
Kochev et al. J Cheminform (2018) 10:42
https://doi.org/10.1186/s13321-018-0295-6

SOFTWARE

Ambit‑SMIRKS: a software module
for reaction representation, reaction search
and structure transformation
Nikolay Kochev1,2  , Svetlana Avramova1  and Nina Jeliazkova2* 

Abstract 

Ambit-SMIRKS is an open source software, enabling structure transformation via the SMIRKS language and imple-
mented as an extension of Ambit-SMARTS. As part of the Ambit project it builds on top of The Chemistry Develop-
ment Kit (The CDK). Ambit-SMIRKS provides the following functionalities: parsing of SMIRKS linear notations into
internal reaction (transformation) representations based on The CDK objects, application of the stored reactions
against target (reactant) molecules for actual transformation of the target chemical objects, reaction searching, stereo
information handling, product post-processing, etc. The transformations can be applied on various sites of the reac-
tant molecule in several modes: single, non-overlapping, non-identical, non-homomorphic or externally specified list
of sites utilizing efficient substructure searching algorithm. Ambit-SMIRKS handles the molecules stereo information
and supports basic chemical stereo elements implemented in The CDK library. The full SMARTS logical expressions
syntax for reactions specification is supported, including recursive SMARTS expressions as well as additional syntax
extensions. Since its initial development for the purpose of metabolite generation within Toxtree, the Ambit-SMIRKS
module was used in various chemoinformatics projects, both developed by the authors of the package and by
external teams. We show several use cases of the Ambit-SMIRKS software including standardization of large chemical
databases and pathway transformation database and prediction. Ambit-SMIRKS is distributed as a Java library under
LGPL license. More information on use cases and applications, including download links is available at http://ambit​
.sourc​eforg​e.net/smirk​s.

Keywords:  SMIRKS, Linear notation, Software library, Reaction presentation, Structure transformation

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Two major types of chemical objects are at the core of
the cheminformatics—chemical structures and structure
transformations (reactions). The efficiency of chemo-
informatics applications is tightly coupled with the
adequate representation [1] of the underlying chemical
objects (chemical structures and transformations).

The chemical reactions handling is more challenging
compared to the chemical structures processing, due
to the complexity of the problem [1]. The number of
computational tools for reaction modelling is less than

the number of structure property prediction tools [2].
In the last several decades a lot of effort has been put
for advancing the software systems for reaction man-
agement. The approaches for reaction representation
are based on different paradigms: (1) describing the
reaction centers—atoms and bonds directly involved in
the rearrangement process that can be identified when
a maximum common substructure search between
the product and the reactant is made; (2) bond–elec-
tron matrices coding; and (3) representation based on
molecular fingerprints or vector descriptions—these
codification systems use the difference between the fin-
gerprints of the products and the reactants [3]. The rep-
resentation of a generic reaction (any set of reactions
which undergo the same set of atom and bond changes,

Open Access

*Correspondence: jeliazkova.nina@gmail.com
2 Ideaconsult Ltd, 4 A. Kanchev Str., 1000 Sofia, Bulgaria
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6547-3675
http://orcid.org/0000-0001-7539-6511
http://orcid.org/0000-0002-4322-6179
http://ambit.sourceforge.net/smirks
http://ambit.sourceforge.net/smirks
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-018-0295-6&domain=pdf

Page 2 of 29Kochev et al. J Cheminform (2018) 10:42

regardless of the underlying molecule substrates [4])
requires more sophisticated approach than describing a
specific reaction involving all reactant(s) and product(s)
(also referred in this paper as an ordinary or simple
reaction). For the latter case, the chemical reaction can
be simply represented by a set of chemical structures of
the reactants and products.

The reaction representation and manipulation meth-
ods are built on top of the techniques for chemical struc-
ture representation. The ordinary reactions are handled
similarly to the molecule objects, while the generic reac-
tion rules implementation follow the methods of struc-
ture patterns. The linear notations are widely used for
encoding the molecular graphs (e.g. SMILES, InChI)
and chemical structure transformations (e.g. SMIRKS,
SLN, RInChI). One of the most popular line notation for
representation of chemical reactions is SMIRKS [4]—a
restricted version of reaction SMARTS [5] involving
changes in atom-bond patterns. The SMIRKS notation
is designed to represent a generic reaction: to express
the reaction graph and the indirect effects of the trans-
formation. The SYBYL line notation (SLN) [6] is suitable
for representing reactions and reaction queries and pro-
vides a richer syntax for database queries comparable to
SMARTS. RInChI [7] is a line notation, which enables
a hierarchical reaction description. Its multi-layer con-
cept allows including of information about equilibrium,
unbalanced or multi-step reactions.

The most commonly used file formats for storing reac-
tions are rxnfiles [8] (contain the structural informa-
tion for the reactants and products of a single reaction);
RDfiles [8] (a more general format than SDfiles [8], that
can include reactions as well as molecules, together with
their associated data); XDfiles [8] (XML-based data for-
mat for transferring record sets of structure or reaction
information with associated data). The chemotypes [9]
is an innovative approach for representing molecules,
chemical substructures and patterns, reaction rules, and
reactions by XML-based Chemical Subgraphs and Reac-
tions Markup Language (CSRML), and allow encoding
not only the structure topology but also properties of
atoms, bonds, electronic systems, or molecules.

Some of the chemical file formats have been extended
with modules for managing chemical and biochemical
reactions. An example is CMLReact [10]—a set of com-
ponents added to the Chemical Markup Language (CML)
[11]. These can be combined to support most of the strat-
egies of reaction representation. Reaction-MQL [12],
an extension of the Molecular Query Language (MQL)
[13], is using functional groups to describe the transfor-
mations—after defining the functional groups in terms
of substructure queries, molecular graphs of reactants
are transformed by application of beginning-, end-, and

reaction-matrices to obtain the product graph (without
consideration of stereochemistry).

The Chemical Terms Language (CTL) [14] is an
approach developed by ChemAxon and uses substruc-
ture queries combined with physicochemical calculations
to turn generic reaction rules to specific transformations
(depending on a set of reactivity and selectivity rules).
The rules written in chemical terms can describe reac-
tive and inactive functional groups and the effect of
the chemical environment on the outcome of certain
reactions.

The formats for representation and storage of chemical
reactions described so far are used within various chem-
oinformatics software systems and toolkits, enabling the
transformation of input reactant structures into reac-
tion product. The open-source cheminformatics libraries
(Chemistry Development Kit [15–17], OpenBabel [18],
RDKit [19]) provide data structures to represent chemi-
cal concepts along with methods to manipulate such
structures. RDKit [19] supports application of chemical
reactions to sets of molecules by using a SMARTS-based
language similar to daylight’s reaction SMILES. Most
commercial cheminformatics packages provide support
for reaction transformation. OpenEye [20] provides reac-
tion processing divided into two categories: unimolecular
reactions and library generation. Sets of chemical trans-
form operations are derived from reaction molecules by
differences between the reactant and product patterns
and in the reaction molecule. Daylight has a Reaction
toolkit [21] that has a set of tools which support both
specific (single-step) and generic reactions. The extensive
use of polymorphism for both reaction and transform
objects is one of the key features making the Reaction
toolkit convenient to use. CACTVS [22] provides full
reaction support, including reaction properties and
reaction queries. Reaction transformations are possible
by means of advanced SMIRKS transform capabilities.
Reactor [23] is the virtual reaction engine of ChemAx-
on’s JChem [24] technology. It supports “smart” reac-
tions (generic reaction equations combined with reaction
rules) generating chemically feasible products with speci-
fied predicted properties. There is also a number of tool-
kits for handling chemical reactions with proprietary
licenses like: MolEngine [25], Molecular Operating Envi-
ronment (MOE) [26], Accord SDK [27].

The analysis of the reviewed software packages high-
lights the SMIRKS as one of the popular methods for
storage and application of chemical reactions. On one
hand, SMIRKS can be used for encoding of specific
(ordinary) reactions, which can be stored in reaction
databases or in reaction libraries. SMIRKS can also be
used to represent chemical reactions, as it is capable
to provide the computer-readable form of the familiar

Page 3 of 29Kochev et al. J Cheminform (2018) 10:42

two-dimensional structural diagrams. On the other hand,
SMIRKS has the full functionality to encode generic
reactions. Thus, by describing only the reaction centers,
the reactions are coded as rules that can be applied on
a target molecule in order to obtain a product (synthe-
sis), or to obtain its precursors (retrosynthesis). SMIRKS
is an extension of SMILES and SMARTS notations which
are among the most widely used and efficient linear
notations thus the users can easily adopt their previous
experience with SMILES/SMARTS and used it for the
purposes of reaction information management. SMILES
provide concise and efficient way to describe the molecu-
lar structures (i.e. reactants and products) on topologi-
cal level, while SMARTS expressions and SMIRKS atoms
mappings allow specification of exact chemical trans-
formation logic. Another SMIRKS advantage is that it is
easy and efficient for manual coding of the chemical reac-
tions as well as for computer handling. In this regard, an
open source SMIRKS package would provide the oppor-
tunity for development of new tools for resolving various
reaction-oriented chemical information problems such
as organic synthesis planning, retrosynthesis, prediction
of metabolism, combinatorial libraries generation etc.

The open source Ambit-SMIRKS module was initially
developed in order to enable reaction transformations in
the context of Toxtree [28] and the first implementation
was included in Toxtree 2.5.0 (2011), enabling metabolite
generation with the help of the SmartCyp [29]. Ambit-
SMIRKS supports the full SMIRKS syntax and has
already been used by several external groups and appli-
cations, demonstrating its usefulness within the chemo-
informatics community. The following sections describe
the software architecture and configuration, the available
options and functionalities and important implementa-
tion details. We also provide recommendation for speci-
fying SMIRKS based reactions using Ambit-SMIRKS
with appropriate reaction transformation setup, exam-
ples of chemical structures and transformations illustrat-
ing the software and various use cases, highlighting the
library has already been used by external projects dealing
with biotransformations.

Implementation
Implementation details
Ambit-SMIRKS is an extension to the Ambit-SMARTS
library [30] and is part of the open source software
AMBIT [31, 32]. AMBIT provides a REST web service
and user friendly web interface to a chemical substance
and structure database, various chemical structure search
facilities and toxicity prediction models. The data model
enables representation of chemical substances in real
industry conditions by supporting complex compositions
(including impurities, additives, UVCB). Comprehensive

assessment workflows are developed for read-across
and category formation based on all the data available
in AMBIT [33, 34]. The AMBIT package consists of a
database and over 30 modules, implementing various
cheminformatics functionalities. The Ambit-SMARTS
software module [30] includes substructure mapping and
search tools, used by most of the chemoinformatics tasks.

