementation 
details
The SPICES implementation extends the fragment 
structure representation proposal in [9]. The syntax 
rules for a correct SPICES line notation together with 
some helpful comments are outlined in the appendix. 
These rules allow arbitrary topological particle con-
nections with branches and ring closures but do not 
comprise attributes like electric charges or chiral cent-
ers since these are intrinsic particle properties (i.e. dif-
ferently charged states or different enantiomers of a 
“molecular fragment” particle have to be coded with 
different particles where each particle has a specific 
charge and a specific stereochemistry). Particles may 
possess a “backbone” label which may be utilized to 
assign specific particle pair forces e.g. for spatial 3D 
structure constraints of ring structures (see Fig. 3), the 
tail stiffness of surfactants and lipids or the backbone 
conformation of macromolecules like proteins. This 
kind of labeling could be performed in an automated 

manner by attaching a tagging label to every particle 
(which in fact was our first approach) but according to 
our findings the user control of the “backbone” label 
distribution within a molecule alleviated possible man-
ual force assignments as well as the interplay between 
the textual line notation and the corresponding visual 
particle graph. In addition the concrete force assign-
ments are chosen to be not a part of the line notation 
itself due to their intrinsic differences (from simple 
springs to e.g. complicated polygonal force chains) and 
possible automated conditional assignments according 
to various criteria. Thus the manual “backbone” labels 
allow for a flexible post-processing for different pur-
poses in the aftermath of molecular definitions.

A SPICES representation may contain multiple inde-
pendent parts (with each part being a valid molecule), 
e.g. to represent aggregated molecular structures like 
the quaternary structure of proteins. Finally a [START] 
and an [END] tag may be attributed for spatial orienta-
tion in the simulation box, see Figs. 2, 4 and 5.

Fig. 3  Cholesterol fragmentation scheme with SPICES line notation (at the bottom). The specified backbone labels ‘1’ to ‘17’ allow for an assignment 
of specific inter-particle forces (e.g. the exemplarily shown harmonic springs between particles Me’12’ and Me’15’, Me’10’ and Me’13’ and Me’4’ and 
Me’7’) in order to control the stiffness of molecular structure elements like the cholesterol ring structure
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The Spices.jar library supports all aspects of SPICES 
definition and handling. A Spices object may be created 
with at least an input structure string or in combination 

with additional information like a map of available parti-
cles. A syntax parser analyzes the provided line notation 
and returns detailed syntax error information if necessary 

Fig. 4  Top: Phospholipid DMPC fragmentation scheme [20] with 16 particles connected by harmonic springs (compare Fig. 2). Bottom: For spatial 
mapping into the simulation box the topological DMPC particle structure is converted to a linear 3D tube along the [START]/[END] tagged main 
chain where side-chain particles are collapsed onto the spatial positions of their neighbored main-chain particles, i.e. the second spatial position to 
the right contains 8 particles with the exact same position: The main-chain particle DMPN and the side-chain particles MeAc and 6 Et

Fig. 5  Simulation box start geometry with random distribution (left) or bilayer orientation (right) of phospholipid DMPC molecules as linear 3D 
tubes (see Figs. 1, 2 and 4). Color code of particles: Et (olive), MeAc (orange), DMPN (red), TriMeNP (blue)
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by the methods isValid and getErrorMessage. SPICES 
properties like the frequency of particles or complete lists 
of particle neighbors are evaluated upon user request by 
the methods getParticleFrequencies or getNextNeighbors.

