
van den Broek et al. J Cheminform (2018) 10:35
https://doi.org/10.1186/s13321-018-0294-7

SOFTWARE

SPICES: a particle‑based molecular
structure line notation and support library
for mesoscopic simulation
Karina van den Broek1,2, Mirco Daniel2, Matthias Epple1, Hubert Kuhn3, Jonas Schaub2 and Achim Zielesny2* 

Abstract 

Simplified Particle Input ConnEction Specification (SPICES) is a particle-based molecular structure representation
derived from straightforward simplifications of the atom-based SMILES line notation. It aims at supporting tedious
and error-prone molecular structure definitions for particle-based mesoscopic simulation techniques like Dissipative
Particle Dynamics by allowing for an interplay of different molecular encoding levels that range from topological line
notations and corresponding particle-graph visualizations to 3D structures with support of their spatial mapping into
a simulation box. An open Java library for SPICES structure handling and mesoscopic simulation support in combina-
tion with an open Java Graphical User Interface viewer application for visual topological inspection of SPICES defini-
tions are provided.

Keywords:  Molecular structure representation, Line notation, Mesoscopic simulation, Dissipative Particle Dynamics,
DPD

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
A molecular simulation task comprises three successive
steps: The definition of a simulation job with all neces-
sary input information (preparation step), the actual loop
over discrete integration time steps to numerically solve
the equations of motion (the actual simulation step) and
the analysis of the simulation record with all calculated
results (evaluation step). The first (preparation) step of
this triad has to provide data structures that can be lev-
eraged by the algorithms of the second (simulation) step
in an optimized manner to allow for a maximum perfor-
mance of their interplay. This is commonly achieved by
definition of adequate sets of arrays that encode all nec-
essary molecular information like spatial positions or
bonds of the interacting entities. The content of these
arrays is usually provided by large tabular ASCII files that
are often (at least partly) edited by hand. An example of

these ASCII files may be found at [1] for 1,2-Dimyristoyl-
sn-glycero-3-phosphocholine (DMPC) phospholipid
molecules of a bilayer-membrane simulation task where
each line contains an interacting entity, its spatial x,y and
z coordinates, line offsets to bonded entities and specific
indices for additional force assignments. The manual
creation of these machine-oriented contents is not only
a tedious but an error-prone type of work: For all but the
simplest molecular ensembles errors are likely to be gen-
erated that may spoil the whole simulation process. Thus
there is a valid necessity to prevent mistakes by safe-
guarded operations and to reduce manual preparation
overhead by adequate automation.

Cheminformatics aims at supporting efficient and
errorless human–machine interfaces where adequate
molecular structure representations (line notations,
connection tables, XYZ tables or Z-matrices, frag-
ment codes or fingerprints, file formats like MOL file
or PDB file) are at heart of the discipline [2]. The major-
ity of existing structure representations are atom-based
descriptions that comprise characteristic properties and
topological or spatial aspects concerning a molecule’s

Open Access

*Correspondence: achim.zielesny@w‑hs.de
2 Institute for Bioinformatics and Chemoinformatics, Westphalian
University of Applied Sciences, August‑Schmidt‑Ring 10,
45665 Recklinghausen, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0722-4229
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-018-0294-7&domain=pdf

Page 2 of 10van den Broek et al. J Cheminform (2018) 10:35

atomic composition [2, 3] with additional approaches
towards fragment-based molecular representations
especially for polymers [4–8]. In order to support the
preparation step of a molecular simulation task chem-
informatics methods allow for an effective interplay of
different levels of molecular encoding that are constitu-
tive for a comfortable and safe human–machine inter-
face (see Fig. 1): The topological structural formula is a
common way used by molecular scientists to represent
a chemical compound (e.g. drawn by hand with a struc-
ture editor or manually selected from structure reposi-
tories). Alternatively the compound may be represented
by a textual line notation—where the interplay between
structural formula and line notation may be realized by
mutual conversion methods like an adequate structure
diagram layout. The following transition from topologi-
cal representations to 3D structures allows for the final
mapping to their spatial positions within a simulation
box which completes the preparation step. All prepared
information may then be stored in form of the tabular

ASCII files sketched above as an input for the actual
simulation step.