Software architecture overview. Basic workflow
The software architecture of Ambit-SMIRKS module pre-
sented in Fig. 1 provides an overview of the main com-
ponents and their links to other AMBIT modules and
external software libraries. The upper architecture layer
in Fig. 1 represents The CDK [17] and Ambit-SMARTS
library which is described in detail in Ref. [30]. Ambit-
SMARTS implements:

1.	 SMARTS linear notation parsing;
2.	 representation of SMARTS queries as internal

objects using The CDK API;
3.	 substructure searching, given a SMARTS query

(implemented by the IsomorphismTester java class).

Based on the main functionalities (1)–(3), additional
features are implemented such as database substructure
searching with two major stages screening and mapping
and equivalent atoms detection (see Fig. 1) [30]. Class
SmartsManager is a functional wrapper of all Ambit-
SMARTS functionalities and provides an API to most
tasks that can be performed including SMARTS parsing,
substructure searching in various modes, calculation of
target molecule properties needed for efficient substruc-
ture searching etc. The class SmartsToChemObject pro-
vides tools to extract chemical information from complex
SMARTS expressions.

The basic functionality of Ambit-SMIRKS is imple-
mented by 3 major Java classes SMIRKSReaction,
SMIRKSManager, StereoChemUtils and additional utili-
ties for handling H atoms and reaction search (Fig. 1).

The class SMIRKSReaction encapsulates all informa-
tion needed to describe a chemical reaction or molecule
transformation: reactants, agents, products, atom map-
ping, component grouping (CLG—Component Level
Grouping as defined by SMARTS) and the information
used for reaction application: atoms, bonds and stereo
transformations. The treatment of reaction stereo chem-
istry is implemented in a separate class StereoChemUtils.
The CDK library implements a Reaction class which is
only suitable to represent ordinary reactions. We devel-
oped SMIRKSReaction class especially for encoding
generic reactions, though it can also represent ordinary
reactions.

Page 4 of 29Kochev et al. J Cheminform (2018) 10:42

The class SMIRKSManager includes basic API han-
dling all the information within a reaction application
workflow. The reaction transformation workflow is con-
figured by a set of flags which define target molecule

preprocessing, product post processing, search mode,
stereo transformation, H atom treatment etc. Table 1
shows a list of SMIRKSManager flags.

Fig. 1  Ambit-SMIRKS software architecture

Page 5 of 29Kochev et al. J Cheminform (2018) 10:42

The underlying molecule representation layer fol-
lows the CDK conventions of chemical objects pro-
cessing, i.e. is composed of two steps: storage into an
object of type AtomContainer, and consequently con-
figuration of the chemical object (e.g. atom typing,
aromaticity detection, H atom setting, atom and bond
properties setting etc.). Most of the CDK algorithms
expect that the chemical objects are properly config-
ured. On the other hand, the files storage and other
input/output CDK utilities typically do not configure
the chemical objects and it is assumed that the creator/
user of the chemical object is responsible for the proper

configuration. The SMIRKSManager class expects
properly configured chemical objects as input reac-
tants. The post-processing of the resulting products can
be performed either by the user or by the SMIRKSMan-
ager post-processing utilities, according to the options
specified (see the flags listed in Table 1). The options
include the following operations (switched on/off by
the corresponding flags): clearing of atom hybridiza-
tion, aromaticity and H atoms before processing, atom
typing and configuration, adding of implicit H atoms,
aromaticity detection, conversion of implicit H atom to
explicit or vice versa.

Table 1  List of all flags used to configure Ambit-SMIRKS

Flag and description Default value

1. FlagSSMode
Defines substructure searching (mapping) mode and how all found sites for reaction application in the target

molecule are combined by function applyReaction(). The following modes are supported: SSM_SINGLE, SSM_NON_
OVERLAPPING, SSM_NON_IDENTICAL, SSM_NON_EQUIVALENT, SSM_ALL, SSM_NON_IDENTICAL_FIRST

SSM_NON_OVERLAPPING

2. FlagCheckResultStereo
If true, the stereo elements within the obtained product molecules are verified and incorrect ones are removed. This

flag does not define whether the stereo transformation should be applied

True

3. FlagFilterEquivalentMappings
Defines whether to filter topologically equivalent sites (mappings) for reaction application

False

4. FlagProcessResultStructures
If true, the result molecules (products) are processed according to the configurations defined by other flags below

False

5. FlagClearHybridizationBeforeResultProcess
If set true, the atom hybridization types are cleared in the product molecule. Typically this flag should be true in order

to correctly detect the new atom types of transformed molecules

True

6. FlagClearAromaticityBeforeResultProcess
If true, aromaticity information for all atoms and bonds in the obtained products is cleared. Typically this flag should

be true since the aromaticity should be detected for all new products due to possible changes in the aromatic
systems

True

7. FlagClearImplicitHAtomsBeforeResultProcess
Defines whether to clear implicit H atoms before result product processing

True

8. FlagClearExcplicitHAtomsBeforeResultProcess
Defines whether to clear explicit H atoms before result product processing

False

9. FlagAddImplicitHAtomsOnResultProcess
Defines whether to add implicit H atoms on product molecule processing

False

10. FlagConvertAddedImplicitHToExplicitOnResultProcess
Defines whether to convert the added implicit H atoms to explicit. This flag is used only if implicit H atoms are added

(see previous flag 9)

False

11. FlagCheckAromaticityOnResultProcess
Defines whether to apply aromaticity detection algorithm for the new products

True

12. FlagConvertExplicitHToImplicitOnResultProcess
Defines whether to convert explicit H atoms to implicit ones. Typically if this flag is true, it is expected that FlagAddIm-

licitHAtomsOnResultProcess = false

False

13. FlagApplyStereoTransformation
Determines whether to perform stereo transformation of the target molecules according to the defined SMIRKS. If

this flag is not set, stereo elements of the molecule are preserved when possible (e.g. when they are not changed or
deleted). If the flag is true, full stereo transformation is applied in accordance with the defined SMIRKS

False

14. FlagHAtomsTransformation
Defines whether to apply H atom transformation according to the used atom expressions in the SMIRKS

False

15. FlagHAtomsTransformationMode
Defines H atoms transformation mode: IMPLICIT or EXPLICIT. This flags is used only when previous one is set

Implicit

16. FlagAromaticityTransformation
Defines whether to apply post transformation additional aromaticity setting within obtained products based on the

SMIRKS expression

False

Page 6 of 29Kochev et al. J Cheminform (2018) 10:42

The SMIRKS parsing functionality is based on the
SmartsParser class where the reaction information from
the linear notation is represented as an object of the class
SMIRKSReaction (see more details in next section). For
a given target molecule (a reactant), all possible sites for
reaction application are found by means of substructure
search using the IsomorphismTester functionality [30].
The application of the reaction (the actual transformation
of the target molecule) is performed for some or all of the
matched substructures, which are combined in accord-
ance with the reaction application mode (see more details
in following sections). The reaction application algorithm
makes use of the transformation information of the
atoms, bonds and stereo elements stored in class SMIRK-
SReaction, the stereo chemistry utilities, the HAtom-
Manager class and the optional product post-processing.

Chemical objects representation
Chemoinformatics treatment of a chemical reaction
requires handling of three different types of chemical
objects: molecules, search queries and chemical reaction
specific information, such as atom mapping and chemi-
cal transformation data. The topological representation
of a chemical compound (i.e. chemical graph) as imple-
mented by the CDK class AtomContainer comprises a
list of atoms, list of bonds, standard operations over these
lists as well as a stereo element list (see more details on
CDK in [17]).

The substructure search queries are another essential
type of chemical objects needed for the realization of
Ambit-SMIRKS reaction management. The substructure
query is represented by an extended graph, encoded by
the CDK class QueryAtomContainer (see Fig. 2). Instead
of using simple IAtom list and IBond list, the components
of the QueryAtomContainer are atom expressions and
bond expressions implemented accordingly as descend-
ants of the classes SMARTSAtom and SMARTSBond.
Within Ambit-SMARTS package [30], several specialized

classes were implemented (see Fig. 2) where SmartsAto-
mExpression and SmartsBondExpression realize the full
power of SMARTS/SMIRKS syntax.

The reaction information representation is imple-
mented by the SMIRKSReaction class (Fig. 3) and
includes two specialized graphs respectively for the reac-
tants and the products. If the reactant or the product part
contains more than one molecule or fragment, the cor-
responding graph is disconnected, and additional atom
numbering is supported to designate which fragment
the atoms belong to. The latter is needed for Component
Level Grouping in SMARTS matching. The mapping
information is a significant part of the reaction represen-
tation, linking the atoms from the reactant graph to the
atoms of the product graph. Figure 3 shows the mapping
for the reduction of amides:

[NX3H0,NX3H1,NX3H2:1][CX3:2]=[OX1]≫[NX3
H0,NX3H1,NX3H2:1][CX3:2]([H])[H].

The nitrogen and carbon atoms are mapped by SMIRKS
indices 1 and 2 accordingly. The reactant oxygen atom and
the explicit H atoms are not mapped (unmapped atoms
usage is explained in a following section). Additional
mappings are used for the practical application of a reac-
tion transformation against a target: the target reactant
molecule maps to the reactant query graph and respec-
tively the product query graph maps to the result prod-
uct molecule. In Fig. 3 example, the nitrogen query atom
[NX3H0,NX3H1,NX3H2:1] matches the reactant atom 3
and the carbon query atom [CX3:2] matches the reactant
atom 2. In the result product (after applying the reaction)
these atoms have new indices 3 and 4 respectively.

Based on the mapping information, the reaction trans-
formation is represented as specialized data structure
describing the changes (update, deletion, creation) of
molecule elements: atoms, atom properties, bonds, bond
properties and stereo elements.

Fig. 2  Substructure search query representation within Ambit-SMIRKS

Page 7 of 29Kochev et al. J Cheminform (2018) 10:42

Ambit‑SMIRKS parser
The Ambit-SMIRKS parser is built on top of the utilities
implemented in Ambit-SMARTS (see class SmartsParser
[30]). Initially the SMIRKS linear notation is separated
to components according to the SMIRKS syntax: reac-
tants > agents > products (most often in the form: reac-
tants ≫ products). SmartsParser is invoked for each
component and corresponding QueryAtomContainer is
generated. Figure 4 illustrates the parsing process for the
reaction of dihydropyrrole aromatization. No agents are
present in this example, and it is quite usual for SMIRKS
linear notations of generic reactions to contain reactants
and products only.