A function of specific importance is the spatial projec-
tion of topological SPICES into a simulation box to set up 
adequate start geometries. Since a mesoscopic simulation 
is driven by soft particle potentials (in contrast to atomic 
hard core repulsions for e.g. molecular dynamics), dif-
ferent particles may occupy the same exact spatial posi-
tion (which would lead to infinite forces for hard atomic 
potentials) as well as penetrate each other. Thus the pos-
sibly severe problems of particle entanglements or caging 
effects due to inadequate start geometries are consider-
ably attenuated [24]. Nonetheless, a more favorable ini-
tial configuration may considerably reduce the necessary 
simulation period. A straightforward approach is a spatial 
linear tube representation [9] as shown in Figs. 4 and 5: 
The longest linear particle chain in the molecule is deter-
mined and its particles are consecutively lined up along 
a straight line according to the specified bond length 
(which may be squeezed to fit into specific compartments 
like simulation box layers, see below and Fig. 5). Then all 
branched side particles are collapsed onto their nearest-
neighbor particle on this line. For a fast determination of 
a sufficiently long linear particle chain, the Depth-First 
Search (DFS) algorithm is used [25]. Starting from the 
first particle of the SPICES line notation the maximum-
distant particle A is evaluated by a first DFS run. With 
a second DFS run, the maximum-distant particle B 
from particle A is determined. Finally the particle chain 
between A and B is chosen for the spatial tube represen-
tation. If a [START]/[END] tag pair is defined the long-
est (oriented) linear chain between the tagged particles is 
evaluated. The sketched algorithm leads to true longest 
chains for acyclic SPICES but not necessarily for cyclic 
particle structures. For a distinct fragmentation scheme 
of a molecule there may be several different but equally 
valid SPICES line notations since the proposed line nota-
tion is not canonically unique. For acyclic SPICES with 
a defined [START]/[END] tag pair the sketched 3D tube 
construction process will lead to a single distinct spatial 
3D tube representation for all these possible different 
line notations (without a defined [START]/[END] tag 
pair there may be two possible orientations). For cyclic 
particle structures this may not be the case, i.e. different 
but equally valid SPICES line notations may lead to dif-
ferent spatial 3D tube representations and correspond-
ing different start geometries of a simulation. According 
to our experience this shortcoming is of minor practical 
relevance since the possibly different 3D tube represen-
tations for small molecules seem to be sufficiently simi-
lar for convergent mesoscopic simulation results. On the 

other hand, for large complex molecules like cross-linked 
(bio)polymers the simple linear 3D tube representation is 
questionable in principal so that specific conversion tools 
like a PDB-to-SPICES parser for peptides and proteins 
would be advised which would take the known molecular 
3D structure into account.

The sketched spatial projection (see Fig.  5) is accom-
plished by interplay of the methods setCoordinates and 
getParticlePositionsAndConnections: After creation of a 
Spices object from a SPICES line notation string (which is 
rapidly performed within a fraction of a second for small 
molecules like DMPC) arrays for the first (start) and the 
last (end) particle positions of all spatial linear 3D tubes 
as well as the bond length may be provided via the setCo-
ordinates method. The first (start) particles of the linear 
chains always have the defined start positions whereas 
the last (end) particles may not necessarily reach the 
defined end positions if the length of the defined start/
end straight line is longer than the accumulated bond 
lengths of the particles on the longest linear chain so that 
a 3D tube may be smaller than defined. On the other hand 
a 3D tube may be squeezed (with equally reduced bond 
lengths) if the length of the defined start/end straight 
line is smaller than the accumulated bond lengths. Thus 
the calling code (e.g. a compartment editor that allows 
for flexible compartment definitions within the simula-
tion box like the bilayer compartment shown right in 
Fig. 5) must only define correctly-oriented and valid lines 
within an arbitrary compartment (which is comparatively 
simple to realize) without the necessity to calculate and 
pre-check every individual length (which could be more 
difficult). Method getParticlePositionsAndConnections 
then provides all corresponding particle positions within 
the simulation box where in addition all particle–parti-
cle bonds are coded with specific offsets which are com-
monly used by simulation kernels (compare to the tabular 
ASCII file at [1]). The sketched interplay of methods set-
Coordinates and getParticlePositionsAndConnections 
performs sufficiently fast for true on-the-fly calculations, 
e.g. a spatial projection of 50.000 DMPC molecules (with 
800.000 particles) into the simulation box performs in 
less than a second using an ordinary scientific worksta-
tion or even a standard notebook computer.

