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Ambit‑SMIRKS: a software module 
for reaction representation, reaction search 
and structure transformation
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Abstract 

Ambit-SMIRKS is an open source software, enabling structure transformation via the SMIRKS language and imple-
mented as an extension of Ambit-SMARTS. As part of the Ambit project it builds on top of The Chemistry Develop-
ment Kit (The CDK). Ambit-SMIRKS provides the following functionalities: parsing of SMIRKS linear notations into 
internal reaction (transformation) representations based on The CDK objects, application of the stored reactions 
against target (reactant) molecules for actual transformation of the target chemical objects, reaction searching, stereo 
information handling, product post-processing, etc. The transformations can be applied on various sites of the reac-
tant molecule in several modes: single, non-overlapping, non-identical, non-homomorphic or externally specified list 
of sites utilizing efficient substructure searching algorithm. Ambit-SMIRKS handles the molecules stereo information 
and supports basic chemical stereo elements implemented in The CDK library. The full SMARTS logical expressions 
syntax for reactions specification is supported, including recursive SMARTS expressions as well as additional syntax 
extensions. Since its initial development for the purpose of metabolite generation within Toxtree, the Ambit-SMIRKS 
module was used in various chemoinformatics projects, both developed by the authors of the package and by 
external teams. We show several use cases of the Ambit-SMIRKS software including standardization of large chemical 
databases and pathway transformation database and prediction. Ambit-SMIRKS is distributed as a Java library under 
LGPL license. More information on use cases and applications, including download links is available at http://ambit​
.sourc​eforg​e.net/smirk​s.
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Background
Two major types of chemical objects are at the core of 
the cheminformatics—chemical structures and structure 
transformations (reactions). The efficiency of chemo-
informatics applications is tightly coupled with the 
adequate representation [1] of the underlying chemical 
objects (chemical structures and transformations).

The chemical reactions handling is more challenging 
compared to the chemical structures processing, due 
to the complexity of the problem [1]. The number of 
computational tools for reaction modelling is less than 

the number of structure property prediction tools [2]. 
In the last several decades a lot of effort has been put 
for advancing the software systems for reaction man-
agement. The approaches for reaction representation 
are based on different paradigms: (1) describing the 
reaction centers—atoms and bonds directly involved in 
the rearrangement process that can be identified when 
a maximum common substructure search between 
the product and the reactant is made; (2) bond–elec-
tron matrices coding; and (3) representation based on 
molecular fingerprints or vector descriptions—these 
codification systems use the difference between the fin-
gerprints of the products and the reactants [3]. The rep-
resentation of a generic reaction (any set of reactions 
which undergo the same set of atom and bond changes, 
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regardless of the underlying molecule substrates [4]) 
requires more sophisticated approach than describing a 
specific reaction involving all reactant(s) and product(s) 
(also referred in this paper as an ordinary or simple 
reaction). For the latter case, the chemical reaction can 
be simply represented by a set of chemical structures of 
the reactants and products.

The reaction representation and manipulation meth-
ods are built on top of the techniques for chemical struc-
ture representation. The ordinary reactions are handled 
similarly to the molecule objects, while the generic reac-
tion rules implementation follow the methods of struc-
ture patterns. The linear notations are widely used for 
encoding the molecular graphs (e.g. SMILES, InChI) 
and chemical structure transformations (e.g. SMIRKS, 
SLN, RInChI). One of the most popular line notation for 
representation of chemical reactions is SMIRKS [4]—a 
restricted version of reaction SMARTS [5] involving 
changes in atom-bond patterns. The SMIRKS notation 
is designed to represent a generic reaction: to express 
the reaction graph and the indirect effects of the trans-
formation. The SYBYL line notation (SLN) [6] is suitable 
for representing reactions and reaction queries and pro-
vides a richer syntax for database queries comparable to 
SMARTS. RInChI [7] is a line notation, which enables 
a hierarchical reaction description. Its multi-layer con-
cept allows including of information about equilibrium, 
unbalanced or multi-step reactions.

The most commonly used file formats for storing reac-
tions are rxnfiles [8] (contain the structural informa-
tion for the reactants and products of a single reaction); 
RDfiles [8] (a more general format than SDfiles [8], that 
can include reactions as well as molecules, together with 
their associated data); XDfiles [8] (XML-based data for-
mat for transferring record sets of structure or reaction 
information with associated data). The chemotypes [9] 
is an innovative approach for representing molecules, 
chemical substructures and patterns, reaction rules, and 
reactions by XML-based Chemical Subgraphs and Reac-
tions Markup Language (CSRML), and allow encoding 
not only the structure topology but also properties of 
atoms, bonds, electronic systems, or molecules.

Some of the chemical file formats have been extended 
with modules for managing chemical and biochemical 
reactions. An example is CMLReact [10]—a set of com-
ponents added to the Chemical Markup Language (CML) 
[11]. These can be combined to support most of the strat-
egies of reaction representation. Reaction-MQL [12], 
an extension of the Molecular Query Language (MQL) 
[13], is using functional groups to describe the transfor-
mations—after defining the functional groups in terms 
of substructure queries, molecular graphs of reactants 
are transformed by application of beginning-, end-, and 

reaction-matrices to obtain the product graph (without 
consideration of stereochemistry).

The Chemical Terms Language (CTL) [14] is an 
approach developed by ChemAxon and uses substruc-
ture queries combined with physicochemical calculations 
to turn generic reaction rules to specific transformations 
(depending on a set of reactivity and selectivity rules). 
The rules written in chemical terms can describe reac-
tive and inactive functional groups and the effect of 
the chemical environment on the outcome of certain 
reactions.

The formats for representation and storage of chemical 
reactions described so far are used within various chem-
oinformatics software systems and toolkits, enabling the 
transformation of input reactant structures into reac-
tion product. The open-source cheminformatics libraries 
(Chemistry Development Kit [15–17], OpenBabel [18], 
RDKit [19]) provide data structures to represent chemi-
cal concepts along with methods to manipulate such 
structures. RDKit [19] supports application of chemical 
reactions to sets of molecules by using a SMARTS-based 
language similar to daylight’s reaction SMILES. Most 
commercial cheminformatics packages provide support 
for reaction transformation. OpenEye [20] provides reac-
tion processing divided into two categories: unimolecular 
reactions and library generation. Sets of chemical trans-
form operations are derived from reaction molecules by 
differences between the reactant and product patterns 
and in the reaction molecule. Daylight has a Reaction 
toolkit [21] that has a set of tools which support both 
specific (single-step) and generic reactions. The extensive 
use of polymorphism for both reaction and transform 
objects is one of the key features making the Reaction 
toolkit convenient to use. CACTVS [22] provides full 
reaction support, including reaction properties and 
reaction queries. Reaction transformations are possible 
by means of advanced SMIRKS transform capabilities. 
Reactor [23] is the virtual reaction engine of ChemAx-
on’s JChem [24] technology. It supports “smart” reac-
tions (generic reaction equations combined with reaction 
rules) generating chemically feasible products with speci-
fied predicted properties. There is also a number of tool-
kits for handling chemical reactions with proprietary 
licenses like: MolEngine [25], Molecular Operating Envi-
ronment (MOE) [26], Accord SDK [27].

The analysis of the reviewed software packages high-
lights the SMIRKS as one of the popular methods for 
storage and application of chemical reactions. On one 
hand, SMIRKS can be used for encoding of specific 
(ordinary) reactions, which can be stored in reaction 
databases or in reaction libraries. SMIRKS can also be 
used to represent chemical reactions, as it is capable 
to provide the computer-readable form of the familiar 
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two-dimensional structural diagrams. On the other hand, 
SMIRKS has the full functionality to encode generic 
reactions. Thus, by describing only the reaction centers, 
the reactions are coded as rules that can be applied on 
a target molecule in order to obtain a product (synthe-
sis), or to obtain its precursors (retrosynthesis). SMIRKS 
is an extension of SMILES and SMARTS notations which 
are among the most widely used and efficient linear 
notations thus the users can easily adopt their previous 
experience with SMILES/SMARTS and used it for the 
purposes of reaction information management. SMILES 
provide concise and efficient way to describe the molecu-
lar structures (i.e. reactants and products) on topologi-
cal level, while SMARTS expressions and SMIRKS atoms 
mappings allow specification of exact chemical trans-
formation logic. Another SMIRKS advantage is that it is 
easy and efficient for manual coding of the chemical reac-
tions as well as for computer handling. In this regard, an 
open source SMIRKS package would provide the oppor-
tunity for development of new tools for resolving various 
reaction-oriented chemical information problems such 
as organic synthesis planning, retrosynthesis, prediction 
of metabolism, combinatorial libraries generation etc.