The SMIRKS parsing continues with analysis of the
atom mapping. In the following examples, major types of
atom mapping parser errors are shown:

• • Missing atom map index on one of the SMIRKS parts
(product or reactant). For example, the notation [C:1]
[C:2]≫[C:1]=[C] is with missing map index 2 on the
product side.

• • Repeating atom map index on one of the
SMIRKS parts (product or reactant) e.g. [C:1]
[C:2]≫[C:1]=[C:1]

• • Inconsistent atom elements of a pair of mapped
atoms from (one atom from reactant and one from
product side respectively have different atom ele-
ments) or undefined atoms elements for unmapped
product atoms e.g.

[C:1][C:2]≫[N:1]=[C:2].
[C:1]≫[C:1][Cl,Br].

Detecting inconsistent atom elements of mapped atom
pairs is a complex procedure. The atom elements of all
atom expressions are “extracted” and detected when
possible. The class SmartsToChemObject utilities for
analyzing SMARTS atom expression are used for this
purpose. Since the SMARTS syntax definining the atom
expressions is quite flexible, arbitrary atom expressions
are supported by SMIRKS (e.g. where an atom element
is undefined). For example, the following atoms expres-
sions contain undefined atom element: [Cl,Br,I], [!C;!N]
and [CH3,NH2,OH], while expression [CH3, CH2, CH;
!$(CO)] is with defined atom element ‘carbon’.

In order to obtain chemically reasonable structures,
the SMIRKS notation that defines the molecule opera-
tions (such as atom/bond property changes, deletions

Fig. 3  Reaction representation of amide reduction by Ambit-SMIRKS

Page 8 of 29Kochev et al. J Cheminform (2018) 10:42

and additions) should generate well defined chemical
structures as reaction products (i.e. the atom, bonds
and their properties should be exactly defined). Exam-
ples for chemically impossible operation are: “creation
of a bond which has single or double order”, “creation of
an atoms which is a carbon or nitrogen”, “setting atom
charge to be + 1 or + 2” etc.

The Ambit-SMIRKS provides basic sanity-checks to
ensure valid chemical structures on output:

1.	 It is allowed that both reactant and product atoms
from a mapped atom pair to contain undefined atom
elements (usually it is expected both atom expres-
sions to be the same).

	 Example: [C:1][*:2]≫Cl[C:1][*:2]
2.	 It is considered an error, if the reactant and product

atoms of a mapped atom pair have clearly defined,
but different atom elements.

	 Example [C:1][C:2]≫[O:1][C:2]
3.	 Unmapped product atoms with undefined atoms ele-

ments are not allowed.
	 Example: [C:1]≫[C:1][Cl,Br]
4.	 Unmapped reactant atoms with undefined atoms ele-

ments are allowed.
	 Example: [C:1] [Cl,Br]≫[C:1]
5.	 A bond expression with undefined bond order is not

allowed in the product side unless it connects two
mapped atoms and exactly the same expression with

Fig. 4  SMIRKS parsing algorithm. Reaction processing applied for reaction of dihydropyrrole aromatization

Page 9 of 29Kochev et al. J Cheminform (2018) 10:42

unknown bond order connects the corresponding
reactant atoms.

	 Examples: [C:1]=[C:2]≫[C:1]-,=[C:2] not allowed
	 [C:1]≫[C:1]-,=C not allowed
	 [C:1] -,=[C:2]≫[C:1]-,=[C:2] allowed
6.	 A bond expression with undefined bond order is

allowed in the reactant side.
	 Example: [C:1]-,=[C:2]≫[C:1]-[C:2]

The rule (2) prevents SMIRKS that defines chang-
ing of the mapped atom element (which is not a
chemical reaction any more but rather is a “nuclear
process”). By the way if the user needs such a trans-
formation (i.e. “make carbon to become oxygen”) this
could be achieved by means of unmapped atoms i.e.
C[C:2]≫O[C:2] will be a correct SMIRKS which actu-
ally “says” delete C atom and attach a new O atom
(more on mapped and unmapped atoms see in follow-
ing section).

The rule (3) prevents a chemically and technically
impossible case—to create an atom of unknown element
within a defined molecule (not a query molecule). On a
contrary, rule (4) allows removal of atoms with unknown
element. Similarly, the rule (5) prevents chemically
impossible SMIRKS instruction to create a new bond
with unknown bond order.

On the base of stored mappings, the transformation
information is generated and stored within SMIRKSRe-
action class as well. Change of the atom element is not
allowed, but atom property changes are allowed. Han-
dling atoms properties and their changes for sophisti-
cated atoms expressions is as challenging as detecting
element change within SMIRKS definitions (described
above). SmartsToChemObject class is used for ana-
lyzing atom expressions and consequently storing the
required atom properties changes in class SMIRKSRe-
action. When detecting atom property changes, policies
similar to the described above rules (1)–(6) are used. In
this case when inconsistent property values are given for
a mapped atom pair, the changes are not registered. For
example: [C+,C++:1]≫[C:1] defines a change of atom
charge while [C+,C++:1]≫[C+,C++:1][H] does not
define an atom charge change.

So far we have described the representation and stor-
age of full reaction information needed for the reaction
transformation algorithms. Reaction application is per-
formed in three main steps:

1.	 Target molecule/molecules reaction sites identifica-
tion;

2.	 Actual transformation of all identified reaction sites
(or some of them);

3.	 Combination of the result structures from step (2)
into a final set of products.

Matching reaction sites by substructure search
The reactant part of the SMIRKS linear notation is used
as a definition of a SMARTS substructure search query,
where the mapping indices are ignored. Ambit-SMIRKS
uses the substructure search implementation of Ambit-
SMARTS [30] to find the reaction sites.

Ambit-SMARTS module supports also fragmented
queries with Component Level Grouping (CLG). The
SMARTS syntax allows “zero-level” parentheses which
can be used to group dot-disconnected fragments. This
grouping operator is particularly important for substruc-
ture matching of reactions with multiple components in
the reactant part.

The substructure searching can be performed in sev-
eral modes: single, non-overlapping, non-identical, non-
homomorphic or externally specified list of sites. Figure 5
illustrates the basic substructure match modes. For the
molecule of cyclohexane-1,2-diamine, substructure
query defined by SMARTS notation CCN is matched at
4 possible places i.e. the fragments listed in column “All
matches”: A {match atoms 3, 2, 1}, B{match atoms 7, 2, 1},
C{match atoms 6, 7, 8} and D{match atoms 2, 7, 8}.

All the matches in this example correspond to the non-
identical mode since all found fragments (A, B, C and D)
differ one to another at least with one target atom. Non-
overlapping mode will give as a result fragments A and D
since these have no common atoms. Fragment A is topo-
logically equivalent to C as well B is equivalent to D. That
is way, non-homomorphic mode would give as a result
one of the following four combinations (couples) of frag-
ments: {A, B}, {A, D}, {B, C} or {C, D}. EquivalenceTester
class is used to find all topologically equivalent atoms and
fragments respectively. The utilization of various sub-
structure match modes is needed for the implementation
of efficient and flexible algorithm for reaction application
described in following sections.

Support for recursive SMARTS expressions
Ambit-SMIRKS supports the full standard of the rich
SMARTS syntax as far as it is chemically reason-
able for the definition of SMIRKS reactions. Ambit-
SMIRKS works with atom expressions as well as with
bonds expression (the standard SMIRKS includes only
atom logical expressions). The only exceptions from the
SMARTS syntax are the atom and bond inconsistency
rules described in previous sections. The rules do not
impose restriction on the standard, but exclude chemi-
cally unreasonable cases. Additionally, the SMARTS/
SMIRKS syntax is enriched in Ambit with some third
party extensions [30].

Page 10 of 29Kochev et al. J Cheminform (2018) 10:42

One of the most important features of Ambit-SMIRKS
is the support of recursive atom expressions. A recur-
sive atom expression includes within its logical atom
primitives another SMARTS string, where the recursive
expressions are defined by the syntax: […$(smarts)…].

For example expression [CH3;!$(C*=O);!$(C*N)]
defines a methyl group that is not next to an atom with
carbonyl or amine group. The support of recursive atom
expression gives great flexibility of defining the complex
molecular patterns logic. In this way Ambit-SMIRKS
allows to precisely define the reaction centers by speci-
fying details about the atom environments. In contrast,
non-recursive SMARTS can define expressions only of
the atoms themselves but not of any close or distant envi-
ronment of the atoms.

The difference in the course of reactions with and with-
out recursive expressions explicitly defines the environ-
ment around the reaction site atoms is shown in Fig. 6. In
this example, the reaction of hydrolysis can occur on two
sites—the ester functional group (a linear ester) and the
lactone (a cyclic ester). In the first case, without recursive
expression, it is possible hydrolysis of the lactone to take
place—the ring opens and only one product is obtained.
In the second case, a recursive expression indicates that
the hydrolysis reaction will occur to an ester which is not
a lactone. Thus, the lactone functional group does not
match the reaction and the hydrolysis proceeds with the
linear ester.

Structure transformations
A SMIRKS transformation of a given target molecule
can be applied directly on the target molecule by trans-
forming its AtomContainer object. In this case, the
target molecule is the reactant at the start of the trans-
formation, and the same AtomContainer holds the reac-
tion products after the transformation. If more than
one product is obtained, the resulting AtomContainer
will be fragmented and fragment extraction procedure
may be required. Another feature supported in Ambit-
SMIRKS is generation of molecule copies, corresponding
to particular products, obtained by applying the reac-
tion transformation at particular sites. In both cases the
structure transformations are based on the substructure
search modes described above. When transformation is
performed without molecule copying, the input target
molecule is modified as the transformation is applied
in all found reaction places combined according to the
used reaction mode. For example in mode SINGLE one
of the products 1, 2, 3 or 4 will be obtained (see Fig. 7).
In mode NON_HOMOMORHIC one of the products
10 or 11 will be obtained. The application of reaction
transformation directly on the input molecule in one
of the modes ALL or NON_IDENTICAL will produce
chemically incorrect structure 9 since all four possible
rings are transformed thus producing 5 valent carbons.
The user is expected to check the chemical correct-
ness of obtained reaction products. Incorrect structure

Fig. 5  Substructure search/match in various modes for the molecule of cyclohexane-1,2-diamine

Page 11 of 29Kochev et al. J Cheminform (2018) 10:42

obtained in NON_IDENTICAL mode could be avoided
if reaction transformations are applied in a cascading
style i.e. the transformations are applied in several sin-
gle steps (one single transformation for each reaction
site) while remaining sites are checked whether they are
still valid instances for the next reaction steps. The direct
transformation of the target molecule without copying
does not generate all possible product combinations,
but the reaction is applied simultaneously over all sites
comprising one possible combination per mode (ALL,
NON_IDENTICAL, NON_OVERLAPPING, NON_
HOMOMORPHIC or SINGLE). For example, in mode
NON_OVERLAPPING only one of the structures 5, 6, 7
or 8 will be obtained.