Whereas line notations may be regarded as a reason-
able compromise for a human–machine interface (read-
able by human beings, decomposable by machine) their 
definitions are error-prone for complex branched or ring 
structures. A visual display of the topological particle 
graph with all its particle–particle connections may con-
siderably alleviate a correct SPICES definition, see Fig. 6.

A graphical visualization may be achieved by ade-
quate application of open-source projects that provide 
chemical structure drawing capabilities. For instance the 
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structure-diagram layout of the Chemistry Development 
Kit (CDK) [26–28] can be customized to display SPICES 
instead of atom-based connection topologies [9]. A prin-
ciple problem of this (mis)use of atom-based layouts is 
the inappropriateness of its layout elements and tem-
plates: Particle graphs do not follow common patterns of 
atomic connections (see Fig. 6) so that topological visu-
alizations may result in incomprehensible graphs. Thus a 
more general graph visualization approach with e.g. the 
GraphStream library [29] is necessary. In addition this 
library allows individually tailored changes of the pro-
duced graph by manual displacement of node positions 
to remove unwanted node or edge overlaps. SpicesViewer.
jar is a GUI application (on top of Spices.jar and connec-
tion library SpicesToGraphStream.jar) for a topological 
SPICES display with the GraphStream library to analyze 
the influence of different graph settings and to demon-
strate computational functions like zooming or graph 
image generation. Figure  6 shows the SpicesViewer.jar 
GUI with a manually tailored SPICES graph visualization 
of the cyclic peptide Kalata B1 with 29 amino acids.

Conclusions
This work provides a Java library for SPICES handling 
and mesoscopic simulation support (Spices.jar) in combi-
nation with a connection library (SpicesToGraphStream.
jar) and a Java Graphical User Interface (GUI) viewer 
application (SpicesViewer.jar) for visual topological 
inspection and manipulation of SPICES molecule defi-
nitions. All libraries/applications are publicly available 
as open source published under the GNU General Pub-
lic License version 3 [30]. The SPICES GitHub reposi-
tory contains the Java bytecode libraries, a Windows OS 
installer for the SpicesViewer GUI application, all Java-
doc HTML documentations [31] and the Netbeans [32] 
source code packages including Unit tests.

The presented set of methods may alleviate molecular 
structure definitions for mesoscopic simulation tasks. 
The SpicesViewer GUI application demonstrates relevant 
use cases in detail with corresponding sample code. The 
new libraries may be utilized within scripting environ-
ments or become part of integrated mesoscopic simula-
tion systems.

Fig. 6  SpicesViewer graph display (right) of the cyclotide Kalata B1 (upper left) with 29 amino acids according to the fragmentation scheme in [20] 
(lower left)
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Future developments may address SPICES parsers that 
especially support the more difficult preparation of poly-
mer systems, e.g. a PDB-to-SPICES parser for peptides 
and proteins provided in form of PDB files (actually, the 
SPICES string of the Kalata B1 peptide in Fig. 6 was gener-
ated from its PDB file with a prototype parser that uses the 
amino acid fragmentation schemes and connection rules 
outlined in [20]). Another promising challenge would be a 
conversion between particle and all-atom representations 
for an interplay of atomistic and mesoscopic simulation.
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Appendix: SPICES syntax rules
SPICES monomer and molecular structures are con-
structed according to the following syntax rules:

	(1)	 Particle names consist of a maximum of 10 char-
acters (a–z, A–Z, 0–9, the first character is not 
allowed to be a digit and must be upper case) and 
an optionally prefixed frequency number.

	(2)	 Particle names in molecular structures (but NOT 
monomers) may be followed by a backbone label 
(i.e. a number between apostrophe characters, 
e.g. ‘1’, ‘2’ etc.) for later definition of spring forces 

between particle pairs where particles must be 
labeled in a consecutive manner.

	(3)	 The connection character ‘–’ is used for bonding 
between particles.

	(4)	 Round brackets ‘(‘ and ‘)’ indicate branches. They 
may be nested for arbitrary levels of branches.