In order to contribute to the realization of a molecular
fragment cheminformatics roadmap [9] this work tries
to alleviate molecular structure handling and encod-
ing for particle-based mesoscopic simulation techniques
like Dissipative Particle Dynamics (DPD) [10–14]: These
techniques aim at describing supramolecular phenomena
at the nanometer (length) and microsecond (time) scale
for large interacting physical ensembles representing mil-
lions of atoms. DPD particles in particular may be identi-
fied with distinct small molecules of molar mass in the
order of 100 Da where larger molecules are composed of
adequate “molecular fragment” particles that are bonded
by harmonic springs to mimic covalent connectivities
and spatial 3D conformations [9, 14–20]. Since no unique
molecular fragmentation scheme exists for the vari-
ous mesoscopic simulation approaches there is nothing
like a universal particle set. An adequate decomposition
of a chemical compound into appropriate “molecular

Fig. 1  Interplay between different encoding levels of molecular structures for a preparation step of a molecular simulation task (with examples of
this work, compare Figs. 2, 4 and 5). a Structural formula of a DMPC phospholipid. b SPICES line notation of the particle-based topological DMPC
structure with its corresponding structure diagram layout/particle graph and illustration of the particle bonds. c Conversion of the topological
particle structure to a compressed 3D tube geometry plus spatial mapping into an oriented bilayer compartment of the simulation box

Page 3 of 10van den Broek et al. J Cheminform (2018) 10:35

fragment” particles is a kind of artisan craftwork which
is guided by experience, empirical rules and field of appli-
cation. Figure 2 demonstrates a possible fragmentation
for a DMPC phospholipid that successfully preserves its
amphiphilic characteristics [20].

Key part of this work is a set of methods operating
on an intuitive line notation for particle-decomposed
molecular structures denoted SPICES (Simplified Par-
ticle Input ConnEction Specification). The SPICES
design is derived from straightforward simplifications
of the well-established SMILES representation for
atom-based molecular connectivity [21–23]. The set
of SPICES related methods supports the interplay of

structural encoding levels (compare Fig. 1) as well as
structure-based calculations for mesoscopic simula-
tions (length and time scales, simulation box size, com-
pound concentrations etc.): It allows for parsing and
(graphically) analyzing the line notations, topological
calculations (e.g. particle frequencies, particle neigh-
bors or particle paths) as well as the generation of cor-
responding 3D particle structures with support of their
spatial mapping into the simulation box and the final
output of tabular ASCII files with molecular informa-
tion for the following simulation step (the construction
of the tabular ASCII file at [1] was in fact supported by
the SPICES related code of this work).

Fig. 2  Decomposition of the DMPC phospholipid into “molecular fragment” particles [20] and illustration of the resulting bonded particles (upper
left) with corresponding SPICES line notation (upper right): The SpicesViewer GUI generated visual particle graph surrounds the “molecular fragment”
particle identification

Page 4 of 10van den Broek et al. J Cheminform (2018) 10:35

Concept, feature overview and implementation
details
The SPICES implementation extends the fragment
structure representation proposal in [9]. The syntax
rules for a correct SPICES line notation together with
some helpful comments are outlined in the appendix.
These rules allow arbitrary topological particle con-
nections with branches and ring closures but do not
comprise attributes like electric charges or chiral cent-
ers since these are intrinsic particle properties (i.e. dif-
ferently charged states or different enantiomers of a
“molecular fragment” particle have to be coded with
different particles where each particle has a specific
charge and a specific stereochemistry). Particles may
possess a “backbone” label which may be utilized to
assign specific particle pair forces e.g. for spatial 3D
structure constraints of ring structures (see Fig. 3), the
tail stiffness of surfactants and lipids or the backbone
conformation of macromolecules like proteins. This
kind of labeling could be performed in an automated

manner by attaching a tagging label to every particle
(which in fact was our first approach) but according to
our findings the user control of the “backbone” label
distribution within a molecule alleviated possible man-
ual force assignments as well as the interplay between
the textual line notation and the corresponding visual
particle graph. In addition the concrete force assign-
ments are chosen to be not a part of the line notation
itself due to their intrinsic differences (from simple
springs to e.g. complicated polygonal force chains) and
possible automated conditional assignments according
to various criteria. Thus the manual “backbone” labels
allow for a flexible post-processing for different pur-
poses in the aftermath of molecular definitions.