In order to obtain all possible products in single mode
(e.g. structures 1, 2, 3 and 4, see Fig. 7), reaction trans-
formation with a single copy for each product should be
applied. Thus for each molecule copy, the reaction will be
performed in different location and all possible products
will be obtained. If needed, Ambit-SMIRKS provides an
option to generate all possible non-overlapping combina-
tion e.g. structures 5, 6, 7 and 8. Instead of obtaining the

reaction sites by the standard search modes, user defined
sites for reaction application could be specified by IAc-
ceptable interface. This option is especially helpful when
additional information of reaction occurrence sites is
available from external sources (e.g. quantum chemical
calculations, other molecular modeling method, expert/
user selection etc.). In the result products shown in Fig. 7,
there are several pairs of topologically equivalent struc-
tures: 1 is equivalent to 4, 2 is equivalent to 3, 5 is equiva-
lent to 8 and 10 is equivalent to 11. In order to remove
the redundant result products, flag FlagFilterEquivalent-
Mappings should be set to TRUE.

By elaborating the details of the SMIRKS process-
ing logic, we hope to provide to Ambit-SMIRKS users
insight into its use and assist with obtaining correct
results from chemical point of view. One foundational
technical aspect of the SMIRKS usage is that linear nota-
tion SMIRKS should be considered as a small “chemical
program” or macros that “says” which parts of the target
molecule to be transformed and how the identified parts
to be transformed. Ambit-SMIRKS library will do exactly
what it can infer from the changes discerned across the

Fig. 6  Specification of reaction center via recursive SMARTS for the reaction of ester hydrolysis

Page 12 of 29Kochev et al. J Cheminform (2018) 10:42

SMIRKS reaction sides which include detailed informa-
tion about the manipulations of atoms and bonds, their
properties, H atoms, stereo etc. Knowing the SMIRKS

syntax and semantics well, and complying with the good
practices concerning its usage are keys for the efficient
usage. Failing to describe correctly the intended chemical

Fig. 7  Reaction transformation according to the substructure match modes

Page 13 of 29Kochev et al. J Cheminform (2018) 10:42

transformation will lead to undesirable results or some
side effects. In “Results and discussion” section we dis-
cuss topics which are important for working efficiently
with Ambit-SMIRKS as well as issues we have observed
through several years of feedback and interaction with
external users of the library that can be avoided by fol-
lowing the good practices of composing correct SMIRKS
and using appropriate chemical object processing.

SMIRKS searching
Reaction search utilities are implemented by several ded-
icated classes: SmartsIsomorphismTester, SmartsMatch
and ReactionSearch (see Fig. 8). Reaction search is con-
sidered in three basic scenarios:

1.	 Match an ordinary reaction against another ordinary
reaction (i.e. reaction identification);

2.	 Match a generic query SMIRKS reaction against
ordinary reaction represented in a simple manner as
a set of products and a set of reactants;

3.	 Match a generic query SMIRKS reaction against
another generic target SMIRKS reaction.

The first scenario does not need special reaction utili-
ties since it is executed by means of structure identity
search for the reactants and products (e.g. on the base of
InChI keys or other unique structure representation).

In the second scenario, the target reaction is repre-
sented via usual chemical objects such as CDK Atom-
Container. This simple reaction representation is handled
by means of existing substructure searching implemen-
tations. Bearing in mind that the SMIRKS could be con-
sidered as two separate SMARTS notations (one for the
reactants and one for the target), the reaction searching
is performed by means of standard SMARTS matching
against the target reactants and products respectively.
This operation is performed using the IsomorphismTester
class implemented in Ambit-SMARTS (see also Fig. 1).

The third scenario is the most challenging case of
reaction searching. Usually the reactions from a reac-
tion database (or reaction set) are represented via
SMIRKS notation or similar reaction representation
in a more generic fashion (i.e. a set of many ordinary
reactions described by means of a more general nota-
tion or rule). The reaction search in this case requires
an algorithm to match a query SMIRKS against
another reaction represented also with SMIRKS. In this

Fig. 8  Reaction search strategies

Page 14 of 29Kochev et al. J Cheminform (2018) 10:42

scenario, the reaction matching also will include the
two major steps: matching the reactants and matching
the products. However, the standard Ambit-SMARTS
matching tools (i.e. IsomorphismTester) will not be
applicable, since the target objects are not standard
chemical objects (e.g. AtomContainer objects) but
are “query” objects. The CDK QueryAtomContainer
is based on IQueryAtom and IQueryBond interfaces
that can match only IAtom and IBond objects. For this
purpose we have developed a specialized class Smart-
sMatch which provides functionality for matching
IQueryAtom against another IQueryAtom and respec-
tively IQueryBond against another IQueryBond. A new
isomorphism class called SmartsIsomorphismTester
was developed (as an extension of the SmartsMatch
class), which can be used for matching one SMARTS
object (i.e. QueryAtomContainer) against another
SMARTS object. The latter is the case for match-
ing the reactants/products from one SMIRKS reac-
tion against reactants/products of another SMIRKS.
SmartsMatch utilities are tricky since instead of ordi-
nary atom, an atom expression is used (the same holds
for the bond handling). The SmartsMatch class imple-
ments matching of one atom/bond expression against
another atom/bonds expression. The matching can be
performed in various modes. In EXACT mode both
expression must be exactly the same in order to have a
match e.g. atom expression [Cl,F,Br] matches [Cl,F,Br]
but does not match [Cl,F] expression. In mode SPE-
CIFIC_MATCHES_GENERIC [Cl,F,Br] will not match
[Cl,F] but it will match [Cl,F,Br,I] or * expressions.
Mode GENERIC_MATCHES_SPECIFIC is applied
with reverse logic to the previous one i.e. [Cl,F,Br] will
not match [Cl,F] but it will match [Cl,F,Br,I] expression.
The reaction matching modes can be used for various
searching needs. When one wants to find a reaction
which is a particular case of a more generic reaction
SPECIFIC_MATCHES_GENERIC mode will be uti-
lized. If one searches a set of concrete realizations of
a generic reaction, mode GENERIC_MATCHES_SPE-
CIFIC would be required or scenario (2) can applied as
well. We should mention that applying search scenario
(3) for more complex or "obscure” cases (e.g. expression
of the type [!CX4;!NX3]) is very challenging and might
not work properly. We plan to continue our work on
improving the handling of more complex cases.

Results and discussions
Ambit-SMIRKS functionalities have been developed,
improved and tested for several years in various use
cases and chemoinformatics tasks. In this section we pre-
sent specific Ambit-SMIRKS usage details concerning
chemoinformatics routines such as treating of H atoms,

aromatic systems and stereo elements as well as sugges-
tions for power usage of SMIRKS syntax, to achieve max-
imal benefits, based on numerous user feedbacks and use
cases.

Mapped versus unmapped atoms
The SMIRKS linear notation supports atom mapping def-
inition with following syntax:

[<atom expression>:<n>]

The atom mapping index, <n>, is specified after the
atom expression that defines the chemical logic, within
the square brackets. For example the notation [C;R:3]
defines an aliphatic carbon which is part of a ring system
and has a reaction mapping index 3. Typically, atom map-
ping is used to map the product atoms versus reactant
atoms e.g. when several atoms of particular element are
present on both sides of the reaction, the atom mapping
index distinguishes between the atoms (recall the atom
definitions in SMIRKS are not unique).

Figure 4 shows another example, where the four carbon
atoms from the five member ring are distinguished on
the base of atom mapping (SMIRKS notation: [N:1]1[C:2]
[C:3]=[C:4][C:5]1≫[N:1]1[C:2]=[C:3][C:4]=[C:5]1).
The SMIRKS syntax also supports unmapped atoms e.g.
a transformation could be defined as C=C≫CC. Ambit-
SMIRKS software supports both mapped and unmapped
atom definitions.

The logic behind unmapped atoms is the following:

1.	 Unmapped atoms on the reactant (left) side of the
SMIRKS, as well as all bonds incident to unmapped
atoms are removed from the resulting products;

2.	 Unmapped atoms on the product (right) side of
SMIRKS are created and added to the resulting
products, the corresponding new bonds (from the
unmapped atom to other atoms) are created as well.

The above points describe the actual cases, where
unmapped atoms are to be used within SMIRKS: delet-
ing atoms or adding atoms. In all other cases where
atoms are “rearranged” by changing, adding or remov-
ing bonds, obligatory usage of mapped atoms is consid-
ered a good practice. An incorrect usage of unmapped
atoms leads to side effects and “strange” or incorrect
application of the reactions SMIRKS. Even if specifying
syntactically correct SMIRKS, the chemical logic when
using unmapped atoms is different and Ambit-SMIRKS
will follow exactly the transformation logic. Figure 9
illustrates the difference between using mapped and
unmapped atoms within the same simple SMIRKS
transformation: changing double bond to a single one.

Page 15 of 29Kochev et al. J Cheminform (2018) 10:42

The major side effect obtained by the incorrect usage
of unmapped atoms (e.g. C=C≫CC) is fragmenta-
tion of the resulting products (most often undesired).
The latter is due to the fact that the unmapped atoms
are deleted at the reactant side and then added again
on the product side. In this process the bonds inci-
dent to the deleted unmapped atoms are removed thus
result products are fragmented for example propene
transformation gives ethane and methane instead of
propane. Similarly, cyclohexene is not correctly trans-
formed to cyclohexane, but instead two fragments are
obtained. In Fig. 9 correct double bond transforma-
tion is obtained only for the case of SMIRKS with fully
mapped atoms [C:1]=[C:2]≫[C:1][C:2]. The mixed
SMIRKS case ([C:1]=C≫[C:1]C) with one mapped and
one unmapped atom also produces fragmentation. Typ-
ically for normal chemical transformations, SMIRKS
atom mapping is needed and within the Ambit-SMIRKS
module it is considered as a good practice. Although a
notation like C=C≫CC is very simple and attractive, it
only works by coincidence for the molecule of ethane
and generates fragmented products for all other cases
(see Fig. 9) unless of course this side effect is desired.
Another exception of the recommended practice for

fully using mapped atoms is the case of explicit H
atoms. When H atoms are defined explicitly within the
SMIRKS they may be mapped or unmapped since are
treated as the other heavy atoms. For both variants of
explicit H atom definition, the final result is the same
because H atoms are topologically connected only to
one atom and thus removing and adding them again
(which is the case of unmapped H atoms) does not
influence other topological connections. For example,
the following SMIRKS variants are equivalent from the
point of view of the chemical products obtained:

[C:1]=[C:2][O:3][H]≫[C:1][C:2] [O:3][H]
[C:1]=[C:2][O:3][H:4]≫[C:1][C:2] [O:3][H:4]

A minor speed decrease could be expected for the first
case since extra H atom deletion and H atom creation is
executed. In some occasions using unmapped explicit H
atoms is preferred due to the simplicity of the SMIRKS.