	(5)	 Square brackets ‘[‘ and ‘]’ with an enclosed number 
which follow a particle indicate a ring closure. Mul-
tiple bonds between two particles are counted only 
once.

	(6)	 Curly brackets ‘{‘ and ‘}’ include a monomer defi-
nition. Monomers are defined as molecular struc-
tures but must contain at least 1 particle with a 
[HEAD] and [TAIL] attribute: Structure elements 
that precede the monomer connect to the HEAD 
particle, structure elements that follow the mono-
mer connect to the TAIL particle. Monomers are 
not allowed to be nested and backbone labels are 
forbidden in monomers.

	(7)	 Monomer labels start with a ‘#’ character followed 
by a sequence of characters (first character is not 
allowed to be a digit and must be upper case).

	(8)	 Monomer labels may be preceded by a frequency 
number (to construct polymers).

	(9)	 A molecule may consist of multiple independent 
parts (i.e. parts are not allowed to be connected in 
any way). Each part must be framed by angle brack-
ets ‘<‘ and ‘>‘. Parts are not allowed to be nested. 
Monomers are not allowed to contain parts. A part 
may have an optional prefixed frequency number.

	(10)	A particle (that is not within a monomer) may 
optionally contain a [START] or an [END] tag 
which may be used for orientation purposes. There 
is only one [START]/[END] pair allowed per inde-
pendent part.

Comments
“A–B–C” defines a connection of particle A with 
particle B and particle B with particle C.
“3A–B” is a shortcut notation for “A–A–A–B”.
“A–2B(E–F)–D” is identical to “A–B–B(E–F)–D”, 
“3A(B)–D” is a shortcut for “A–A–A(B)–D”. The 
shorter initial string should be preferred in both 
cases.
“A–B(D–E)–F” defines a main chain “A–B–F” with a 
side chain “D–E” where particle D is connected to 
particle B.
“A–B[1]–C–C–C–D–E[1]” defines a ring closure 
between particles B and E.
“A[1]–B[1]” is equal to “A–B”, “A[1][2]–B–C–D[1]
[2]” is equal to “A[1]–B–C–D[1]”: Multiple bonds 
between two particles are counted only once.

https://github.com/zielesny/SPICES
https://github.com/zielesny/SPICES
https://github.com/zielesny/SPICES
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“A–B(D–E(G–H[1])–F)–I–A–K[1]–B” defines a 
main chain “A–B–I–A–K–B” with a side chain 
“D–E–F” (connected to particle B of the main chain) 
and another side chain “G–H” (connected to particle 
E of the first side chain). In addition there is a ring 
closure between particle H of the second side chain 
and particle K of the main chain.
“3A[1]–B–B–C[1]” is a shortcut for “A–A–A[1]–B–
B–C[1]”.
“A’1’–B–C–D–E’2’” has two backbone particles. 
Note that backbone particles must be labeled in 
a consecutive manner, i.e. “A’1’–B–C–D–E’3’” or 
“A’1’–B–C–D–E’1’” are forbidden, but “A’1’–B–
C’3’–D–E’2’” is valid.
The shorter (preferred) string “3A’1’–B–C–D–E’2’” 
is identical to “A–A–A’1’–B–C–D–E’2’”.
Multiple ring closures at one particle are marked 
by successive use of ring–closure brackets, e.g. 
particle B in “A–B[1][2]–4C–D[1]–4C–E[2]” is 
connected to particles D and E.
The simplest structure of a monomer consists of 
a single particle A with attributes [HEAD] and 
[TAIL], i.e. “{A[HEAD][TAIL]}”.
In “E–#MyMonomer–F” with #MyMonomer equal 
to “{A[HEAD]–B–C[TAIL]–D}” particle E is con-
nected to particle A (the head) of the monomer 
and particle C (the tail) of the monomer is con-
nected to particle F. This definition is equivalent to 
“E–A–B–C(D)–F”.
“2{A[HEAD]–B–C[TAIL]–D}” defines a structure 
of 2 monomers where particle A (the head) of the 
second monomer is connected to particle C (the 
tail) of the preceding first monomer. This defini-
tion is equivalent to “A–B–C(D)–A–B–C–D”.
Definitions like “{A[HEAD]–{A[HEAD]–B–
B[TAIL]–C}–B[TAIL]–C}” with nested monomers 
are forbidden.
“A[START]–B–C[END]” defines orientation infor-
mation.
“A[START][END]–B–C” is syntactically correct 
but makes no sense.
“A[START]–B[START]–C[END]” is forbidden: 
There is only one [START]/[END] pair allowed per 
structure.
The shorter (preferred) string “3A[START]–B–
C[END]” is identical to “A–A–A[START]–B–C[END]”.
“<A–B–C> <A–D>“ defines a molecule which con-
sists of two independent parts “A–B–C” and “A–D”.
“<A–B[1]–C> <A–D[1]>“ is forbidden since parts 
are not allowed to be connected in any way. The cor-
rect definition in this case would be “(A–B[1]–C)
(A–D[1])” or “A–B(C)–D–A”.
“3<A–B>“ is equal to “<A–B> <A–B> <A–B>“.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 5 January 2018   Accepted: 3 August 2018