A SPICES representation may contain multiple inde-
pendent parts (with each part being a valid molecule),
e.g. to represent aggregated molecular structures like
the quaternary structure of proteins. Finally a [START]
and an [END] tag may be attributed for spatial orienta-
tion in the simulation box, see Figs. 2, 4 and 5.

Fig. 3  Cholesterol fragmentation scheme with SPICES line notation (at the bottom). The specified backbone labels ‘1’ to ‘17’ allow for an assignment
of specific inter-particle forces (e.g. the exemplarily shown harmonic springs between particles Me’12’ and Me’15’, Me’10’ and Me’13’ and Me’4’ and
Me’7’) in order to control the stiffness of molecular structure elements like the cholesterol ring structure

Page 5 of 10van den Broek et al. J Cheminform (2018) 10:35

The Spices.jar library supports all aspects of SPICES
definition and handling. A Spices object may be created
with at least an input structure string or in combination

with additional information like a map of available parti-
cles. A syntax parser analyzes the provided line notation
and returns detailed syntax error information if necessary

Fig. 4  Top: Phospholipid DMPC fragmentation scheme [20] with 16 particles connected by harmonic springs (compare Fig. 2). Bottom: For spatial
mapping into the simulation box the topological DMPC particle structure is converted to a linear 3D tube along the [START]/[END] tagged main
chain where side-chain particles are collapsed onto the spatial positions of their neighbored main-chain particles, i.e. the second spatial position to
the right contains 8 particles with the exact same position: The main-chain particle DMPN and the side-chain particles MeAc and 6 Et

Fig. 5  Simulation box start geometry with random distribution (left) or bilayer orientation (right) of phospholipid DMPC molecules as linear 3D
tubes (see Figs. 1, 2 and 4). Color code of particles: Et (olive), MeAc (orange), DMPN (red), TriMeNP (blue)

Page 6 of 10van den Broek et al. J Cheminform (2018) 10:35

by the methods isValid and getErrorMessage. SPICES
properties like the frequency of particles or complete lists
of particle neighbors are evaluated upon user request by
the methods getParticleFrequencies or getNextNeighbors.

A function of specific importance is the spatial projec-
tion of topological SPICES into a simulation box to set up
adequate start geometries. Since a mesoscopic simulation
is driven by soft particle potentials (in contrast to atomic
hard core repulsions for e.g. molecular dynamics), dif-
ferent particles may occupy the same exact spatial posi-
tion (which would lead to infinite forces for hard atomic
potentials) as well as penetrate each other. Thus the pos-
sibly severe problems of particle entanglements or caging
effects due to inadequate start geometries are consider-
ably attenuated [24]. Nonetheless, a more favorable ini-
tial configuration may considerably reduce the necessary
simulation period. A straightforward approach is a spatial
linear tube representation [9] as shown in Figs. 4 and 5:
The longest linear particle chain in the molecule is deter-
mined and its particles are consecutively lined up along
a straight line according to the specified bond length
(which may be squeezed to fit into specific compartments
like simulation box layers, see below and Fig. 5). Then all
branched side particles are collapsed onto their nearest-
neighbor particle on this line. For a fast determination of
a sufficiently long linear particle chain, the Depth-First
Search (DFS) algorithm is used [25]. Starting from the
first particle of the SPICES line notation the maximum-
distant particle A is evaluated by a first DFS run. With
a second DFS run, the maximum-distant particle B
from particle A is determined. Finally the particle chain
between A and B is chosen for the spatial tube represen-
tation. If a [START]/[END] tag pair is defined the long-
est (oriented) linear chain between the tagged particles is
evaluated. The sketched algorithm leads to true longest
chains for acyclic SPICES but not necessarily for cyclic
particle structures. For a distinct fragmentation scheme
of a molecule there may be several different but equally
valid SPICES line notations since the proposed line nota-
tion is not canonically unique. For acyclic SPICES with
a defined [START]/[END] tag pair the sketched 3D tube
construction process will lead to a single distinct spatial
3D tube representation for all these possible different
line notations (without a defined [START]/[END] tag
pair there may be two possible orientations). For cyclic
particle structures this may not be the case, i.e. different
but equally valid SPICES line notations may lead to dif-
ferent spatial 3D tube representations and correspond-
ing different start geometries of a simulation. According
to our experience this shortcoming is of minor practical
relevance since the possibly different 3D tube represen-
tations for small molecules seem to be sufficiently simi-
lar for convergent mesoscopic simulation results. On the