Hydrogen atoms handling
The majority of chemoinformatics software systems, as
well as Ambit-SMIRKS handle the hydrogen atoms in
two basic manners: (1) as implicit H atoms described as

Fig. 9  Processing unmapped atoms in SMIRKS notation

Page 16 of 29Kochev et al. J Cheminform (2018) 10:42

attributes to other heavy atoms and (2) explicit H atoms
which are treated as normal heavy atoms. Usually, the
implicit hydrogen atoms approach is preferred, as the
connection tables are larger when using explicit hydro-
gens (up to three times large since about 2/3 of the atoms
in organic molecules are hydrogens). However using
explicit H atoms in SMIRKS transformations, allows
robust and more precise description of the chemical
reaction logic. Figure 10 shows three main scenarios of H
atom treatment within Ambit-SMIRKS software.

The first scenario of handling aromatic hydroxyla-
tion reaction is based on explicit description of all atoms
including explicit H atoms as well. We recommend this
approach as the best practice for describing chemi-
cal reactions, since it defines the changes of all chemical
bonds including those attached to H atoms. This approach
requires strict description of all changes within the mol-
ecule, due to the chemical reaction specified. This way the
chances for obtaining chemically correct products will be
higher. Chemically correct products are not guaranteed
by the SMIRKS standard itself—the SMIRKS syntax just
gives means to describe the desired molecule transforma-
tion, regardless of its correctness. The first scenario on
Fig. 10 requires explicit H atoms representation of the tar-
get molecule, otherwise the reaction will not be applied.

The second scenario on Fig. 10 is based on Ambit-
SMIRKS option, activated by setting FlagHAtomsTrans-
formation = true. This way the implicit H atoms defined
by the SMIRKS notation are used as instructions to apply
changes to the H atoms. By default, this flag is false, i.e.
the SMIRKS atoms expressions containing specification
of H atoms (implicitly in fact) will be used only to match
the target atoms by substructure search, (e.g. [CH3] will
match a carbon with 3 H atoms). When FlagHAtoms-
Transformation = true, the H atom information is used
to match the reaction sites, as well as to define H atoms
changes e.g. [CH3:1]≫[CH2:1][OH] defines a primary
carbon with 3 H atom neighbors that is hydroxylated and
the transformed carbon atom will be with two H neigh-
bors. Accordingly, the newly created oxygen atom on
the product side is with one H neighbor. The FlagHA-
tomsTransformation option works on molecules with
implicit and explicit atoms where FlagHAtomsTrans-
formationMode is used to define how to perform the
transformation of the H atoms. When FlagHAtomsTrans-
formation = false, the H atom info within atoms expres-
sions will not have any effect on the transformation (only
for matching). Another aspect of the second scenario
example is that the SMIRKS notation [CH3:1]≫[CH2:1]
[OH] defines hydroxylation only for primary carbons
while [C:1][H:2]≫[C:1]O[H:2] defines hydroxylation for
all types of hydrogens: primary, secondary and tertiary

(the last SMIRKS notation works only for molecules with
explicit H atoms). If it is needed to define the reaction
only for primary carbons it is possible in the first scenario
by SMIRKS like this [CH3:1][H:2]≫[C:1]O[H:2] (should
not confuse the implicit [CH3], that defines the primary
carbon atom with the explicit [H:2] which defines how
reaction transformation is applied). Complications and
problems with the H atom transformation option can
be observed when complex SMIRKS atom expressions
are used e.g. [CH3,CH2:1]≫[CH2,CH1:1][OH] will not
work; that is why we recommend the explicit H atom
approach.

The third scenario is called “automatic” and it relies
on post transformation cleaning of incorrect H atoms (if
obtained) and setting automatically anew the implicit H
atoms (e.g. by CDK hydrogen atoms adding utility). The
SMIRKS used in this case is quite simple [C:1]≫[C:1]O.
This approach looks attractive with its simplicity (and
could be called also a “lazy” approach) but it can result in
chemically incorrect structures, where the usage of post-
processing cleanup is mandatory. Apart from the need
of product molecules cleanup, another disadvantage of
this approach is the fact that the reaction transformation
result depends not only on the SMIRKS transformation
rules, but also on the cleanup procedure.

Handling aromatic systems
The chemoinformatics systems handle aromaticity in
two major ways: by Kekule resonance structure repre-
sentations and by delocalized aromatic systems, typi-
cally represented by aromaticity flags of atoms and
bonds. Both approaches have pros and cons, depending
on the use cases and the underlying chemistry models.
The aromaticity information within SMIRKS is primar-
ily used to define the substructure searching queries for
the reaction transformation sites identification, e.g. [c:1]
[H]≫[c:1]O[H] defines aromatic hydroxylation. Making
use of such information (particularly within the product
side of the SMIRKS) to define aromatic system transfor-
mations is quite challenging. For example, the SMIRKS
transformation of the type [C:1][C:2]≫[c:1]:[c:2] is tricky
and in most of the cases chemically incorrect results will
be obtained. The transformation above is interpreted as
instruction to “make this single bond to be an aromatic
one”. However, the aromaticity of the bond depends on
a larger system of atoms, which is not known before-
hand. Hence, this transformation rule may be applicable
in some occasions as an exception, but generally such
SMIRKS “statement” is not chemically correct. More
elaborated SMIRKS of the type:

[C:1]1[C:2]=[C:3][C:4][C:5][C:6]1≫[c:1]1:[c:2]
[c:3]:[c:4][c:5]:[c:6]:1

Page 17 of 29Kochev et al. J Cheminform (2018) 10:42

provides more precise transformation rule, since the
entire aromatic ring is specified on the product side.
However, in making the ring on the product side aro-
matic, there is also possibility for potentially incorrect
result products, in case of e.g. fused rings to this ring,
etc. Within Ambit-SMIRKS (see Fig. 11) we consider
a good practice handling aromatic transformation as
Kekule structures, since in this way all bonds orders are
defined explicitly and the SMIRKS transformation of the

bonds is clearly defined as well. After applying a reac-
tion rule, Ambit-SMIRKS performs post-processing aro-
maticity detection algorithm and if aromatic system are
formed due to the bonds changes, the aromatic atom
and bond flags are assigned accordingly. The result mol-
ecules could be represented in aromatic form or stay in
a Kekule form. Some may consider the need to rely on
particular aromaticity detection algorithm a disadvantage
for this approach. This is only a reasonable point when

Fig. 10  Handling H atoms for aliphatic hydroxylation SMIRKS reaction

Page 18 of 29Kochev et al. J Cheminform (2018) 10:42

the chemoinformatics system lacks a good aromaticity
detector. Ambit-SMIRKS relies on The CDK aromatic-
ity detector which has been significantly improved in the
latest releases of CDK [17]. When the user prefers own
aromaticity detector the following option is required
FlagCheckAromaticityOnResultProcess = false.

Stereochemistry support
The stereochemistry in chemoinformatics systems [1] is
represented in two main ways (see Fig. 12). The absolute
stereochemistry approach describes the elements of the
stereo group by prioritizing (ordering) the stereo ele-
ments on the base of absolute chemical logic that does

Fig. 11  Handling aromatic systems by Ambit-SMIRKS

Page 19 of 29Kochev et al. J Cheminform (2018) 10:42

not depend on the atom numbering (the latter typically
depends on the graph walk algorithm). For example
famous Cahn, Ingold, Prelog (CIP) priority rules [35]
are the basic approach used by chemists to describe
chiral atoms or groups. CIP rules approach is used in
some cases of computer representation and handling of
molecular stereo information e.g. direct representation
of the stereo by means of 3D coordinates or stereo desig-
nations (R/S) in 2D structure diagrams. The widely used
approach for stereo handling on topological level is the so
called relative stereo representation. In Fig. 12, the rela-
tive stereo approach is used for the CDK based internal
stereo representation of 2-hydroxypropanoic acid, as well
as for the molecule SMILES.

The SMILES linear notation and respectively SMARTS
and SMIRKS notations (regarded as extensions of
SMILES) are based on the relative stereo approach,
which is used to describe the stereo configurations in
molecules, search queries and reactions accordingly.
The stereo element priorities within relative approaches
depend on the atom numbering and thus influence the
algorithms of atom iteration, used to define the sets of
stereo elements. The priority of the stereo elements, in
the case of SMIRKS, SMARTS or SMILES, is defined
by the order of appearance in the linear notation which
is equivalent to usage of random atom numbering. For
the molecule of 2-hydroxypropanoic acid (see Fig. 12),
the relative groups priorities within the SMILES are
1-OH, 2-H, 3-CH3, 4-COOH. It should be noted that
stereo information represented in a relative fashion is
still the same (the molecule is in R configuration), just
the technical means for representation, interpretation
and usage are different. The conversion from relative to
absolute stereo and vice versa is needed. The user should

not mismatch the R/S designation with @/@@ trying to
make direct correspondence between both notations (for
more details see the SMILES standard documentation
[36]). For example, the R configuration of molecule of
2-hydroxypropanoic acid can be represented by different
SMILES notations i.e. several relative descriptions of the
same stereo information:

O[C@H](C)C(O)=O	� O[C@@H](C(O)=O)C
C[C@@H](O)C(O)=O	� C[C@H](C(O)=O)O
C(O)(=O)[C@H](O)C	� C(O)(=O)[C@@H](C)O

Ambit-SMIRKS stereo handling is based on the rela-
tive approach for stereo information representation, as
both the SMIRKS linear notation and the internal CDK
objects are based on it. The major types of stereo ele-
ments supported by CDK library are: tetrahedral chiral
atoms, cis/trans double bond configuration and allene
atom chirality.

Ambit-SMIRKS supports stereo transformation cases
that can be summarized in two major groups:

1.	 stereo transformation not directly specified by
SMIRKS (3 cases, see Fig. 13)

2.	 stereo transformation specified by SMIRKS (3 cases,
see Fig. 14)

In order to use the full capability of Ambit-SMIRKS
stereo transformation utilities, FlagApplyStereoTransfor-
mation should be set to true. If this flag is not set, ste-
reo transformation is supported only for the trivial cases
shown in Fig. 13a, c.