The open source Ambit-SMIRKS module was initially 
developed in order to enable reaction transformations in 
the context of Toxtree [28] and the first implementation 
was included in Toxtree 2.5.0 (2011), enabling metabolite 
generation with the help of the SmartCyp [29]. Ambit-
SMIRKS supports the full SMIRKS syntax and has 
already been used by several external groups and appli-
cations, demonstrating its usefulness within the chemo-
informatics community. The following sections describe 
the software architecture and configuration, the available 
options and functionalities and important implementa-
tion details. We also provide recommendation for speci-
fying SMIRKS based reactions using Ambit-SMIRKS 
with appropriate reaction transformation setup, exam-
ples of chemical structures and transformations illustrat-
ing the software and various use cases, highlighting the 
library has already been used by external projects dealing 
with biotransformations.

Implementation
Implementation details
Ambit-SMIRKS is an extension to the Ambit-SMARTS 
library [30] and is part of the open source software 
AMBIT [31, 32]. AMBIT provides a REST web service 
and user friendly web interface to a chemical substance 
and structure database, various chemical structure search 
facilities and toxicity prediction models. The data model 
enables representation of chemical substances in real 
industry conditions by supporting complex compositions 
(including impurities, additives, UVCB). Comprehensive 

assessment workflows are developed for read-across 
and category formation based on all the data available 
in AMBIT [33, 34]. The AMBIT package consists of a 
database and over 30 modules, implementing various 
cheminformatics functionalities. The Ambit-SMARTS 
software module [30] includes substructure mapping and 
search tools, used by most of the chemoinformatics tasks.

Software architecture overview. Basic workflow
The software architecture of Ambit-SMIRKS module pre-
sented in Fig. 1 provides an overview of the main com-
ponents and their links to other AMBIT modules and 
external software libraries. The upper architecture layer 
in Fig.  1 represents The CDK [17] and Ambit-SMARTS 
library which is described in detail in Ref. [30]. Ambit-
SMARTS implements:

1.	 SMARTS linear notation parsing;
2.	 representation of SMARTS queries as internal 

objects using The CDK API;
3.	 substructure searching, given a SMARTS query 

(implemented by the IsomorphismTester java class).

Based on the main functionalities (1)–(3), additional 
features are implemented such as database substructure 
searching with two major stages screening and mapping 
and equivalent atoms detection (see Fig.  1) [30]. Class 
SmartsManager is a functional wrapper of all Ambit-
SMARTS functionalities and provides an API to most 
tasks that can be performed including SMARTS parsing, 
substructure searching in various modes, calculation of 
target molecule properties needed for efficient substruc-
ture searching etc. The class SmartsToChemObject pro-
vides tools to extract chemical information from complex 
SMARTS expressions.

The basic functionality of Ambit-SMIRKS is imple-
mented by 3 major Java classes SMIRKSReaction, 
SMIRKSManager, StereoChemUtils and additional utili-
ties for handling H atoms and reaction search (Fig. 1).

The class SMIRKSReaction encapsulates all informa-
tion needed to describe a chemical reaction or molecule 
transformation: reactants, agents, products, atom map-
ping, component grouping (CLG—Component Level 
Grouping as defined by SMARTS) and the information 
used for reaction application: atoms, bonds and stereo 
transformations. The treatment of reaction stereo chem-
istry is implemented in a separate class StereoChemUtils. 
The CDK library implements a Reaction class which is 
only suitable to represent ordinary reactions. We devel-
oped SMIRKSReaction class especially for encoding 
generic reactions, though it can also represent ordinary 
reactions.
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The class SMIRKSManager includes basic API han-
dling all the information within a reaction application 
workflow. The reaction transformation workflow is con-
figured by a set of flags which define target molecule 

preprocessing, product post processing, search mode, 
stereo transformation, H atom treatment etc. Table  1 
shows a list of SMIRKSManager flags.

Fig. 1  Ambit-SMIRKS software architecture
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The underlying molecule representation layer fol-
lows the CDK conventions of chemical objects pro-
cessing, i.e. is composed of two steps: storage into an 
object of type AtomContainer, and consequently con-
figuration of the chemical object (e.g. atom typing, 
aromaticity detection, H atom setting, atom and bond 
properties setting etc.). Most of the CDK algorithms 
expect that the chemical objects are properly config-
ured. On the other hand, the files storage and other 
input/output CDK utilities typically do not configure 
the chemical objects and it is assumed that the creator/
user of the chemical object is responsible for the proper 

configuration. The SMIRKSManager class expects 
properly configured chemical objects as input reac-
tants. The post-processing of the resulting products can 
be performed either by the user or by the SMIRKSMan-
ager post-processing utilities, according to the options 
specified (see the flags listed in Table  1). The options 
include the following operations (switched on/off by 
the corresponding flags): clearing of atom hybridiza-
tion, aromaticity and H atoms before processing, atom 
typing and configuration, adding of implicit H atoms, 
aromaticity detection, conversion of implicit H atom to 
explicit or vice versa.

Table 1  List of all flags used to configure Ambit-SMIRKS

Flag and description Default value

1. FlagSSMode
Defines substructure searching (mapping) mode and how all found sites for reaction application in the target 

molecule are combined by function applyReaction(). The following modes are supported: SSM_SINGLE, SSM_NON_
OVERLAPPING, SSM_NON_IDENTICAL, SSM_NON_EQUIVALENT, SSM_ALL, SSM_NON_IDENTICAL_FIRST

SSM_NON_OVERLAPPING

2. FlagCheckResultStereo
If true, the stereo elements within the obtained product molecules are verified and incorrect ones are removed. This 

flag does not define whether the stereo transformation should be applied

True

3. FlagFilterEquivalentMappings
Defines whether to filter topologically equivalent sites (mappings) for reaction application

False

4. FlagProcessResultStructures
If true, the result molecules (products) are processed according to the configurations defined by other flags below

False

5. FlagClearHybridizationBeforeResultProcess
If set true, the atom hybridization types are cleared in the product molecule. Typically this flag should be true in order 

to correctly detect the new atom types of transformed molecules

True

6. FlagClearAromaticityBeforeResultProcess
If true, aromaticity information for all atoms and bonds in the obtained products is cleared. Typically this flag should 

be true since the aromaticity should be detected for all new products due to possible changes in the aromatic 
systems

True

7. FlagClearImplicitHAtomsBeforeResultProcess
Defines whether to clear implicit H atoms before result product processing

True

8. FlagClearExcplicitHAtomsBeforeResultProcess
Defines whether to clear explicit H atoms before result product processing

False

9. FlagAddImplicitHAtomsOnResultProcess
Defines whether to add implicit H atoms on product molecule processing

False

10. FlagConvertAddedImplicitHToExplicitOnResultProcess
Defines whether to convert the added implicit H atoms to explicit. This flag is used only if implicit H atoms are added 

(see previous flag 9)

False

11. FlagCheckAromaticityOnResultProcess
Defines whether to apply aromaticity detection algorithm for the new products

True

12. FlagConvertExplicitHToImplicitOnResultProcess
Defines whether to convert explicit H atoms to implicit ones. Typically if this flag is true, it is expected that FlagAddIm-

licitHAtomsOnResultProcess = false

False

13. FlagApplyStereoTransformation
Determines whether to perform stereo transformation of the target molecules according to the defined SMIRKS. If 

this flag is not set, stereo elements of the molecule are preserved when possible (e.g. when they are not changed or 
deleted). If the flag is true, full stereo transformation is applied in accordance with the defined SMIRKS

False

14. FlagHAtomsTransformation
Defines whether to apply H atom transformation according to the used atom expressions in the SMIRKS

False

15. FlagHAtomsTransformationMode
Defines H atoms transformation mode: IMPLICIT or EXPLICIT. This flags is used only when previous one is set

Implicit

16. FlagAromaticityTransformation
Defines whether to apply post transformation additional aromaticity setting within obtained products based on the 

SMIRKS expression

False
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The SMIRKS parsing functionality is based on the 
SmartsParser class where the reaction information from 
the linear notation is represented as an object of the class 
SMIRKSReaction (see more details in next section). For 
a given target molecule (a reactant), all possible sites for 
reaction application are found by means of substructure 
search using the IsomorphismTester functionality [30]. 
The application of the reaction (the actual transformation 
of the target molecule) is performed for some or all of the 
matched substructures, which are combined in accord-
ance with the reaction application mode (see more details 
in following sections). The reaction application algorithm 
makes use of the transformation information of the 
atoms, bonds and stereo elements stored in class SMIRK-
SReaction, the stereo chemistry utilities, the HAtom-
Manager class and the optional product post-processing.

Chemical objects representation
Chemoinformatics treatment of a chemical reaction 
requires handling of three different types of chemical 
objects: molecules, search queries and chemical reaction 
specific information, such as atom mapping and chemi-
cal transformation data. The topological representation 
of a chemical compound (i.e. chemical graph) as imple-
mented by the CDK class AtomContainer comprises a 
list of atoms, list of bonds, standard operations over these 
lists as well as a stereo element list (see more details on 
CDK in [17]).