other hand, for large complex molecules like cross-linked
(bio)polymers the simple linear 3D tube representation is
questionable in principal so that specific conversion tools
like a PDB-to-SPICES parser for peptides and proteins
would be advised which would take the known molecular
3D structure into account.

The sketched spatial projection (see Fig. 5) is accom-
plished by interplay of the methods setCoordinates and
getParticlePositionsAndConnections: After creation of a
Spices object from a SPICES line notation string (which is
rapidly performed within a fraction of a second for small
molecules like DMPC) arrays for the first (start) and the
last (end) particle positions of all spatial linear 3D tubes
as well as the bond length may be provided via the setCo-
ordinates method. The first (start) particles of the linear
chains always have the defined start positions whereas
the last (end) particles may not necessarily reach the
defined end positions if the length of the defined start/
end straight line is longer than the accumulated bond
lengths of the particles on the longest linear chain so that
a 3D tube may be smaller than defined. On the other hand
a 3D tube may be squeezed (with equally reduced bond
lengths) if the length of the defined start/end straight
line is smaller than the accumulated bond lengths. Thus
the calling code (e.g. a compartment editor that allows
for flexible compartment definitions within the simula-
tion box like the bilayer compartment shown right in
Fig. 5) must only define correctly-oriented and valid lines
within an arbitrary compartment (which is comparatively
simple to realize) without the necessity to calculate and
pre-check every individual length (which could be more
difficult). Method getParticlePositionsAndConnections
then provides all corresponding particle positions within
the simulation box where in addition all particle–parti-
cle bonds are coded with specific offsets which are com-
monly used by simulation kernels (compare to the tabular
ASCII file at [1]). The sketched interplay of methods set-
Coordinates and getParticlePositionsAndConnections
performs sufficiently fast for true on-the-fly calculations,
e.g. a spatial projection of 50.000 DMPC molecules (with
800.000 particles) into the simulation box performs in
less than a second using an ordinary scientific worksta-
tion or even a standard notebook computer.

Whereas line notations may be regarded as a reason-
able compromise for a human–machine interface (read-
able by human beings, decomposable by machine) their
definitions are error-prone for complex branched or ring
structures. A visual display of the topological particle
graph with all its particle–particle connections may con-
siderably alleviate a correct SPICES definition, see Fig. 6.

A graphical visualization may be achieved by ade-
quate application of open-source projects that provide
chemical structure drawing capabilities. For instance the

Page 7 of 10van den Broek et al. J Cheminform (2018) 10:35

structure-diagram layout of the Chemistry Development
Kit (CDK) [26–28] can be customized to display SPICES
instead of atom-based connection topologies [9]. A prin-
ciple problem of this (mis)use of atom-based layouts is
the inappropriateness of its layout elements and tem-
plates: Particle graphs do not follow common patterns of
atomic connections (see Fig. 6) so that topological visu-
alizations may result in incomprehensible graphs. Thus a
more general graph visualization approach with e.g. the
GraphStream library [29] is necessary. In addition this
library allows individually tailored changes of the pro-
duced graph by manual displacement of node positions
to remove unwanted node or edge overlaps. SpicesViewer.
jar is a GUI application (on top of Spices.jar and connec-
tion library SpicesToGraphStream.jar) for a topological
SPICES display with the GraphStream library to analyze
the influence of different graph settings and to demon-
strate computational functions like zooming or graph
image generation. Figure 6 shows the SpicesViewer.jar
GUI with a manually tailored SPICES graph visualization
of the cyclic peptide Kalata B1 with 29 amino acids.