Figure 13 illustrates three major cases of Ambit-
SMIRKS stereo transformation that are not directly

Fig. 12  Stereo representation approaches for the molecule of 2-hydroxypropanoic acid

Page 20 of 29Kochev et al. J Cheminform (2018) 10:42

Fig. 13  Stereo transformation cases without stereo specification within SMIRKS notation. a Stereo element preservation, b stereo element change
of ligand, c stereo element removal

Fig. 14  Stereo transformation cases defined by SMIRKS notation. a Create new stereo element, b stereo element update/change, c stereo element
removal

Page 21 of 29Kochev et al. J Cheminform (2018) 10:42

defined by SMIRKS, but are implied by chemists. The
stereo chemistry element preservation is the most trivial
one—if particular transformation does not influence a
given stereo element, the stereo element is preserved e.g.
the chiral atom from Fig. 13a remains chiral. The trans-
formation depicted in Fig. 13b replaces the OH group
with NH2 group. The initial OH group is a ligand to the
chiral center (C atom) and as such, O atom is registered
in the tetrahedral chiral atom stereo element. Ambit-
SMIRKS specially treats the cases where the applied
reaction transformation updates the corresponding ste-
reo elements. Case b of Fig. 13 is not trivial although it
is logically expected by the chemist. If FlagApplyStereo-
Transformation is not set, such stereo elements will not
be updated accordingly and after finishing the SMIRKS
transformation, the corresponding stereo element will
be invalidated and removed i.e. for the option FlagAp-
plyStereoTransformation = false, chiral elements that
are directly influenced by the SMIRKS reaction will be
removed. Case b has other interesting subcases:

• • if the SMIRKS transformation adds a new ligand to
the stereo element that is chemically or topologically
equivalent to some other ligand, practically the atom
center will be no longer chiral.

• • if more than two ligands are replaced then stereo is
tried to be preserved but some side effects are possi-
ble. For such cases, if strict stereo handling is needed,
it is recommended to define the stereo chemistry
transformation within the SMIRKS if possible.

Figure 13c shows a case where the stereo element is
invalidated by the reaction and hence the chiral atom
center is removed.

Apart from the indirect stereo transformation cases,
Ambit-SMIRKS supports cases of stereo transformation
defined directly by the SMIRKS notation summarized in
Fig. 14. Three major scenarios are possible. In the first
case (Fig. 14a), a new stereo element is created where the
product part of the linear notation SMIRKS defines the
new stereo configuration. Existing stereo element can be
updated (for example S configuration is changed to R, see
Fig. 14b) where stereo information is defined both in rea-
gent and product part of the SMIRKS for the same stereo
group. Also it is possible to define removal of a stereo ele-
ment (Fig. 14c) where the stereo element is defined in the
reagent part of SMIRKS but not in the product part. The
latter case is supported by SMIRKS syntax and although
it is a rarer one from practical point of view, it could be
useful for describing transformation from chiral to race-
mic compounds or cleaning the stereo elements from the
molecule when needed.

Comparison between Ambit‑SMIRKS and other
open‑source chemoinformatics tools
We present comparison between Ambit-SMIRKS and
two popular open source chemoinformatics pack-
ages, supporting chemical transformations based on
SMARTS/SMIRKS.

Open Babel is an open source chemical toolbox
designed to handle chemical information in many lan-
guages of chemical data (over 110 chemical file formats)
and includes ready-to-use programs and a reach chemo-
informatics platform allowing anyone to search, convert,
analyze, or store data from molecular modeling, chem-
istry, biochemistry etc. [18]. Chemical transformations
analogous to the SMIRKS based reactions are not directly
available in the ready-to-use Open Babel programs but
can be performed via programmatic API in C++ as well
as available wrappers in Python and Java. Open Babel (up
to version 2.3) library does not support direct handling of
SMIRKS however it has a specialized class OBChemTsfm
which is capable of performing SMARTS based structural
modification (chemical transformation). Two SMARTS
notations (one for the reactants and one for products)
are expected to be submitted as input into OBChemTsfm,
which practically makes this approach equivalent to the
usage of SMIRKS. The class OBChemTsfm has very sim-
ple interface and the user cannot configure the chemical
transformation itself but should rely solely on the linear
notations provided on input and the implemented algo-
rithms in OpenBablel. In contrast, Ambit-SMIRKS allows
detailed fine-tuning and configuration of the reaction
application and chemical processing. We consider Ambit
approach useful and needed in many use cases since the
chemical logic and the comprehensive SMIRKS notations
require differentiation in various scenarios. On the other
hand, the more complex Ambit configuration implies
slower learning curve which can be considered as a dis-
advantage but at the end the user has more flexibility.

RDKit is a rich open source toolkit for cheminformatics
[19] which includes input/output to basic chemical for-
mats, substructure searching, chemical transformations
(based on removing matched substructures), chemical
reactions, molecular serialization, 2D depiction, finger-
printing and many other chemoinformatics features.
The core RDKit functionalities are written in C++,
while typically the library is used via Python API. RDKit
(as of release 2018.03) has a full support of SMIRKS
based chemical transformations and the programmatic
approach (API) is quite similar to the one used in Ambit-
SMIRKS which includes two major components: (1)
creation of a chemical reaction object by means of class
ReactionFromSmarts which takes as an input a SMIRKS
notation and (2) reaction application to the target

Page 22 of 29Kochev et al. J Cheminform (2018) 10:42

chemical objects (reactants). As a result, a matrix with
molecules is obtained which includes all products (the
elements of a particular row) for each site the reaction
takes place at (each row corresponds to the particular
reaction site). Similarly, Ambit-SMIRKS returns a list of
atom containers for each reaction site where each atom
container may be fragmented consisting of one or more
chemical reaction products. RDKit applies the reaction
against all possible sites regardless of topological equiva-
lence or site overlapping and applies the transformations
only in single mode. Ambit-SMIRKS supports this func-
tionality as mode ALL which is one of the several modes
discussed in section Structure Transformation. Addition-
ally, Ambit-SMIRKS offers selectivity of the reaction sites
by means other reaction modes such as NON_IDENTI-
CAL, NON_OVERLAPPING, NON_HOMOMORPHIC.
The latter ones can be achieved in RDKit by additional
post-processing of the resulting matrix (the user has to
implement appropriate procedures). Another feature
available in Ambit-SMIRKS but missing in RDKit is the
possibility to apply reactions simultaneously at more than
one site (RDKit runs the reaction only in single mode).

We have performed benchmark tests of Ambit-
SMIRKS and RDKit SMIRKS transformation algorithms.
For this purpose we used a set of 545 compounds includ-
ing normal constituents of the body and common com-
ponents of food, provided by Munro et al. [37] and a set
of 84 reactions from RetroTransformDB [38, 39] rep-
resented as SMIRKS linear notations. In both software
tools (RDKit and Ambit-SMIRKS), each reaction was
applied for all compounds at all possible sites thus per-
forming more than 46,000 SMIRKS transformation. For
the purpose of comparison, Ambit-SMIRKS was applied
in mode ALL with a single copy of the products for
each reaction sites. The tests were performed on a PC
computer (Intel/Core i5-8250U, 1.6 GHz/12 GB RAM).
The calculations took 30 s by RDKit and 40 s by Ambit-
SMIRKS. The computational time for both software
includes the SMIRKS parsing and reaction application
as well as molecule preprocessing and file operations.
Ambit-SMIRKS was a little slower (however execu-
tion time was in the same range) than RDKit but hav-
ing in mind that Ambit-SMIRKS is a Java application
(compared to the RDKit C++ based core) its algorithm
performance should be considered as very good. Out of
46,410 tests, 6096 test reactions were successfully applied
for at least one site in Ambit-SMIRKS and 5729 reac-
tions were successfully applied for at least one site in
RDKit accordingly. The obtained total number of reacted
sites for Ambit-SMIRKS and RDKit is 41,453 and 40,782
respectively. We have performed statistics of the number
of reacted sites for both software packages and some dif-
ferences were observed for 436 reaction tests. From our

analysis we may infer that the observed differences are
mainly due to different treatment of equivalent molecules
sites and some small differences of the internal presenta-
tion of the molecules and the chemical reactions on both
software packages. Detailed information from the bench-
mark test between RDKit and Ambit-SMIRKS is available
at https​://doi.org/10.5281/zenod​o.13226​31. Summariz-
ing the benchmark results and functional comparison, we
may conclude that performance, API logic and efficiency
of Ambit-SMIRKS and RDKit are quite similar with a
more detailed level of reaction application configuration
in Ambit-SMIRKS.

Ambit‑SMIRKS applications
We present an overview of several applications where
the Ambit-SMIRKS library is already integrated into
chemoinformatics software (Toxtree [28, 40], enviPath
[41], BioTransformer [42, 43], Ambit Reactor and Ambit
structure standardisation).

1.	 Toxtree

Toxtree [28, 40] is a full-featured and flexible user-
friendly open source application, widely used to esti-
mate toxic hazard by a decision tree approach. Toxtree
consists of multiple modules, implementing decision
trees for various endpoints (e.g. Cramer rules for TTC,
Verhaar scheme for aquatic toxicity mode of action, Skin
and Eye irritation prediction, skin sensitization reactiv-
ity domains, START biodegradation and persistence,
Benigni/Bossa rulebase for mutagenicity and carcino-
genicity, Ames test alerts by ISS etc.). In order to estimate
bioavailability, activity and toxicity profile, metabolic
biotransformations of the target compound must be
considered and several of these modules include rules
involving chemical structure transformation; most nota-
ble are hydrolysis and metabolic transformations. Thus,
the Toxtree user may notice after certain rule is applied,
the following processing continues not with the original
molecule, but with set of reaction products. These trans-
formations are implemented as SMIRKS transformation,
using Ambit-SMIRKS.

An explicit generation of metabolites is provided by the
Toxtree SmartCYP module, which enhances the SMART-
Cyp (Cytochrome P450-Mediated Drug Metabolism)
model developed by Rydberg et al. [29] with reaction
transformation, based on predicted site of metabolism in
phase I cytochromes P450-mediated reactions. Each pre-
dicted SOM corresponds to a SMIRKS reaction, which is
applied with the help of Ambit-SMIRKS. This function-
ality is included as Toxtree module since Toxtree 2.1.0

https://doi.org/10.5281/zenodo.1322631

Page 23 of 29Kochev et al. J Cheminform (2018) 10:42

(2011). Ambit-SMIRKS transformations are applied on
the predicted molecule sites (see Fig. 15).