The substructure search queries are another essential 
type of chemical objects needed for the realization of 
Ambit-SMIRKS reaction management. The substructure 
query is represented by an extended graph, encoded by 
the CDK class QueryAtomContainer (see Fig. 2). Instead 
of using simple IAtom list and IBond list, the components 
of the QueryAtomContainer are atom expressions and 
bond expressions implemented accordingly as descend-
ants of the classes SMARTSAtom and SMARTSBond. 
Within Ambit-SMARTS package [30], several specialized 

classes were implemented (see Fig. 2) where SmartsAto-
mExpression and SmartsBondExpression realize the full 
power of SMARTS/SMIRKS syntax.

The reaction information representation is imple-
mented by the SMIRKSReaction class (Fig.  3) and 
includes two specialized graphs respectively for the reac-
tants and the products. If the reactant or the product part 
contains more than one molecule or fragment, the cor-
responding graph is disconnected, and additional atom 
numbering is supported to designate which fragment 
the atoms belong to. The latter is needed for Component 
Level Grouping in SMARTS matching. The mapping 
information is a significant part of the reaction represen-
tation, linking the atoms from the reactant graph to the 
atoms of the product graph. Figure 3 shows the mapping 
for the reduction of amides:

[NX3H0,NX3H1,NX3H2:1][CX3:2]=[OX1]≫[NX3
H0,NX3H1,NX3H2:1][CX3:2]([H])[H].

The nitrogen and carbon atoms are mapped by SMIRKS 
indices 1 and 2 accordingly. The reactant oxygen atom and 
the explicit H atoms are not mapped (unmapped atoms 
usage is explained in a following section). Additional 
mappings are used for the practical application of a reac-
tion transformation against a target: the target reactant 
molecule maps to the reactant query graph and respec-
tively the product query graph maps to the result prod-
uct molecule. In Fig. 3 example, the nitrogen query atom 
[NX3H0,NX3H1,NX3H2:1] matches the reactant atom 3 
and the carbon query atom [CX3:2] matches the reactant 
atom 2. In the result product (after applying the reaction) 
these atoms have new indices 3 and 4 respectively.

Based on the mapping information, the reaction trans-
formation is represented as specialized data structure 
describing the changes (update, deletion, creation) of 
molecule elements: atoms, atom properties, bonds, bond 
properties and stereo elements.

Fig. 2  Substructure search query representation within Ambit-SMIRKS
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Ambit‑SMIRKS parser
The Ambit-SMIRKS parser is built on top of the utilities 
implemented in Ambit-SMARTS (see class SmartsParser 
[30]). Initially the SMIRKS linear notation is separated 
to components according to the SMIRKS syntax: reac-
tants > agents > products (most often in the form: reac-
tants ≫ products). SmartsParser is invoked for each 
component and corresponding QueryAtomContainer is 
generated. Figure 4 illustrates the parsing process for the 
reaction of dihydropyrrole aromatization. No agents are 
present in this example, and it is quite usual for SMIRKS 
linear notations of generic reactions to contain reactants 
and products only.

The SMIRKS parsing continues with analysis of the 
atom mapping. In the following examples, major types of 
atom mapping parser errors are shown:

• • Missing atom map index on one of the SMIRKS parts 
(product or reactant). For example, the notation [C:1]
[C:2]≫[C:1]=[C] is with missing map index 2 on the 
product side.

• • Repeating atom map index on one of the 
SMIRKS parts (product or reactant) e.g. [C:1]
[C:2]≫[C:1]=[C:1]

• • Inconsistent atom elements of a pair of mapped 
atoms from (one atom from reactant and one from 
product side respectively have different atom ele-
ments) or undefined atoms elements for unmapped 
product atoms e.g.

[C:1][C:2]≫[N:1]=[C:2].
[C:1]≫[C:1][Cl,Br].

Detecting inconsistent atom elements of mapped atom 
pairs is a complex procedure. The atom elements of all 
atom expressions are “extracted” and detected when 
possible. The class SmartsToChemObject utilities for 
analyzing SMARTS atom expression are used for this 
purpose. Since the SMARTS syntax definining the atom 
expressions is quite flexible, arbitrary atom expressions 
are supported by SMIRKS (e.g. where an atom element 
is undefined). For example, the following atoms expres-
sions contain undefined atom element: [Cl,Br,I], [!C;!N] 
and [CH3,NH2,OH], while expression [CH3, CH2, CH; 
!$(CO)] is with defined atom element ‘carbon’.

In order to obtain chemically reasonable structures, 
the SMIRKS notation that defines the molecule opera-
tions (such as atom/bond property changes, deletions 

Fig. 3  Reaction representation of amide reduction by Ambit-SMIRKS



Page 8 of 29Kochev et al. J Cheminform  (2018) 10:42 

and additions) should generate well defined chemical 
structures as reaction products (i.e. the atom, bonds 
and their properties should be exactly defined). Exam-
ples for chemically impossible operation are: “creation 
of a bond which has single or double order”, “creation of 
an atoms which is a carbon or nitrogen”, “setting atom 
charge to be + 1 or + 2” etc.

The Ambit-SMIRKS provides basic sanity-checks to 
ensure valid chemical structures on output:

1.	 It is allowed that both reactant and product atoms 
from a mapped atom pair to contain undefined atom 
elements (usually it is expected both atom expres-
sions to be the same).

	 Example: [C:1][*:2]≫Cl[C:1][*:2]
2.	 It is considered an error, if the reactant and product 

atoms of a mapped atom pair have clearly defined, 
but different atom elements.

	 Example [C:1][C:2]≫[O:1][C:2]
3.	 Unmapped product atoms with undefined atoms ele-

ments are not allowed.
	 Example: [C:1]≫[C:1][Cl,Br]
4.	 Unmapped reactant atoms with undefined atoms ele-

ments are allowed.
	 Example: [C:1] [Cl,Br]≫[C:1]
5.	 A bond expression with undefined bond order is not 

allowed in the product side unless it connects two 
mapped atoms and exactly the same expression with 

Fig. 4  SMIRKS parsing algorithm. Reaction processing applied for reaction of dihydropyrrole aromatization
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unknown bond order connects the corresponding 
reactant atoms.

	 Examples: [C:1]=[C:2]≫[C:1]-,=[C:2] not allowed
	 [C:1]≫[C:1]-,=C not allowed
	 [C:1] -,=[C:2]≫[C:1]-,=[C:2] allowed
6.	 A bond expression with undefined bond order is 

allowed in the reactant side.
	 Example: [C:1]-,=[C:2]≫[C:1]-[C:2]

The rule (2) prevents SMIRKS that defines chang-
ing of the mapped atom element (which is not a 
chemical reaction any more but rather is a “nuclear 
process”). By the way if the user needs such a trans-
formation (i.e. “make carbon to become oxygen”) this 
could be achieved by means of unmapped atoms i.e. 
C[C:2]≫O[C:2] will be a correct SMIRKS which actu-
ally “says” delete C atom and attach a new O atom 
(more on mapped and unmapped atoms see in follow-
ing section).

The rule (3) prevents a chemically and technically 
impossible case—to create an atom of unknown element 
within a defined molecule (not a query molecule). On a 
contrary, rule (4) allows removal of atoms with unknown 
element. Similarly, the rule (5) prevents chemically 
impossible SMIRKS instruction to create a new bond 
with unknown bond order.

On the base of stored mappings, the transformation 
information is generated and stored within SMIRKSRe-
action class as well. Change of the atom element is not 
allowed, but atom property changes are allowed. Han-
dling atoms properties and their changes for sophisti-
cated atoms expressions is as challenging as detecting 
element change within SMIRKS definitions (described 
above). SmartsToChemObject class is used for ana-
lyzing atom expressions and consequently storing the 
required atom properties changes in class SMIRKSRe-
action. When detecting atom property changes, policies 
similar to the described above rules (1)–(6) are used. In 
this case when inconsistent property values are given for 
a mapped atom pair, the changes are not registered. For 
example: [C+,C++:1]≫[C:1] defines a change of atom 
charge while [C+,C++:1]≫[C+,C++:1][H] does not 
define an atom charge change.

So far we have described the representation and stor-
age of full reaction information needed for the reaction 
transformation algorithms. Reaction application is per-
formed in three main steps:

1.	 Target molecule/molecules reaction sites identifica-
tion;

2.	 Actual transformation of all identified reaction sites 
(or some of them);

3.	 Combination of the result structures from step (2) 
into a final set of products.

Matching reaction sites by substructure search
The reactant part of the SMIRKS linear notation is used 
as a definition of a SMARTS substructure search query, 
where the mapping indices are ignored. Ambit-SMIRKS 
uses the substructure search implementation of Ambit-
SMARTS [30] to find the reaction sites.