Conclusions
This work provides a Java library for SPICES handling
and mesoscopic simulation support (Spices.jar) in combi-
nation with a connection library (SpicesToGraphStream.
jar) and a Java Graphical User Interface (GUI) viewer
application (SpicesViewer.jar) for visual topological
inspection and manipulation of SPICES molecule defi-
nitions. All libraries/applications are publicly available
as open source published under the GNU General Pub-
lic License version 3 [30]. The SPICES GitHub reposi-
tory contains the Java bytecode libraries, a Windows OS
installer for the SpicesViewer GUI application, all Java-
doc HTML documentations [31] and the Netbeans [32]
source code packages including Unit tests.

The presented set of methods may alleviate molecular
structure definitions for mesoscopic simulation tasks.
The SpicesViewer GUI application demonstrates relevant
use cases in detail with corresponding sample code. The
new libraries may be utilized within scripting environ-
ments or become part of integrated mesoscopic simula-
tion systems.

Fig. 6  SpicesViewer graph display (right) of the cyclotide Kalata B1 (upper left) with 29 amino acids according to the fragmentation scheme in [20]
(lower left)

Page 8 of 10van den Broek et al. J Cheminform (2018) 10:35

Future developments may address SPICES parsers that
especially support the more difficult preparation of poly-
mer systems, e.g. a PDB-to-SPICES parser for peptides
and proteins provided in form of PDB files (actually, the
SPICES string of the Kalata B1 peptide in Fig. 6 was gener-
ated from its PDB file with a prototype parser that uses the
amino acid fragmentation schemes and connection rules
outlined in [20]). Another promising challenge would be a
conversion between particle and all-atom representations
for an interplay of atomistic and mesoscopic simulation.

Authors’ contributions
KvdB, MD, JS and AZ designed, implemented and tested the SPICES related
code. ME, HK and AZ conceived the SPICES approach and lead the project
development. All authors read and approved the final manuscript.

Author details
1 Inorganic Chemistry and Center for Nanointegration Duisburg‑Essen
(CeNIDE), University of Duisburg-Essen, Essen, Germany. 2 Institute for Bioin-
formatics and Chemoinformatics, Westphalian University of Applied Sciences,
August‑Schmidt‑Ring 10, 45665 Recklinghausen, Germany. 3 CAM-D Technolo-
gies, Solingen, Germany.

Acknowledgements
The authors like to thank the GraphStream dynamic graph library develop-
ment and project team, the Apache Commons contributors as well as the
reviewers for helpful suggestions—especially the catchy SPICES acronym—
and Noel O’Boyle for stimulating discussions. The support of GNWI—Gesells-
chaft für naturwissenschaftliche Informatik mbH, Oer-Erkenschwick, Germany,
is gratefully acknowledged.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
SPICES repository at https​://githu​b.com/ziele​sny/SPICE​S.

Availability and requirements
Project name: SPICES. Project home page: SPICES repository at https​://githu​
b.com/ziele​sny/SPICE​S. Operating system(s): Platform independent. Program-
ming language: Java. Other requirements: Java 1.8 or higher. License: GNU
General Public License version 3.

Ethics approval and consent to participate
Not applicable.

Funding
Not applicable.

Appendix: SPICES syntax rules
SPICES monomer and molecular structures are con-
structed according to the following syntax rules:

	(1)	 Particle names consist of a maximum of 10 char-
acters (a–z, A–Z, 0–9, the first character is not
allowed to be a digit and must be upper case) and
an optionally prefixed frequency number.