References
	1.	 Text file (2018) PositionsBonds1.txt. https​://githu​b.com/ziele​sny/Jdpd/

tree/maste​r/src/de/gnwi/jdpd/tests​/test_DMPC. Accessed 16 June 2018
	2.	 Engel T, Gasteiger J (eds) (2018) Chemoinformatics: basic concepts and 

methods. Wiley, Weinheim
	3.	 Engel T, Gasteiger J (eds) (2018) Applied chemoinformatics: achieve-

ments and future opportunities. Wiley, Weinheim
	4.	 Siani MA, Weininger D, Blaney JM (1994) CHUCKLES: a method for 

representing and searching peptide and peptoid sequences on both 
monomer and atomic levels. J Chem Inf Comput Sci 34(3):588–593

	5.	 Siani MA, Weininger D, James CA, Blaney JM (1995) CHORTLES: a method 
for representing oligomeric and template-based mixtures. J Chem Inf 
Comput Sci 35(6):1026–1033

	6.	 Drefahl A (2011) CurlySMILES: a chemical language to customize and 
annotate encodings of molecular and nanodevice structures. J Cheminf 
3:1

	7.	 Zhang T, Li H, Xi H, Stanton RV, Rotstein SH (2012) HELM: a hierarchical 
notation language for complex biomolecule structure representation. J 
Chem Inf Model 52(10):2796–2806

	8.	 Dufresne Y, Noé L, Leclère V, Pupin M (2015) Smiles2Monomers: a link 
between chemical and biological structures for polymers. J Cheminf. 7:62

	9.	 Truszkowski A, Daniel M, Kuhn H, Neumann S, Steinbeck C, Zielesny A, 
Epple M (2014) A molecular fragment cheminformatics roadmap for 
mesoscopic simulation. J Cheminf 6:45

	10.	 Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydro-
dynamic phenomena with dissipative particle dynamics. Europhys Lett 
19(3):155–160

	11.	 Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulations of hard-
sphere suspensions under steady shear. Europhys Lett 21(3):363–368

	12.	 Espanol P, Warren P (1995) Statistical mechanics of dissipative particle 
dynamics. Europhys Lett 30(4):191–196

	13.	 Espanol P (1995) Hydrodynamics from dissipative particle dynamics. Phys 
Rev E 52(2):1734–1742

	14.	 Groot RD, Warren P (1997) Dissipative particle dynamics: bridging the 
gap between atomistic and mesoscopic simulation. J Chem Phys. 
107(11):4423–4435

	15.	 Groot RD, Madden TJ (1998) Dynamic simulation of diblock copolymer 
microphase separation. J Chem Phys 105(20):8713–8724