Ambit-SMARTS module supports also fragmented 
queries with Component Level Grouping (CLG). The 
SMARTS syntax allows “zero-level” parentheses which 
can be used to group dot-disconnected fragments. This 
grouping operator is particularly important for substruc-
ture matching of reactions with multiple components in 
the reactant part.

The substructure searching can be performed in sev-
eral modes: single, non-overlapping, non-identical, non-
homomorphic or externally specified list of sites. Figure 5 
illustrates the basic substructure match modes. For the 
molecule of cyclohexane-1,2-diamine, substructure 
query defined by SMARTS notation CCN is matched at 
4 possible places i.e. the fragments listed in column “All 
matches”: A {match atoms 3, 2, 1}, B{match atoms 7, 2, 1}, 
C{match atoms 6, 7, 8} and D{match atoms 2, 7, 8}.

All the matches in this example correspond to the non-
identical mode since all found fragments (A, B, C and D) 
differ one to another at least with one target atom. Non-
overlapping mode will give as a result fragments A and D 
since these have no common atoms. Fragment A is topo-
logically equivalent to C as well B is equivalent to D. That 
is way, non-homomorphic mode would give as a result 
one of the following four combinations (couples) of frag-
ments: {A, B}, {A, D}, {B, C} or {C, D}. EquivalenceTester 
class is used to find all topologically equivalent atoms and 
fragments respectively. The utilization of various sub-
structure match modes is needed for the implementation 
of efficient and flexible algorithm for reaction application 
described in following sections.

Support for recursive SMARTS expressions
Ambit-SMIRKS supports the full standard of the rich 
SMARTS syntax as far as it is chemically reason-
able for the definition of SMIRKS reactions. Ambit-
SMIRKS works with atom expressions as well as with 
bonds expression (the standard SMIRKS includes only 
atom logical expressions). The only exceptions from the 
SMARTS syntax are the atom and bond inconsistency 
rules described in previous sections. The rules do not 
impose restriction on the standard, but exclude chemi-
cally unreasonable cases. Additionally, the SMARTS/
SMIRKS syntax is enriched in Ambit with some third 
party extensions [30].
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One of the most important features of Ambit-SMIRKS 
is the support of recursive atom expressions. A recur-
sive atom expression includes within its logical atom 
primitives another SMARTS string, where the recursive 
expressions are defined by the syntax: […$(smarts)…].

For example expression [CH3;!$(C*=O);!$(C*N)] 
defines a methyl group that is not next to an atom with 
carbonyl or amine group. The support of recursive atom 
expression gives great flexibility of defining the complex 
molecular patterns logic. In this way Ambit-SMIRKS 
allows to precisely define the reaction centers by speci-
fying details about the atom environments. In contrast, 
non-recursive SMARTS can define expressions only of 
the atoms themselves but not of any close or distant envi-
ronment of the atoms.

The difference in the course of reactions with and with-
out recursive expressions explicitly defines the environ-
ment around the reaction site atoms is shown in Fig. 6. In 
this example, the reaction of hydrolysis can occur on two 
sites—the ester functional group (a linear ester) and the 
lactone (a cyclic ester). In the first case, without recursive 
expression, it is possible hydrolysis of the lactone to take 
place—the ring opens and only one product is obtained. 
In the second case, a recursive expression indicates that 
the hydrolysis reaction will occur to an ester which is not 
a lactone. Thus, the lactone functional group does not 
match the reaction and the hydrolysis proceeds with the 
linear ester.

Structure transformations
A SMIRKS transformation of a given target molecule 
can be applied directly on the target molecule by trans-
forming its AtomContainer object. In this case, the 
target molecule is the reactant at the start of the trans-
formation, and the same AtomContainer holds the reac-
tion products after the transformation. If more than 
one product is obtained, the resulting AtomContainer 
will be fragmented and fragment extraction procedure 
may be required. Another feature supported in Ambit-
SMIRKS is generation of molecule copies, corresponding 
to particular products, obtained by applying the reac-
tion transformation at particular sites. In both cases the 
structure transformations are based on the substructure 
search modes described above. When transformation is 
performed without molecule copying, the input target 
molecule is modified as the transformation is applied 
in all found reaction places combined according to the 
used reaction mode. For example in mode SINGLE one 
of the products 1, 2, 3 or 4 will be obtained (see Fig. 7). 
In mode NON_HOMOMORHIC one of the products 
10 or 11 will be obtained. The application of reaction 
transformation directly on the input molecule in one 
of the modes ALL or NON_IDENTICAL will produce 
chemically incorrect structure  9 since all four possible 
rings are transformed thus producing 5 valent carbons. 
The user is expected to check the chemical correct-
ness of obtained reaction products. Incorrect structure 

Fig. 5  Substructure search/match in various modes for the molecule of cyclohexane-1,2-diamine
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obtained in NON_IDENTICAL mode could be avoided 
if reaction transformations are applied in a cascading 
style i.e. the transformations are applied in several sin-
gle steps (one single transformation for each reaction 
site) while remaining sites are checked whether they are 
still valid instances for the next reaction steps. The direct 
transformation of the target molecule without copying 
does not generate all possible product combinations, 
but the reaction is applied simultaneously over all sites 
comprising one possible combination per mode (ALL, 
NON_IDENTICAL, NON_OVERLAPPING, NON_
HOMOMORPHIC or SINGLE). For example, in mode 
NON_OVERLAPPING only one of the structures 5, 6, 7 
or 8 will be obtained.

In order to obtain all possible products in single mode 
(e.g. structures 1, 2, 3 and 4, see Fig. 7), reaction trans-
formation with a single copy for each product should be 
applied. Thus for each molecule copy, the reaction will be 
performed in different location and all possible products 
will be obtained. If needed, Ambit-SMIRKS provides an 
option to generate all possible non-overlapping combina-
tion e.g. structures 5, 6, 7 and 8. Instead of obtaining the 

reaction sites by the standard search modes, user defined 
sites for reaction application could be specified by IAc-
ceptable interface. This option is especially helpful when 
additional information of reaction occurrence sites is 
available from external sources (e.g. quantum chemical 
calculations, other molecular modeling method, expert/
user selection etc.). In the result products shown in Fig. 7, 
there are several pairs of topologically equivalent struc-
tures: 1 is equivalent to 4, 2 is equivalent to 3, 5 is equiva-
lent to 8 and 10 is equivalent to 11. In order to remove 
the redundant result products, flag FlagFilterEquivalent-
Mappings should be set to TRUE.

By elaborating the details of the SMIRKS process-
ing logic, we hope to provide to Ambit-SMIRKS users 
insight into its use and assist with obtaining correct 
results from chemical point of view. One foundational 
technical aspect of the SMIRKS usage is that linear nota-
tion SMIRKS should be considered as a small “chemical 
program” or macros that “says” which parts of the target 
molecule to be transformed and how the identified parts 
to be transformed. Ambit-SMIRKS library will do exactly 
what it can infer from the changes discerned across the 

Fig. 6  Specification of reaction center via recursive SMARTS for the reaction of ester hydrolysis



Page 12 of 29Kochev et al. J Cheminform  (2018) 10:42 

SMIRKS reaction sides which include detailed informa-
tion about the manipulations of atoms and bonds, their 
properties, H atoms, stereo etc. Knowing the SMIRKS 

syntax and semantics well, and complying with the good 
practices concerning its usage are keys for the efficient 
usage. Failing to describe correctly the intended chemical 

Fig. 7  Reaction transformation according to the substructure match modes
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transformation will lead to undesirable results or some 
side effects. In “Results and discussion” section we dis-
cuss topics which are important for working efficiently 
with Ambit-SMIRKS as well as issues we have observed 
through several years of feedback and interaction with 
external users of the library that can be avoided by fol-
lowing the good practices of composing correct SMIRKS 
and using appropriate chemical object processing.

SMIRKS searching
Reaction search utilities are implemented by several ded-
icated classes: SmartsIsomorphismTester, SmartsMatch 
and ReactionSearch (see Fig. 8). Reaction search is con-
sidered in three basic scenarios:

1.	 Match an ordinary reaction against another ordinary 
reaction (i.e. reaction identification);

2.	 Match a generic query SMIRKS reaction against 
ordinary reaction represented in a simple manner as 
a set of products and a set of reactants;

3.	 Match a generic query SMIRKS reaction against 
another generic target SMIRKS reaction.

The first scenario does not need special reaction utili-
ties since it is executed by means of structure identity 
search for the reactants and products (e.g. on the base of 
InChI keys or other unique structure representation).

In the second scenario, the target reaction is repre-
sented via usual chemical objects such as CDK Atom-
Container. This simple reaction representation is handled 
by means of existing substructure searching implemen-
tations. Bearing in mind that the SMIRKS could be con-
sidered as two separate SMARTS notations (one for the 
reactants and one for the target), the reaction searching 
is performed by means of standard SMARTS matching 
against the target reactants and products respectively. 
This operation is performed using the IsomorphismTester 
class implemented in Ambit-SMARTS (see also Fig. 1).