	(2)	 Particle names in molecular structures (but NOT
monomers) may be followed by a backbone label
(i.e. a number between apostrophe characters,
e.g. ‘1’, ‘2’ etc.) for later definition of spring forces

between particle pairs where particles must be
labeled in a consecutive manner.

	(3)	 The connection character ‘–’ is used for bonding
between particles.

	(4)	 Round brackets ‘(‘ and ‘)’ indicate branches. They
may be nested for arbitrary levels of branches.

	(5)	 Square brackets ‘[‘ and ‘]’ with an enclosed number
which follow a particle indicate a ring closure. Mul-
tiple bonds between two particles are counted only
once.

	(6)	 Curly brackets ‘{‘ and ‘}’ include a monomer defi-
nition. Monomers are defined as molecular struc-
tures but must contain at least 1 particle with a
[HEAD] and [TAIL] attribute: Structure elements
that precede the monomer connect to the HEAD
particle, structure elements that follow the mono-
mer connect to the TAIL particle. Monomers are
not allowed to be nested and backbone labels are
forbidden in monomers.

	(7)	 Monomer labels start with a ‘#’ character followed
by a sequence of characters (first character is not
allowed to be a digit and must be upper case).

	(8)	 Monomer labels may be preceded by a frequency
number (to construct polymers).

	(9)	 A molecule may consist of multiple independent
parts (i.e. parts are not allowed to be connected in
any way). Each part must be framed by angle brack-
ets ‘<‘ and ‘>‘. Parts are not allowed to be nested.
Monomers are not allowed to contain parts. A part
may have an optional prefixed frequency number.

	(10)	A particle (that is not within a monomer) may
optionally contain a [START] or an [END] tag
which may be used for orientation purposes. There
is only one [START]/[END] pair allowed per inde-
pendent part.

Comments
“A–B–C” defines a connection of particle A with
particle B and particle B with particle C.
“3A–B” is a shortcut notation for “A–A–A–B”.
“A–2B(E–F)–D” is identical to “A–B–B(E–F)–D”,
“3A(B)–D” is a shortcut for “A–A–A(B)–D”. The
shorter initial string should be preferred in both
cases.
“A–B(D–E)–F” defines a main chain “A–B–F” with a
side chain “D–E” where particle D is connected to
particle B.
“A–B[1]–C–C–C–D–E[1]” defines a ring closure
between particles B and E.
“A[1]–B[1]” is equal to “A–B”, “A[1][2]–B–C–D[1]
[2]” is equal to “A[1]–B–C–D[1]”: Multiple bonds
between two particles are counted only once.

https://github.com/zielesny/SPICES
https://github.com/zielesny/SPICES
https://github.com/zielesny/SPICES