2.	 enviPath

Ambit-SMIRKS is used within enviPath (Fig. 16) system
for the application of chemical reactions represented as
SMIRKS notations. enviPath [41] is a database and predic-
tion system for the microbial biotransformation of organic
environmental contaminants. The database provides the
possibility to store and view experimentally observed bio-
transformation pathways. The pathway prediction system
provides different relative reasoning models to predict
likely biotransformation pathways and products.

3.	 AmbitCLI—standardization tool

AmbitCLI is a console application [44], part of AMBIT
cheminformatics platform. It includes a number of
chemical structure processing options such as fragments
splitting, isotopes removal, handling implicit hydrogens,
stereochemistry, InChI generation, SMILES generation,
structure normalisation via SMIRKS, tautomers genera-
tion, neutralization etc. All the implemented standardi-
sation rules were defined to reflect industry standards
[45], but it is possible to optionally provide a custom set
of SMIRKS rules. An example structure standardization
protocol is shown in Fig. 17 (the elements of the stand-
ardization workflow are configurable).

AmbitCLI works with various structure representa-
tion techniques (MOL, SMILES, InChI) and supports
*.SDF file format and tabular TXT format. AmbitCLI
application was used for the standardization of ChEMBL,
PubChem and other public databases (downloaded as a
SDF files) using following command line options:

Fig. 15  Application of Ambit-SMIRKS for obtaining Stepronin metabolites

Page 24 of 29Kochev et al. J Cheminform (2018) 10:42

The standardized structures are compiled into
ExCAPE-DB [45]—an integrated large scale dataset facil-
itating Big Data analysis in chemogenomics. The stand-
ardization tool is also used for processing proprietary
datasets in industry.

4.	 Ambit-SMIRKS Web Page and AmbitSmirksGUI
application

Links to the Ambit-SMIRKS web demo and a GUI
application (see Fig. 18) are available at http://ambit​
.sourc​eforg​e.net/smirk​s.html. AmbitSmirksGUI facili-
tates the options described in this paper (see list of flags
in Table 1).

Figure 18 illustrates the application of aromatic
hydroxylation reaction for the molecule 3-ethylpyridine
where four possible products are generated and shown

in the figure. The reaction is applied with default Ambit-
SMIRKS flags setting shown as checkboxes of the GUI.

Also Ambit-SMIRKS example usage code is available
at: https​://githu​b.com/ideac​onsul​t/examp​les-ambit​/
tree/maste​r/smirk​s-examp​le5.	Ambit-Reactor

Ambit-Reactor [46] is a software module for simulation
of sequences of chemical reactions and is part of open
source chemoinformatics platform Ambit. For a given set
of initial reactants, Ambit-Reactor applies exhaustively
all transformations based on generic chemical reaction
rules described in a predefined set of reactions. For each
molecule from the result products, all possible transfor-
mations are applied to obtain new products and so on. In
order to control the combinatorial explosion, the process
stops when conditions defined by the user are reached.

Fig. 16  Screenshot from enviPath web system. Reaction transformations of a biochemical pathway for the molecule of 1,2 dichclorethane;
Ambit-SMIRKS is used in each pathway step molecule transformation

http://ambit.sourceforge.net/smirks.html
http://ambit.sourceforge.net/smirks.html
https://github.com/ideaconsult/examples-ambit/tree/master/smirks-example
https://github.com/ideaconsult/examples-ambit/tree/master/smirks-example

Page 25 of 29Kochev et al. J Cheminform (2018) 10:42

Ambit-Reactor is configured via JSON files that specify
the reaction strategy, reaction rules, allowed and forbid-
den products, set of parameters and logical conditions
for reaction application and definition of sites where
reactions occurs. The reactor strategy is defined by logi-
cal expressions of molecular descriptors’ values. Ambit-
Reactor can be used for generation of virtual compound
libraries, retrosynthetic analysis and combinatorial gen-
eration of metabolites (Fig. 19) as far as appropriate reac-
tor strategy is defined. Currently, Ambit-Reactor provides
a framework and the creation of efficient reactor strate-
gies is subject of future research.

Ambit-Reactor module can be used as a software
library by means of Java API access (http://ambit​.sourc​
eforg​e.net/) or as a command-line standalone application
available at the following address http://ambit​.sourc​eforg​
e.net/react​or.html.

6.	 Cheminformatics Tools for Enabling Metabolomics

Ambit-SMIRKS library is used for the application of
biotransformation rules and structure generation within
BioTransformer [42, 43]. BioTransformer is a command-
line software tool that predicts small molecule metabo-
lism in mammals, their gut microbiota, as well as the soil/
aquatic microbiota. BioTransformer is a freely accessible
software package which also includes manually curated
database called BioTransformerDB. The input structure
is subjected to chemical validation and standardization.
Subsequently, BioTransformer predicts biotransforma-
tions and the resulting metabolites for the query mol-
ecules. The prediction involves various transforms
(CYP450, EC-based, phase II, gut microbial, or envi-
ronmental microbial) and covers a number of different

Fig. 17  Application of Ambit-SMIRKS for the implementation of a standardization protocol within ExCAPE project database

http://ambit.sourceforge.net/
http://ambit.sourceforge.net/
http://ambit.sourceforge.net/reactor.html
http://ambit.sourceforge.net/reactor.html

Page 26 of 29Kochev et al. J Cheminform (2018) 10:42

reaction types. BioTransformer builds a metabolic tree by
associating each metabolite with its parent molecules.

Future development
We plan Ambit-SMIRKS functionality extension by
including support for new stereo elements as imple-
mented in the most recent CDK 2.1.0 release, as well
as improvements of reaction search and application to
metabolite generation tools.

Conclusions
Ambit-SMIRKS open source software provides effi-
cient chemoinformatics tools for chemical reactions
handling via linear notation SMIRKS. Powerful recur-
sive SMARTS expressions, stereo handling and third
party syntax extensions give a great flexibility to the
user for defining the desired chemical logic in the form
of generic chemical reactions. All key aspects of the

structure information handling are covered by the soft-
ware. The user can fine tune the reactant pre-process-
ing, reaction transformation, products post-processing,
H atom, stereo and aromaticity handling. The software
performance has been improved on the base of numer-
ous user feedbacks of several years of development
and usage. Recommendations for specifying optimal
SMIRKS notations and best software use practices are
defined to make the most of Ambit-SMIRKS. Ambit-
SMIRKS package have already been integrated in sev-
eral scientific projects as core structure transformation
functionality, proving its usefulness to the open source
cheminformatics community. By elaborating the details
of the SMIRKS processing logic in this publication, we
hope to provide to Ambit-SMIRKS users insight into
its use and assist with obtaining correct results from
chemical point of view.

Fig. 18  Ambit-SMIRKS GUI: application of aromatic hydroxylation reaction at four possible sites of the molecule of 3-ethylpyridine

Page 27 of 29Kochev et al. J Cheminform (2018) 10:42

Fig. 19  Example reaction transformations within Ambit-Reactor application

Page 28 of 29Kochev et al. J Cheminform (2018) 10:42

Abbreviations
SMARTS: Smiles Arbitrary Target Specification; SMILES: Simplified Molecular
Input Line Entry System; SMIRKS: A Reaction Transform Language (SMILES
reaktion specification); CDK: The Chemistry Development Kit; LGPL: Lesser
General Public License; InChI: International Chemical Identifier; RInChI: The
International Chemical Identifier for Reactions; SLN: SYBYL line notation;
CSRML: Chemical Subgraphs and Reactions Markup Language; XML: eXten-
sible Markup Language; CML: Chemical Markup Language; MQL: Molecular
Query Language; CTL: Chemical Terms Language; MOE: Molecular Operating
Environment; SDK: Software Development Kit; REST: Representational State
Transfer; API: Application Programming Interface; GUI: graphical user interface;
CLG: Component Level Grouping; CIP: Cahn, Ingold, Prelog.

Authors’ contributions
The manuscript was written through contributions of all authors. These
authors contributed equally. All authors read and approved the final
manuscript.

Author details
1 Department of Analytical Chemistry and Computer Chemistry, University
of Plovdiv, 24 Tsar Assen St., 4000 Plovdiv, Bulgaria. 2 Ideaconsult Ltd, 4 A.
Kanchev Str., 1000 Sofia, Bulgaria.

Acknowledgements
We acknowledge feedback, testing and suggestions for improvements
received by numerous colleagues and users of Ambit SMIRKS library.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Ambit-SMIRKS is available as a software module with LGPL license as part of
the Ambit cheminformatics platform [32]. Download links of command-line
example applications, GUI application and web demo application are available
at http://ambit​.sourc​eforg​e.net/smirk​s.html.

Funding
This project has received funding from the CEFIC-LRI EEM9.3-IC/EEM9.4:
Linking LRI Ambit chemoinformatics system with the IUCLID Substance
database to support read across of substance endpoint data and category
formation. For implementation and improvements relevant to the chemical
structure standardization use case, the project has received funding from the
European Union’s Horizon 2020 Research and Innovation programme under
Grant Agreement No. 671555. For implementation of stereo information
handling, we acknowledge a financial contribution from Eawag (Switzerland)
through a grant from the Swiss National Science Foundation (Project No.
CR22I2L_149711).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 22 December 2017 Accepted: 11 August 2018

References
	1.	 Engel T, Gasteiger J (2018) Chemoinformatics: basic concepts and meth-

ods, chap 4. Wiley-VCH Verlag GmbH
	2.	 Karthikeyan M, Vyas R (2014) Practical chemoinformatics, chap 6.