The third scenario is the most challenging case of 
reaction searching. Usually the reactions from a reac-
tion database (or reaction set) are represented via 
SMIRKS notation or similar reaction representation 
in a more generic fashion (i.e. a set of many ordinary 
reactions described by means of a more general nota-
tion or rule). The reaction search in this case requires 
an algorithm to match a query SMIRKS against 
another reaction represented also with SMIRKS. In this 

Fig. 8  Reaction search strategies
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scenario, the reaction matching also will include the 
two major steps: matching the reactants and matching 
the products. However, the standard Ambit-SMARTS 
matching tools (i.e. IsomorphismTester) will not be 
applicable, since the target objects are not standard 
chemical objects (e.g. AtomContainer objects) but 
are “query” objects. The CDK QueryAtomContainer 
is based on IQueryAtom and IQueryBond interfaces 
that can match only IAtom and IBond objects. For this 
purpose we have developed a specialized class Smart-
sMatch which provides functionality for matching 
IQueryAtom against another IQueryAtom and respec-
tively IQueryBond against another IQueryBond. A new 
isomorphism class called SmartsIsomorphismTester 
was developed (as an extension of the SmartsMatch 
class), which can be used for matching one SMARTS 
object (i.e. QueryAtomContainer) against another 
SMARTS object. The latter is the case for match-
ing the reactants/products from one SMIRKS reac-
tion against reactants/products of another SMIRKS. 
SmartsMatch utilities are tricky since instead of ordi-
nary atom, an atom expression is used (the same holds 
for the bond handling). The SmartsMatch class imple-
ments matching of one atom/bond expression against 
another atom/bonds expression. The matching can be 
performed in various modes. In EXACT mode both 
expression must be exactly the same in order to have a 
match e.g. atom expression [Cl,F,Br] matches [Cl,F,Br] 
but does not match [Cl,F] expression. In mode SPE-
CIFIC_MATCHES_GENERIC [Cl,F,Br] will not match 
[Cl,F] but it will match [Cl,F,Br,I] or * expressions. 
Mode GENERIC_MATCHES_SPECIFIC is applied 
with reverse logic to the previous one i.e. [Cl,F,Br] will 
not match [Cl,F] but it will match [Cl,F,Br,I] expression. 
The reaction matching modes can be used for various 
searching needs. When one wants to find a reaction 
which is a particular case of a more generic reaction 
SPECIFIC_MATCHES_GENERIC mode will be uti-
lized. If one searches a set of concrete realizations of 
a generic reaction, mode GENERIC_MATCHES_SPE-
CIFIC would be required or scenario (2) can applied as 
well. We should mention that applying search scenario 
(3) for more complex or "obscure” cases (e.g. expression 
of the type [!CX4;!NX3]) is very challenging and might 
not work properly. We plan to continue our work on 
improving the handling of more complex cases.

Results and discussions
Ambit-SMIRKS functionalities have been developed, 
improved and tested for several years in various use 
cases and chemoinformatics tasks. In this section we pre-
sent specific Ambit-SMIRKS usage details concerning 
chemoinformatics routines such as treating of H atoms, 

aromatic systems and stereo elements as well as sugges-
tions for power usage of SMIRKS syntax, to achieve max-
imal benefits, based on numerous user feedbacks and use 
cases.

Mapped versus unmapped atoms
The SMIRKS linear notation supports atom mapping def-
inition with following syntax:

[<atom expression>:<n>]

The atom mapping index, <n>, is specified after the 
atom expression that defines the chemical logic, within 
the square brackets. For example the notation [C;R:3] 
defines an aliphatic carbon which is part of a ring system 
and has a reaction mapping index 3. Typically, atom map-
ping is used to map the product atoms versus reactant 
atoms e.g. when several atoms of particular element are 
present on both sides of the reaction, the atom mapping 
index distinguishes between the atoms (recall the atom 
definitions in SMIRKS are not unique).

Figure 4 shows another example, where the four carbon 
atoms from the five member ring are distinguished on 
the base of atom mapping (SMIRKS notation: [N:1]1[C:2]
[C:3]=[C:4][C:5]1≫[N:1]1[C:2]=[C:3][C:4]=[C:5]1). 
The SMIRKS syntax also supports unmapped atoms e.g. 
a transformation could be defined as C=C≫CC. Ambit-
SMIRKS software supports both mapped and unmapped 
atom definitions.

The logic behind unmapped atoms is the following:

1.	 Unmapped atoms on the reactant (left) side of the 
SMIRKS, as well as all bonds incident to unmapped 
atoms are removed from the resulting products;

2.	 Unmapped atoms on the product (right) side of 
SMIRKS are created and added to the resulting 
products, the corresponding new bonds (from the 
unmapped atom to other atoms) are created as well.

The above points describe the actual cases, where 
unmapped atoms are to be used within SMIRKS: delet-
ing atoms or adding atoms. In all other cases where 
atoms are “rearranged” by changing, adding or remov-
ing bonds, obligatory usage of mapped atoms is consid-
ered a good practice. An incorrect usage of unmapped 
atoms leads to side effects and “strange” or incorrect 
application of the reactions SMIRKS. Even if specifying 
syntactically correct SMIRKS, the chemical logic when 
using unmapped atoms is different and Ambit-SMIRKS 
will follow exactly the transformation logic. Figure  9 
illustrates the difference between using mapped and 
unmapped atoms within the same simple SMIRKS 
transformation: changing double bond to a single one. 
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The major side effect obtained by the incorrect usage 
of unmapped atoms (e.g. C=C≫CC) is fragmenta-
tion of the resulting products (most often undesired). 
The latter is due to the fact that the unmapped atoms 
are deleted at the reactant side and then added again 
on the product side. In this process the bonds inci-
dent to the deleted unmapped atoms are removed thus 
result products are fragmented for example propene 
transformation gives ethane and methane instead of 
propane. Similarly, cyclohexene is not correctly trans-
formed to cyclohexane, but instead two fragments are 
obtained. In Fig.  9 correct double bond transforma-
tion is obtained only for the case of SMIRKS with fully 
mapped atoms [C:1]=[C:2]≫[C:1][C:2]. The mixed 
SMIRKS case ([C:1]=C≫[C:1]C) with one mapped and 
one unmapped atom also produces fragmentation. Typ-
ically for normal chemical transformations, SMIRKS 
atom mapping is needed and within the Ambit-SMIRKS 
module it is considered as a good practice. Although a 
notation like C=C≫CC is very simple and attractive, it 
only works by coincidence for the molecule of ethane 
and generates fragmented products for all other cases 
(see Fig.  9) unless of course this side effect is desired. 
Another exception of the recommended practice for 

fully using mapped atoms is the case of explicit H 
atoms. When H atoms are defined explicitly within the 
SMIRKS they may be mapped or unmapped since are 
treated as the other heavy atoms. For both variants of 
explicit H atom definition, the final result is the same 
because H atoms are topologically connected only to 
one atom and thus removing and adding them again 
(which is the case of unmapped H atoms) does not 
influence other topological connections. For example, 
the following SMIRKS variants are equivalent from the 
point of view of the chemical products obtained:

[C:1]=[C:2][O:3][H]≫[C:1][C:2] [O:3][H]
[C:1]=[C:2][O:3][H:4]≫[C:1][C:2] [O:3][H:4]

A minor speed decrease could be expected for the first 
case since extra H atom deletion and H atom creation is 
executed. In some occasions using unmapped explicit H 
atoms is preferred due to the simplicity of the SMIRKS.

Hydrogen atoms handling
The majority of chemoinformatics software systems, as 
well as Ambit-SMIRKS handle the hydrogen atoms in 
two basic manners: (1) as implicit H atoms described as 

Fig. 9  Processing unmapped atoms in SMIRKS notation
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attributes to other heavy atoms and (2) explicit H atoms 
which are treated as normal heavy atoms. Usually, the 
implicit hydrogen atoms approach is preferred, as the 
connection tables are larger when using explicit hydro-
gens (up to three times large since about 2/3 of the atoms 
in organic molecules are hydrogens). However using 
explicit H atoms in SMIRKS transformations, allows 
robust and more precise description of the chemical 
reaction logic. Figure 10 shows three main scenarios of H 
atom treatment within Ambit-SMIRKS software.

The first scenario of handling aromatic hydroxyla-
tion reaction is based on explicit description of all atoms 
including explicit H atoms as well. We recommend this 
approach as the best practice for describing chemi-
cal reactions, since it defines the changes of all chemical 
bonds including those attached to H atoms. This approach 
requires strict description of all changes within the mol-
ecule, due to the chemical reaction specified. This way the 
chances for obtaining chemically correct products will be 
higher. Chemically correct products are not guaranteed 
by the SMIRKS standard itself—the SMIRKS syntax just 
gives means to describe the desired molecule transforma-
tion, regardless of its correctness. The first scenario on 
Fig. 10 requires explicit H atoms representation of the tar-
get molecule, otherwise the reaction will not be applied.