Page 9 of 10van den Broek et al. J Cheminform (2018) 10:35

“A–B(D–E(G–H[1])–F)–I–A–K[1]–B” defines a
main chain “A–B–I–A–K–B” with a side chain
“D–E–F” (connected to particle B of the main chain)
and another side chain “G–H” (connected to particle
E of the first side chain). In addition there is a ring
closure between particle H of the second side chain
and particle K of the main chain.
“3A[1]–B–B–C[1]” is a shortcut for “A–A–A[1]–B–
B–C[1]”.
“A’1’–B–C–D–E’2’” has two backbone particles.
Note that backbone particles must be labeled in
a consecutive manner, i.e. “A’1’–B–C–D–E’3’” or
“A’1’–B–C–D–E’1’” are forbidden, but “A’1’–B–
C’3’–D–E’2’” is valid.
The shorter (preferred) string “3A’1’–B–C–D–E’2’”
is identical to “A–A–A’1’–B–C–D–E’2’”.
Multiple ring closures at one particle are marked
by successive use of ring–closure brackets, e.g.
particle B in “A–B[1][2]–4C–D[1]–4C–E[2]” is
connected to particles D and E.
The simplest structure of a monomer consists of
a single particle A with attributes [HEAD] and
[TAIL], i.e. “{A[HEAD][TAIL]}”.
In “E–#MyMonomer–F” with #MyMonomer equal
to “{A[HEAD]–B–C[TAIL]–D}” particle E is con-
nected to particle A (the head) of the monomer
and particle C (the tail) of the monomer is con-
nected to particle F. This definition is equivalent to
“E–A–B–C(D)–F”.
“2{A[HEAD]–B–C[TAIL]–D}” defines a structure
of 2 monomers where particle A (the head) of the
second monomer is connected to particle C (the
tail) of the preceding first monomer. This defini-
tion is equivalent to “A–B–C(D)–A–B–C–D”.
Definitions like “{A[HEAD]–{A[HEAD]–B–
B[TAIL]–C}–B[TAIL]–C}” with nested monomers
are forbidden.
“A[START]–B–C[END]” defines orientation infor-
mation.
“A[START][END]–B–C” is syntactically correct
but makes no sense.
“A[START]–B[START]–C[END]” is forbidden:
There is only one [START]/[END] pair allowed per
structure.
The shorter (preferred) string “3A[START]–B–
C[END]” is identical to “A–A–A[START]–B–C[END]”.
“<A–B–C> <A–D>“ defines a molecule which con-
sists of two independent parts “A–B–C” and “A–D”.
“<A–B[1]–C> <A–D[1]>“ is forbidden since parts
are not allowed to be connected in any way. The cor-
rect definition in this case would be “(A–B[1]–C)
(A–D[1])” or “A–B(C)–D–A”.
“3<A–B>“ is equal to “<A–B> <A–B> <A–B>“.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 5 January 2018 Accepted: 3 August 2018

References
	1.	 Text file (2018) PositionsBonds1.txt. https​://githu​b.com/ziele​sny/Jdpd/

tree/maste​r/src/de/gnwi/jdpd/tests​/test_DMPC. Accessed 16 June 2018
	2.	 Engel T, Gasteiger J (eds) (2018) Chemoinformatics: basic concepts and

methods. Wiley, Weinheim
	3.	 Engel T, Gasteiger J (eds) (2018) Applied chemoinformatics: achieve-

ments and future opportunities. Wiley, Weinheim
	4.	 Siani MA, Weininger D, Blaney JM (1994) CHUCKLES: a method for

representing and searching peptide and peptoid sequences on both
monomer and atomic levels. J Chem Inf Comput Sci 34(3):588–593

	5.	 Siani MA, Weininger D, James CA, Blaney JM (1995) CHORTLES: a method
for representing oligomeric and template-based mixtures. J Chem Inf
Comput Sci 35(6):1026–1033

	6.	 Drefahl A (2011) CurlySMILES: a chemical language to customize and
annotate encodings of molecular and nanodevice structures. J Cheminf
3:1

	7.	 Zhang T, Li H, Xi H, Stanton RV, Rotstein SH (2012) HELM: a hierarchical
notation language for complex biomolecule structure representation. J
Chem Inf Model 52(10):2796–2806

	8.	 Dufresne Y, Noé L, Leclère V, Pupin M (2015) Smiles2Monomers: a link
between chemical and biological structures for polymers. J Cheminf. 7:62

	9.	 Truszkowski A, Daniel M, Kuhn H, Neumann S, Steinbeck C, Zielesny A,
Epple M (2014) A molecular fragment cheminformatics roadmap for
mesoscopic simulation. J Cheminf 6:45

	10.	 Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydro-
dynamic phenomena with dissipative particle dynamics. Europhys Lett
19(3):155–160

	11.	 Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulations of hard-
sphere suspensions under steady shear. Europhys Lett 21(3):363–368

	12.	 Espanol P, Warren P (1995) Statistical mechanics of dissipative particle
dynamics. Europhys Lett 30(4):191–196

	13.	 Espanol P (1995) Hydrodynamics from dissipative particle dynamics. Phys
Rev E 52(2):1734–1742

	14.	 Groot RD, Warren P (1997) Dissipative particle dynamics: bridging the
gap between atomistic and mesoscopic simulation. J Chem Phys.
107(11):4423–4435