Springer, New Delhi
	3.	 Faulon J-L, Bender A (2010) Handbook of chemoinformatics algorithms,

chap 11. CRC Press
	4.	 Daylight. SMIRKS: A Reaction Transform Language [Internet] [cited 2017

Dec 20]. http://www.dayli​ght.com/dayht​ml/doc/theor​y/theor​y.smirk​
s.html

	5.	 Daylight. SMARTS: a language for describing molecular patterns [Internet]
[cited 2017 Sep 19]. http://www.dayli​ght.com/dayht​ml/doc/theor​y/theor​
y.smart​s.html

	6.	 Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD (2008) SYBYL line nota-
tion (SLN): a single notation to represent chemical structures, queries,
reactions, and virtual libraries. J Chem Inf Model 48(12):2294–2307

	7.	 Grethe G, Goodman J, Allen C (2013) International chemical identifier for
chemical reactions. J Cheminform O5(1):16

	8.	 Elsevier MDL. CTFile formats. Mdl. 2005 (June)
	9.	 Yang C, Tarkhov A, Marusczyk J, Bienfait B, Gasteiger J, Kleinoeder T et al

(2015) New publicly available chemical query language, CSRML, to
support chemotype representations for application to data mining and
modeling. J Chem Inf Model 55:510–528

	10.	 Holliday GL, Murray-Rust P, Rzepa HS (2006) Chemical markup, XML, and
the world wide web. 6. CMLReact, an XML vocabulary for chemical reac-
tions. J Chem Inf Model 46:145–157

	11.	 Chemical Markup Language|CML [Internet] [cited 2017 Dec 18]. http://
www.xml-cml.org/

	12.	 Reisen FH, Schneider G, Proschak E (2009) Reaction-MQL: line notation for
functional transformation. J Chem Inf Model 49(1):6–12

	13.	 Proschak E, Wegner JK, Schüller A, Schneider G, Fechner U (2007) Molecu-
lar Query Language (MQL)—a context-free grammar for substructure
matching. J Chem Inf Model 47(2):295–301

	14.	 Pirok G, Máté N, Dóránt S, Vargyas M, Csizmadia F (2004) How can generic
reactions be specific? Virtual synthesis with “smart” reactions ChemAxon
[Internet]. https​://chema​xon.com/poste​r

	15.	 Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003)
The Chemistry Development Kit (CDK): an open-source Java library for
chemo- and bioinformatics. J Chem Inf Comput Sci 43(2):493–500

	16.	 Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006)
Recent developments of the chemistry development kit (CDK)—an
open-source java library for chemo- and bioinformatics. Curr Pharm Des
12(17):2111–2120

	17.	 Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova
N et al (2017) The chemistry development kit (CDK) v2.0: atom typing,
depiction, molecular formulas, and substructure searching. J Cheminform
9(1):1–19

	18.	 O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutch-
ison GR (2011) Open babel: an open chemical toolbox. J Cheminform
3(10):1–14

	19.	 Landrum G (2017) RDKit documentation [Internet]. http://www.rdkit​.org/
RDKit​_Docs.curre​nt.pdf

	20.	 OEChem Toolkit: Reactions [Internet]. OpenEye Scientific. [cited 2017 Sep
12]. https​://docs.eyeso​pen.com/toolk​its/pytho​n/oeche​mtk/react​ions.
html

	21.	 Daylight. Reaction toolkit [Internet] [cited 2017 Sep 12]. http://www.dayli​
ght.com/produ​cts/react​ion_kit.html

	22.	 Ihlenfeldt WD, Takahashi Y, Abe H, Sasaki S (1994) Computation and man-
agement of chemical properties in CACTVS: an extensible networked
approach toward modularity and compatibility. J Chem Inf Comput Sci
34(1):109–116

	23.	 Reactor: a high performance virtual synthesis engine [Internet]. Che-
mAxon. [cited 2017 Sep 12]. https​://www.chema​xon.com/produ​cts/react​
or/

	24.	 JChem for Office [Internet]. ChemAxon. [cited 2017 Sep 19]. https​://www.
chema​xon.com/produ​cts/jchem​-for-offic​e/

	25.	 MolEngine: .NET Cheminformatics toolkit [Internet] [cited 2017 Sep 19].
http://www2.scill​igenc​e.com/web/molen​gine.aspx

	26.	 MOE: Molecular Operating Environment [Internet]. Chemical Computing
Group. [cited 2017 Sep 19]. https​://www.chemc​omp.com/MOE-Molec​
ular_Opera​ting_Envir​onmen​t.htm

	27.	 Accord Software Development Kit [Internet]. Accelrys. [cited 2017 Dec
20]. http://accel​rys.com/resou​rce-cente​r/downl​oads/updat​es/accor​d/
sdk/sdk61​5/sdk61​5.html

	28.	 Patlewicz G, Jeliazkova N, Safford RJ, Worth AP, Aleksiev B (2008) An evalu-
ation of the implementation of the Cramer classification scheme in the
Toxtree software. SAR QSAR Environ Res 19(5–6):495–524

	29.	 Rydberg P, Gloriam DE, Zaretzki J, Breneman C, Olsen L (2010) SMARTCyp:
a 2D method for prediction of cytochrome P450-mediated drug metabo-
lism. ACS Med Chem Lett 1(3):96–100

	30.	 Jeliazkova N, Kochev N (2011) AMBIT-SMARTS: efficient searching of
chemical structures and fragments. Mol Inform 30(8):707–720

http://ambit.sourceforge.net/smirks.html
http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.xml-cml.org/
http://www.xml-cml.org/
https://chemaxon.com/poster
http://www.rdkit.org/RDKit_Docs.current.pdf
http://www.rdkit.org/RDKit_Docs.current.pdf
https://docs.eyesopen.com/toolkits/python/oechemtk/reactions.html
https://docs.eyesopen.com/toolkits/python/oechemtk/reactions.html
http://www.daylight.com/products/reaction_kit.html
http://www.daylight.com/products/reaction_kit.html
https://www.chemaxon.com/products/reactor/
https://www.chemaxon.com/products/reactor/
https://www.chemaxon.com/products/jchem-for-office/
https://www.chemaxon.com/products/jchem-for-office/
http://www2.scilligence.com/web/molengine.aspx
https://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm
https://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm
http://accelrys.com/resource-center/downloads/updates/accord/sdk/sdk615/sdk615.html
http://accelrys.com/resource-center/downloads/updates/accord/sdk/sdk615/sdk615.html

Page 29 of 29Kochev et al. J Cheminform (2018) 10:42

	31.	 Jeliazkova N, Jeliazkov V (2011) AMBIT RESTful web services: an imple-
mentation of the OpenTox Application Programming Interface. J Chem-
inform 3(1):18

	32.	 Ideaconsult Ltd. AMBIT [Internet]. http://ambit​.sourc​eforg​e.net/
	33.	 Jeliazkova N, Koch V, Li Q, Jensch U, Reigl JS, Kreiling R et al (2016) Linking

LRI AMBIT chemoinformatic system with the IUCLID substance database
to support read-across of substance endpoint data and category forma-
tion. Toxicol Lett 258:S114–S115

	34.	 Ideaconsult Ltd. LRI AMBIT tool for read across [Internet]. https​://ambit​lri.
ideac​onsul​t.net/

	35.	 Smith M, March J (2007) March’s advanced organic chemistry: reactions,
mechanisms and structure, chap 4, 6th edn. Wiley

	36.	 SMILES—a simplified chemical language [Internet]. Daylight theory. 2008
[cited 2017 Sep 19]. http://www.dayli​ght.com/dayht​ml/doc/theor​y/theor​
y.smile​s.html

	37.	 Munro I, Ford RA, Kennepohl E, Sprenger J (1996) Correlation of structural
class with no-observed-effect-levels: a proposal for establishing a thresh-
old of concern. Food Chem Toxicol 34:829–867

	38.	 Avramova S, Kochev N, Angelov P. RetroTransformDB: a dataset of generic
transforms for retrosynthetic analysis. Data [Internet]. 2018 Apr 21 [cited
2018 Jul 28]; 3(2):14. http://www.mdpi.com/2306-5729/3/2/14

	39.	 Avramova S, Kochev N, Angelov P. RetroTransformDB—a dataset of trans-
forms (retrosynthetic reactions). 2018 Mar 28 [cited 2018 Jul 28]. https​://
zenod​o.org/recor​d/12093​13#.W1xo4​MJdLI​U

	40.	 Toxtree—Toxic hazard estimation by decision tree approach [Internet].
http://toxtr​ee.sourc​eforg​e.net/

	41.	 Wicker J, Lorsbach T, Gütlein M, Schmid E, Latino D, Kramer S et al (2016)
enviPath—the environmental contaminant biotransformation pathway
resource. Nucleic Acids Res 44(D1):D502–D508

	42.	 Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R
et al. HMDB 4.0: the human metabolome database for 2018. Nucleic
Acids Res [Internet]. 2017 Nov 11. http://acade​mic.oup.com/nar/artic​le/
doi/10.1093/nar/gkx10​89/46168​73

	43.	 Feunang YD. Cheminformatics tools for enabling metabolomics [Inter-
net]. https​://era.libra​ry.ualbe​rta.ca/files​/crf55​z804r​/Djoum​bouFe​unang​
_Yanni​ck_20170​9_PhD.pdf

	44.	 Jeliazkova N, Kochev N, Jeliazkov V. ambitcli-3.0.2 [Internet]. 2016 [cited
2017 Dec 19]. https​://zenod​o.org/recor​d/17356​0#.WjlcR​yvfHV​q

	45.	 Sun J, Jeliazkova N, Chupakhin V, Golib-Dzib J-F, Engkvist O, Carlsson
L et al (2017) ExCAPE-DB: an integrated large scale dataset facilitating
big data analysis in chemogenomics. J Cheminform 9(1):17. https​://doi.
org/10.1186/s1332​1-017-0203-5

	46.	 Kochev N, Avramova S, Jeliazkova N (2017) Combinatorial generation of
molecules by virtual software reactor. Sci Work Union Sci Bulg Plovdiv
11:214–219

http://ambit.sourceforge.net/
https://ambitlri.ideaconsult.net/
https://ambitlri.ideaconsult.net/
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
http://www.mdpi.com/2306-5729/3/2/14
https://zenodo.org/record/1209313#.W1xo4MJdLIU
https://zenodo.org/record/1209313#.W1xo4MJdLIU
http://toxtree.sourceforge.net/
http://academic.oup.com/nar/article/doi/10.1093/nar/gkx1089/4616873
http://academic.oup.com/nar/article/doi/10.1093/nar/gkx1089/4616873
https://era.library.ualberta.ca/files/crf55z804r/DjoumbouFeunang_Yannick_201709_PhD.pdf
https://era.library.ualberta.ca/files/crf55z804r/DjoumbouFeunang_Yannick_201709_PhD.pdf
https://zenodo.org/record/173560#.WjlcRyvfHVq
https://doi.org/10.1186/s13321-017-0203-5
https://doi.org/10.1186/s13321-017-0203-5

	Ambit-SMIRKS: a software module for reaction representation, reaction search and structure transformation
	Abstract
	Background
	Implementation
	Implementation details
	Software architecture overview. Basic workflow
	Chemical objects representation
	Ambit-SMIRKS parser
	Matching reaction sites by substructure search
	Support for recursive SMARTS expressions
	Structure transformations
	SMIRKS searching

	Results and discussions
	Mapped versus unmapped atoms
	Hydrogen atoms handling
	Handling aromatic systems
	Stereochemistry support
	Comparison between Ambit-SMIRKS and other open-source chemoinformatics tools
	Ambit-SMIRKS applications
	Future development

	Conclusions
	Authors’ contributions
	References