The second scenario on Fig.  10 is based on Ambit-
SMIRKS option, activated by setting FlagHAtomsTrans-
formation = true. This way the implicit H atoms defined 
by the SMIRKS notation are used as instructions to apply 
changes to the H atoms. By default, this flag is false, i.e. 
the SMIRKS atoms expressions containing specification 
of H atoms (implicitly in fact) will be used only to match 
the target atoms by substructure search, (e.g. [CH3] will 
match a carbon with 3 H atoms). When FlagHAtoms-
Transformation = true, the H atom information is used 
to match the reaction sites, as well as to define H atoms 
changes e.g. [CH3:1]≫[CH2:1][OH] defines a primary 
carbon with 3 H atom neighbors that is hydroxylated and 
the transformed carbon atom will be with two H neigh-
bors. Accordingly, the newly created oxygen atom on 
the product side is with one H neighbor. The FlagHA-
tomsTransformation option works on molecules with 
implicit and explicit atoms where FlagHAtomsTrans-
formationMode is used to define how to perform the 
transformation of the H atoms. When FlagHAtomsTrans-
formation = false, the H atom info within atoms expres-
sions will not have any effect on the transformation (only 
for matching). Another aspect of the second scenario 
example is that the SMIRKS notation [CH3:1]≫[CH2:1]
[OH] defines hydroxylation only for primary carbons 
while [C:1][H:2]≫[C:1]O[H:2] defines hydroxylation for 
all types of hydrogens: primary, secondary and tertiary 

(the last SMIRKS notation works only for molecules with 
explicit H atoms). If it is needed to define the reaction 
only for primary carbons it is possible in the first scenario 
by SMIRKS like this [CH3:1][H:2]≫[C:1]O[H:2] (should 
not confuse the implicit [CH3], that defines the primary 
carbon atom with the explicit [H:2] which defines how 
reaction transformation is applied). Complications and 
problems with the H atom transformation option can 
be observed when complex SMIRKS atom expressions 
are used e.g. [CH3,CH2:1]≫[CH2,CH1:1][OH] will not 
work; that is why we recommend the explicit H atom 
approach.

The third scenario is called “automatic” and it relies 
on post transformation cleaning of incorrect H atoms (if 
obtained) and setting automatically anew the implicit H 
atoms (e.g. by CDK hydrogen atoms adding utility). The 
SMIRKS used in this case is quite simple [C:1]≫[C:1]O. 
This approach looks attractive with its simplicity (and 
could be called also a “lazy” approach) but it can result in 
chemically incorrect structures, where the usage of post-
processing cleanup is mandatory. Apart from the need 
of product molecules cleanup, another disadvantage of 
this approach is the fact that the reaction transformation 
result depends not only on the SMIRKS transformation 
rules, but also on the cleanup procedure.

Handling aromatic systems
The chemoinformatics systems handle aromaticity in 
two major ways: by Kekule resonance structure repre-
sentations and by delocalized aromatic systems, typi-
cally represented by aromaticity flags of atoms and 
bonds. Both approaches have pros and cons, depending 
on the use cases and the underlying chemistry models. 
The aromaticity information within SMIRKS is primar-
ily used to define the substructure searching queries for 
the reaction transformation sites identification, e.g. [c:1]
[H]≫[c:1]O[H] defines aromatic hydroxylation. Making 
use of such information (particularly within the product 
side of the SMIRKS) to define aromatic system transfor-
mations is quite challenging. For example, the SMIRKS 
transformation of the type [C:1][C:2]≫[c:1]:[c:2] is tricky 
and in most of the cases chemically incorrect results will 
be obtained. The transformation above is interpreted as 
instruction to “make this single bond to be an aromatic 
one”. However, the aromaticity of the bond depends on 
a larger system of atoms, which is not known before-
hand. Hence, this transformation rule may be applicable 
in some occasions as an exception, but generally such 
SMIRKS “statement” is not chemically correct. More 
elaborated SMIRKS of the type:

[C:1]1[C:2]=[C:3][C:4][C:5][C:6]1≫[c:1]1:[c:2]
[c:3]:[c:4][c:5]:[c:6]:1
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provides more precise transformation rule, since the 
entire aromatic ring is specified on the product side. 
However, in making the ring on the product side aro-
matic, there is also possibility for potentially incorrect 
result products, in case of e.g. fused rings to this ring, 
etc. Within Ambit-SMIRKS (see Fig.  11) we consider 
a good practice handling aromatic transformation as 
Kekule structures, since in this way all bonds orders are 
defined explicitly and the SMIRKS transformation of the 

bonds is clearly defined as well. After applying a reac-
tion rule, Ambit-SMIRKS performs post-processing aro-
maticity detection algorithm and if aromatic system are 
formed due to the bonds changes, the aromatic atom 
and bond flags are assigned accordingly. The result mol-
ecules could be represented in aromatic form or stay in 
a Kekule form. Some may consider the need to rely on 
particular aromaticity detection algorithm a disadvantage 
for this approach. This is only a reasonable point when 

Fig. 10  Handling H atoms for aliphatic hydroxylation SMIRKS reaction
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the chemoinformatics system lacks a good aromaticity 
detector. Ambit-SMIRKS relies on The CDK aromatic-
ity detector which has been significantly improved in the 
latest releases of CDK [17]. When the user prefers own 
aromaticity detector the following option is required 
FlagCheckAromaticityOnResultProcess = false.

Stereochemistry support
The stereochemistry in chemoinformatics systems [1] is 
represented in two main ways (see Fig. 12). The absolute 
stereochemistry approach describes the elements of the 
stereo group by prioritizing (ordering) the stereo ele-
ments on the base of absolute chemical logic that does 

Fig. 11  Handling aromatic systems by Ambit-SMIRKS
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not depend on the atom numbering (the latter typically 
depends on the graph walk algorithm). For example 
famous Cahn, Ingold, Prelog (CIP) priority rules [35] 
are the basic approach used by chemists to describe 
chiral atoms or groups. CIP rules approach is used in 
some cases of computer representation and handling of 
molecular stereo information e.g. direct representation 
of the stereo by means of 3D coordinates or stereo desig-
nations (R/S) in 2D structure diagrams. The widely used 
approach for stereo handling on topological level is the so 
called relative stereo representation. In Fig. 12, the rela-
tive stereo approach is used for the CDK based internal 
stereo representation of 2-hydroxypropanoic acid, as well 
as for the molecule SMILES.

The SMILES linear notation and respectively SMARTS 
and SMIRKS notations (regarded as extensions of 
SMILES) are based on the relative stereo approach, 
which is used to describe the stereo configurations in 
molecules, search queries and reactions accordingly. 
The stereo element priorities within relative approaches 
depend on the atom numbering and thus influence the 
algorithms of atom iteration, used to define the sets of 
stereo elements. The priority of the stereo elements, in 
the case of SMIRKS, SMARTS or SMILES, is defined 
by the order of appearance in the linear notation which 
is equivalent to usage of random atom numbering. For 
the molecule of 2-hydroxypropanoic acid (see Fig.  12), 
the relative groups priorities within the SMILES are 
1-OH, 2-H, 3-CH3, 4-COOH. It should be noted that 
stereo information represented in a relative fashion is 
still the same (the molecule is in R configuration), just 
the technical means for representation, interpretation 
and usage are different. The conversion from relative to 
absolute stereo and vice versa is needed. The user should 

not mismatch the R/S designation with @/@@ trying to 
make direct correspondence between both notations (for 
more details see the SMILES standard documentation 
[36]). For example, the R configuration of molecule of 
2-hydroxypropanoic acid can be represented by different 
SMILES notations i.e. several relative descriptions of the 
same stereo information:

O[C@H](C)C(O)=O	� O[C@@H](C(O)=O)C
C[C@@H](O)C(O)=O	� C[C@H](C(O)=O)O
C(O)(=O)[C@H](O)C	� C(O)(=O)[C@@H](C)O

Ambit-SMIRKS stereo handling is based on the rela-
tive approach for stereo information representation, as 
both the SMIRKS linear notation and the internal CDK 
objects are based on it. The major types of stereo ele-
ments supported by CDK library are: tetrahedral chiral 
atoms, cis/trans double bond configuration and allene 
atom chirality.

Ambit-SMIRKS supports stereo transformation cases 
that can be summarized in two major groups:

1.	 stereo transformation not directly specified by 
SMIRKS (3 cases, see Fig. 13)

2.	 stereo transformation specified by SMIRKS (3 cases, 
see Fig. 14)

In order to use the full capability of Ambit-SMIRKS 
stereo transformation utilities, FlagApplyStereoTransfor-
mation should be set to true. If this flag is not set, ste-
reo transformation is supported only for the trivial cases 
shown in Fig. 13a, c.