	16.	 Ryjkina E, Kuhn H, Rehage H, Müller F, Peggau J (2002) Molecular dynamic 
computer simulations of phase behavior of non-ionic surfactants. Angew 
Chem Int Ed 41(6):983–986

	17.	 Schulz SG, Kuhn H, Schmid G, Mund C, Venzmer J (2004) Phase behavior 
of amphiphilic polymers: a dissipative particles dynamics study. Colloid 
Polym Sci 283:284–290

	18.	 Truszkowski A, Epple M, Fiethen A, Zielesny A, Kuhn H (2013) Molecu-
lar fragment dynamics study on the water–air interface behavior of 
non-ionic polyoxyethylene alkyl ether surfactants. J Colloid Interface Sci 
410:140–145

	19.	 Vishnyakov A, Lee M-T, Neimark AV (2013) Prediction of the critical micelle 
concentration of nonionic surfactants by dissipative particle dynamics 
simulations. J Phys Chem Lett. 4:797–802

	20.	 Truszkowski A, van den Broek K, Kuhn H, Zielesny A, Epple M (2015) Meso-
scopic simulation of phospholipid membranes, peptides, and proteins 
with molecular fragment dynamics. J Chem Inf Model 55:983–997

	21.	 Weininger D (1988) SMILES, a chemical language and information system. 
1. Introduction to methodology and encoding rules. J Chem Inf Comput 
Sci 28:31–36

	22.	 Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm 
for generation of unique SMILES notation. J Chem Inf Comput Sci 
29(2):97–101

https://github.com/zielesny/Jdpd/tree/master/src/de/gnwi/jdpd/tests/test_DMPC
https://github.com/zielesny/Jdpd/tree/master/src/de/gnwi/jdpd/tests/test_DMPC


Page 10 of 10van den Broek et al. J Cheminform  (2018) 10:35 

	23.	 Weininger D (1990) Smiles. 3. Depict. Graphical depiction of chemical 
structures. J Chem Inf Comput Sci 30(3):237–243

	24.	 Groot RD (2003) Electrostatic interactions in dissipative particle dynam-
ics—simulation of polyelectrolytes and anionic surfactants. J Chem Phys 
118(24):11265–11277

	25.	 Wayne R, Sedgewick K (2011) Algorithms. Chapter 4: Graphs, 4th edn. 
Addison-Wesley, Boston

	26.	 Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen EL 
(2003) The Chemistry Development Kit (CDK): An open-source java library 
for chemo- and bioinformatics. J Chem Inform Comput Sci 43(2):493–500

	27.	 Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006) 
Recent Developments of the Chemistry Development Kit (CDK): an 
open-source java library for chemo- and bioinformatics. Curr Pharm Des 
12(17):2111–2120

	28.	 Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N, 
Kuhn S, Pluska T, Rojas-Chertó M, Spjuth O, Torrance G, Evelo CT, Guha 
R, Steinbeck C (2017) The Chemistry Development Kit (CDK) v2.0: atom 
typing, depiction, molecular formulas, and substructure searching. J 
Cheminform 9:33

	29.	 GraphStream: A dynamic graph library. http://graph​strea​m-proje​ct.org. 
Accessed 16 June 2018

	30.	 GNU General Public License. http://www.gnu.org/licen​ses. Accessed 16 
June 2018

	31.	 Javadoc documentation. http://www.oracl​e.com/techn​etwor​k/java/javas​
e/docum​entat​ion. Accessed 16 June 2018

	32.	 NetBeans IDE Version 8.2. https​://netbe​ans.org. Successor: https​://netbe​
ans.apach​e.org. Accessed 16 June 2018

http://graphstream-project.org
http://www.gnu.org/licenses
http://www.oracle.com/technetwork/java/javase/documentation
http://www.oracle.com/technetwork/java/javase/documentation
https://netbeans.org
https://netbeans.apache.org
https://netbeans.apache.org

	SPICES: a particle-based molecular structure line notation and support library for mesoscopic simulation
	Abstract 
	Background
	Concept, feature overview and implementation details
	Conclusions
	Authors’ contributions
	References