	15.	 Groot RD, Madden TJ (1998) Dynamic simulation of diblock copolymer
microphase separation. J Chem Phys 105(20):8713–8724

	16.	 Ryjkina E, Kuhn H, Rehage H, Müller F, Peggau J (2002) Molecular dynamic
computer simulations of phase behavior of non-ionic surfactants. Angew
Chem Int Ed 41(6):983–986

	17.	 Schulz SG, Kuhn H, Schmid G, Mund C, Venzmer J (2004) Phase behavior
of amphiphilic polymers: a dissipative particles dynamics study. Colloid
Polym Sci 283:284–290

	18.	 Truszkowski A, Epple M, Fiethen A, Zielesny A, Kuhn H (2013) Molecu-
lar fragment dynamics study on the water–air interface behavior of
non-ionic polyoxyethylene alkyl ether surfactants. J Colloid Interface Sci
410:140–145

	19.	 Vishnyakov A, Lee M-T, Neimark AV (2013) Prediction of the critical micelle
concentration of nonionic surfactants by dissipative particle dynamics
simulations. J Phys Chem Lett. 4:797–802

	20.	 Truszkowski A, van den Broek K, Kuhn H, Zielesny A, Epple M (2015) Meso-
scopic simulation of phospholipid membranes, peptides, and proteins
with molecular fragment dynamics. J Chem Inf Model 55:983–997

	21.	 Weininger D (1988) SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28:31–36

	22.	 Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm
for generation of unique SMILES notation. J Chem Inf Comput Sci
29(2):97–101

https://github.com/zielesny/Jdpd/tree/master/src/de/gnwi/jdpd/tests/test_DMPC
https://github.com/zielesny/Jdpd/tree/master/src/de/gnwi/jdpd/tests/test_DMPC

Page 10 of 10van den Broek et al. J Cheminform (2018) 10:35

	23.	 Weininger D (1990) Smiles. 3. Depict. Graphical depiction of chemical
structures. J Chem Inf Comput Sci 30(3):237–243

	24.	 Groot RD (2003) Electrostatic interactions in dissipative particle dynam-
ics—simulation of polyelectrolytes and anionic surfactants. J Chem Phys
118(24):11265–11277

	25.	 Wayne R, Sedgewick K (2011) Algorithms. Chapter 4: Graphs, 4th edn.
Addison-Wesley, Boston

	26.	 Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen EL
(2003) The Chemistry Development Kit (CDK): An open-source java library
for chemo- and bioinformatics. J Chem Inform Comput Sci 43(2):493–500

	27.	 Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006)
Recent Developments of the Chemistry Development Kit (CDK): an
open-source java library for chemo- and bioinformatics. Curr Pharm Des
12(17):2111–2120

	28.	 Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N,
Kuhn S, Pluska T, Rojas-Chertó M, Spjuth O, Torrance G, Evelo CT, Guha
R, Steinbeck C (2017) The Chemistry Development Kit (CDK) v2.0: atom
typing, depiction, molecular formulas, and substructure searching. J
Cheminform 9:33

	29.	 GraphStream: A dynamic graph library. http://graph​strea​m-proje​ct.org.
Accessed 16 June 2018

	30.	 GNU General Public License. http://www.gnu.org/licen​ses. Accessed 16
June 2018

	31.	 Javadoc documentation. http://www.oracl​e.com/techn​etwor​k/java/javas​
e/docum​entat​ion. Accessed 16 June 2018

	32.	 NetBeans IDE Version 8.2. https​://netbe​ans.org. Successor: https​://netbe​
ans.apach​e.org. Accessed 16 June 2018

http://graphstream-project.org
http://www.gnu.org/licenses
http://www.oracle.com/technetwork/java/javase/documentation
http://www.oracle.com/technetwork/java/javase/documentation
https://netbeans.org
https://netbeans.apache.org
https://netbeans.apache.org

	SPICES: a particle-based molecular structure line notation and support library for mesoscopic simulation
	Abstract
	Background
	Concept, feature overview and implementation details
	Conclusions
	Authors’ contributions
	References