Figure  13 illustrates three major cases of Ambit-
SMIRKS stereo transformation that are not directly 

Fig. 12  Stereo representation approaches for the molecule of 2-hydroxypropanoic acid
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Fig. 13  Stereo transformation cases without stereo specification within SMIRKS notation. a Stereo element preservation, b stereo element change 
of ligand, c stereo element removal

Fig. 14  Stereo transformation cases defined by SMIRKS notation. a Create new stereo element, b stereo element update/change, c stereo element 
removal
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defined by SMIRKS, but are implied by chemists. The 
stereo chemistry element preservation is the most trivial 
one—if particular transformation does not influence a 
given stereo element, the stereo element is preserved e.g. 
the chiral atom from Fig. 13a remains chiral. The trans-
formation depicted in Fig.  13b replaces the OH group 
with NH2 group. The initial OH group is a ligand to the 
chiral center (C atom) and as such, O atom is registered 
in the tetrahedral chiral atom stereo element. Ambit-
SMIRKS specially treats the cases where the applied 
reaction transformation updates the corresponding ste-
reo elements. Case b of Fig. 13 is not trivial although it 
is logically expected by the chemist. If FlagApplyStereo-
Transformation is not set, such stereo elements will not 
be updated accordingly and after finishing the SMIRKS 
transformation, the corresponding stereo element will 
be invalidated and removed i.e. for the option FlagAp-
plyStereoTransformation = false, chiral elements that 
are directly influenced by the SMIRKS reaction will be 
removed. Case b has other interesting subcases:

• • if the SMIRKS transformation adds a new ligand to 
the stereo element that is chemically or topologically 
equivalent to some other ligand, practically the atom 
center will be no longer chiral.

• • if more than two ligands are replaced then stereo is 
tried to be preserved but some side effects are possi-
ble. For such cases, if strict stereo handling is needed, 
it is recommended to define the stereo chemistry 
transformation within the SMIRKS if possible.

Figure  13c shows a case where the stereo element is 
invalidated by the reaction and hence the chiral atom 
center is removed.

Apart from the indirect stereo transformation cases, 
Ambit-SMIRKS supports cases of stereo transformation 
defined directly by the SMIRKS notation summarized in 
Fig.  14. Three major scenarios are possible. In the first 
case (Fig. 14a), a new stereo element is created where the 
product part of the linear notation SMIRKS defines the 
new stereo configuration. Existing stereo element can be 
updated (for example S configuration is changed to R, see 
Fig. 14b) where stereo information is defined both in rea-
gent and product part of the SMIRKS for the same stereo 
group. Also it is possible to define removal of a stereo ele-
ment (Fig. 14c) where the stereo element is defined in the 
reagent part of SMIRKS but not in the product part. The 
latter case is supported by SMIRKS syntax and although 
it is a rarer one from practical point of view, it could be 
useful for describing transformation from chiral to race-
mic compounds or cleaning the stereo elements from the 
molecule when needed.

Comparison between Ambit‑SMIRKS and other 
open‑source chemoinformatics tools
We present comparison between Ambit-SMIRKS and 
two popular open source chemoinformatics pack-
ages, supporting chemical transformations based on 
SMARTS/SMIRKS.

Open Babel is an open source chemical toolbox 
designed to handle chemical information in many lan-
guages of chemical data (over 110 chemical file formats) 
and includes ready-to-use programs and a reach chemo-
informatics platform allowing anyone to search, convert, 
analyze, or store data from molecular modeling, chem-
istry, biochemistry etc. [18]. Chemical transformations 
analogous to the SMIRKS based reactions are not directly 
available in the ready-to-use Open Babel programs but 
can be performed via programmatic API in C++ as well 
as available wrappers in Python and Java. Open Babel (up 
to version 2.3) library does not support direct handling of 
SMIRKS however it has a specialized class OBChemTsfm 
which is capable of performing SMARTS based structural 
modification (chemical transformation). Two SMARTS 
notations (one for the reactants and one for products) 
are expected to be submitted as input into OBChemTsfm, 
which practically makes this approach equivalent to the 
usage of SMIRKS. The class OBChemTsfm has very sim-
ple interface and the user cannot configure the chemical 
transformation itself but should rely solely on the linear 
notations provided on input and the implemented algo-
rithms in OpenBablel. In contrast, Ambit-SMIRKS allows 
detailed fine-tuning and configuration of the reaction 
application and chemical processing. We consider Ambit 
approach useful and needed in many use cases since the 
chemical logic and the comprehensive SMIRKS notations 
require differentiation in various scenarios. On the other 
hand, the more complex Ambit configuration implies 
slower learning curve which can be considered as a dis-
advantage but at the end the user has more flexibility.

RDKit is a rich open source toolkit for cheminformatics 
[19] which includes input/output to basic chemical for-
mats, substructure searching, chemical transformations 
(based on removing matched substructures), chemical 
reactions, molecular serialization, 2D depiction, finger-
printing and many other chemoinformatics features. 
The core RDKit functionalities are written in C++, 
while typically the library is used via Python API. RDKit 
(as of release 2018.03) has a full support of SMIRKS 
based chemical transformations and the programmatic 
approach (API) is quite similar to the one used in Ambit-
SMIRKS which includes two major components: (1) 
creation of a chemical reaction object by means of class 
ReactionFromSmarts which takes as an input a SMIRKS 
notation and (2) reaction application to the  target 



Page 22 of 29Kochev et al. J Cheminform  (2018) 10:42 

chemical objects (reactants). As a result, a matrix with 
molecules is obtained which includes all products (the 
elements of a particular row) for each site the reaction 
takes place at (each row corresponds to the particular 
reaction site). Similarly, Ambit-SMIRKS returns a list of 
atom containers for each reaction site where each atom 
container may be fragmented consisting of one or more 
chemical reaction products. RDKit applies the reaction 
against all possible sites regardless of topological equiva-
lence or site overlapping and applies the transformations 
only in single mode. Ambit-SMIRKS supports this func-
tionality as mode ALL which is one of the several modes 
discussed in section Structure Transformation. Addition-
ally, Ambit-SMIRKS offers selectivity of the reaction sites 
by means other reaction modes such as NON_IDENTI-
CAL, NON_OVERLAPPING, NON_HOMOMORPHIC. 
The latter ones can be achieved in RDKit by additional 
post-processing of the resulting matrix (the user has to 
implement appropriate procedures). Another feature 
available in Ambit-SMIRKS but missing in RDKit is the 
possibility to apply reactions simultaneously at more than 
one site (RDKit runs the reaction only in single mode).

We have performed benchmark tests of Ambit-
SMIRKS and RDKit SMIRKS transformation algorithms. 
For this purpose we used a set of 545 compounds includ-
ing normal constituents of the body and common com-
ponents of food, provided by Munro et al. [37] and a set 
of 84 reactions from RetroTransformDB [38, 39] rep-
resented as SMIRKS linear notations. In both software 
tools (RDKit and Ambit-SMIRKS), each reaction was 
applied for all compounds at all possible sites thus per-
forming more than 46,000 SMIRKS transformation. For 
the purpose of comparison, Ambit-SMIRKS was applied 
in mode ALL with a single copy of the products for 
each reaction sites. The tests were performed on a PC 
computer (Intel/Core i5-8250U, 1.6  GHz/12  GB RAM). 
The calculations took 30 s by RDKit and 40 s by Ambit-
SMIRKS. The computational time for both software 
includes the SMIRKS parsing and reaction application 
as well as molecule preprocessing and file operations. 
Ambit-SMIRKS was a little slower (however execu-
tion time was in the same range) than RDKit but hav-
ing in mind that Ambit-SMIRKS is a Java application 
(compared to the RDKit C++ based core) its algorithm 
performance should be considered as very good. Out of 
46,410 tests, 6096 test reactions were successfully applied 
for at least one site in Ambit-SMIRKS and 5729 reac-
tions were successfully applied for at least one site in 
RDKit accordingly. The obtained total number of reacted 
sites for Ambit-SMIRKS and RDKit is 41,453 and 40,782 
respectively. We have performed statistics of the number 
of reacted sites for both software packages and some dif-
ferences were observed for 436 reaction tests. From our 

analysis we may infer that the observed differences are 
mainly due to different treatment of equivalent molecules 
sites and some small differences of the internal presenta-
tion of the molecules and the chemical reactions on both 
software packages. Detailed information from the bench-
mark test between RDKit and Ambit-SMIRKS is available 
at https​://doi.org/10.5281/zenod​o.13226​31. Summariz-
ing the benchmark results and functional comparison, we 
may conclude that performance, API logic and efficiency 
of Ambit-SMIRKS and RDKit are quite similar with a 
more detailed level of reaction application configuration 
in Ambit-SMIRKS.

Ambit‑SMIRKS applications
We present an overview of several applications where 
the Ambit-SMIRKS library is already integrated into 
chemoinformatics software (Toxtree [28, 40], enviPath 
[41], BioTransformer [42, 43], Ambit Reactor and Ambit 
structure standardisation).

1.	 Toxtree

Toxtree [28, 40] is a full-featured and flexible user-
friendly open source application, widely used to esti-
mate toxic hazard by a decision tree approach. Toxtree 
consists of multiple modules, implementing decision 
trees for various endpoints (e.g. Cramer rules for TTC, 
Verhaar scheme for aquatic toxicity mode of action, Skin 
and Eye irritation prediction, skin sensitization reactiv-
ity domains, START biodegradation and persistence, 
Benigni/Bossa rulebase for mutagenicity and carcino-
genicity, Ames test alerts by ISS etc.). In order to estimate 
bioavailability, activity and toxicity profile, metabolic 
biotransformations of the target compound must be 
considered and several of these modules include rules 
involving chemical structure transformation; most nota-
ble are hydrolysis and metabolic transformations. Thus, 
the Toxtree user may notice after certain rule is applied, 
the following processing continues not with the original 
molecule, but with set of reaction products. These trans-
formations are implemented as SMIRKS transformation, 
using Ambit-SMIRKS.

An explicit generation of metabolites is provided by the 
Toxtree SmartCYP module, which enhances the SMART-
Cyp (Cytochrome P450-Mediated Drug Metabolism) 
model developed by Rydberg et  al. [29] with reaction 
transformation, based on predicted site of metabolism in 
phase I cytochromes P450-mediated reactions. Each pre-
dicted SOM corresponds to a SMIRKS reaction, which is 
applied with the help of Ambit-SMIRKS. This function-
ality is included as Toxtree module since Toxtree 2.1.0 

https://doi.org/10.5281/zenodo.1322631
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(2011). Ambit-SMIRKS transformations are applied on 
the predicted molecule sites (see Fig. 15).

2.	 enviPath

Ambit-SMIRKS is used within enviPath (Fig. 16) system 
for the application of chemical reactions represented as 
SMIRKS notations. enviPath [41] is a database and predic-
tion system for the microbial biotransformation of organic 
environmental contaminants. The database provides the 
possibility to store and view experimentally observed bio-
transformation pathways. The pathway prediction system 
provides different relative reasoning models to predict 
likely biotransformation pathways and products.

3.	 AmbitCLI—standardization tool

AmbitCLI is a console application [44], part of AMBIT 
cheminformatics platform. It includes a number of 
chemical structure processing options such as fragments 
splitting, isotopes removal, handling implicit hydrogens, 
stereochemistry, InChI generation, SMILES generation, 
structure normalisation via SMIRKS, tautomers genera-
tion, neutralization etc. All the implemented standardi-
sation rules were defined to reflect industry standards 
[45], but it is possible to optionally provide a custom set 
of SMIRKS rules. An example structure standardization 
protocol is shown in Fig. 17 (the elements of the stand-
ardization workflow are configurable).

AmbitCLI works with various structure representa-
tion techniques (MOL, SMILES, InChI) and supports 
*.SDF file format and tabular TXT format. AmbitCLI 
application was used for the standardization of ChEMBL, 
PubChem and other public databases (downloaded as a 
SDF files) using following command line options:

Fig. 15  Application of Ambit-SMIRKS for obtaining Stepronin metabolites
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The standardized structures are compiled into 
ExCAPE-DB [45]—an integrated large scale dataset facil-
itating Big Data analysis in chemogenomics. The stand-
ardization tool is also used for processing proprietary 
datasets in industry.

4.	 Ambit-SMIRKS Web Page and AmbitSmirksGUI 
application

Links to the Ambit-SMIRKS web demo and a GUI 
application (see Fig.  18) are available at http://ambit​
.sourc​eforg​e.net/smirk​s.html. AmbitSmirksGUI facili-
tates the options described in this paper (see list of flags 
in Table 1).

Figure  18 illustrates the application of aromatic 
hydroxylation reaction for the molecule 3-ethylpyridine 
where four possible products are generated and shown 

in the figure. The reaction is applied with default Ambit-
SMIRKS flags setting shown as checkboxes of the GUI.

Also Ambit-SMIRKS example usage code is available 
at: https​://githu​b.com/ideac​onsul​t/examp​les-ambit​/
tree/maste​r/smirk​s-examp​le5.	Ambit-Reactor

Ambit-Reactor [46] is a software module for simulation 
of sequences of chemical reactions and is part of open 
source chemoinformatics platform Ambit. For a given set 
of initial reactants, Ambit-Reactor applies exhaustively 
all transformations based on generic chemical reaction 
rules described in a predefined set of reactions. For each 
molecule from the result products, all possible transfor-
mations are applied to obtain new products and so on. In 
order to control the combinatorial explosion, the process 
stops when conditions defined by the user are reached. 

Fig. 16  Screenshot from enviPath web system. Reaction transformations of a biochemical pathway for the molecule of 1,2 dichclorethane; 
Ambit-SMIRKS is used in each pathway step molecule transformation

http://ambit.sourceforge.net/smirks.html
http://ambit.sourceforge.net/smirks.html
https://github.com/ideaconsult/examples-ambit/tree/master/smirks-example
https://github.com/ideaconsult/examples-ambit/tree/master/smirks-example
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Ambit-Reactor is configured via JSON files that specify 
the reaction strategy, reaction rules, allowed and forbid-
den products, set of parameters and logical conditions 
for reaction application and definition of sites where 
reactions occurs. The reactor strategy is defined by logi-
cal expressions of molecular descriptors’ values. Ambit-
Reactor can be used for generation of virtual compound 
libraries, retrosynthetic analysis and combinatorial gen-
eration of metabolites (Fig. 19) as far as appropriate reac-
tor strategy is defined. Currently, Ambit-Reactor provides 
a framework and the creation of efficient reactor strate-
gies is subject of future research.

Ambit-Reactor module can be used as a software 
library by means of Java API access (http://ambit​.sourc​
eforg​e.net/) or as a command-line standalone application 
available at the following address http://ambit​.sourc​eforg​
e.net/react​or.html.

6.	 Cheminformatics Tools for Enabling Metabolomics

Ambit-SMIRKS library is used for the application of 
biotransformation rules and structure generation within 
BioTransformer [42, 43]. BioTransformer is a command-
line software tool that predicts small molecule metabo-
lism in mammals, their gut microbiota, as well as the soil/
aquatic microbiota. BioTransformer is a freely accessible 
software package which also includes manually curated 
database called BioTransformerDB. The input structure 
is subjected to chemical validation and standardization. 
Subsequently, BioTransformer predicts biotransforma-
tions and the resulting metabolites for the query mol-
ecules. The prediction involves various transforms 
(CYP450, EC-based, phase II, gut microbial, or envi-
ronmental microbial) and covers a number of different 

Fig. 17  Application of Ambit-SMIRKS for the implementation of a standardization protocol within ExCAPE project database

http://ambit.sourceforge.net/
http://ambit.sourceforge.net/
http://ambit.sourceforge.net/reactor.html
http://ambit.sourceforge.net/reactor.html
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reaction types. BioTransformer builds a metabolic tree by 
associating each metabolite with its parent molecules.

Future development
We plan Ambit-SMIRKS functionality extension by 
including support for new stereo elements as imple-
mented in the most recent CDK 2.1.0 release, as well 
as improvements of reaction search and application to 
metabolite generation tools.

Conclusions
Ambit-SMIRKS open source software provides effi-
cient chemoinformatics tools for chemical reactions 
handling via linear notation SMIRKS. Powerful recur-
sive SMARTS expressions, stereo handling and third 
party syntax extensions give a great flexibility to the 
user for defining the desired chemical logic in the form 
of generic chemical reactions. All key aspects of the 

structure information handling are covered by the soft-
ware. The user can fine tune the reactant pre-process-
ing, reaction transformation, products post-processing, 
H atom, stereo and aromaticity handling. The software 
performance has been improved on the base of numer-
ous user feedbacks of several years of development 
and usage. Recommendations for specifying optimal 
SMIRKS notations and best software use practices are 
defined to make the most of Ambit-SMIRKS. Ambit-
SMIRKS package have already been integrated in sev-
eral scientific projects as core structure transformation 
functionality, proving its usefulness to the open source 
cheminformatics community. By elaborating the details 
of the SMIRKS processing logic in this publication, we 
hope to provide to Ambit-SMIRKS users insight into 
its use and assist with obtaining correct results from 
chemical point of view.

Fig. 18  Ambit-SMIRKS GUI: application of aromatic hydroxylation reaction at four possible sites of the molecule of 3-ethylpyridine
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Fig. 19  Example reaction transformations within Ambit-Reactor application
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