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Abstract 

Chemical database searching has become a fixture in many non-targeted identification workflows based on high-
resolution mass spectrometry (HRMS). However, the form of a chemical structure observed in HRMS does not always 
match the form stored in a database (e.g., the neutral form versus a salt; one component of a mixture rather than the 
mixture form used in a consumer product). Linking the form of a structure observed via HRMS to its related form(s) 
within a database will enable the return of all relevant variants of a structure, as well as the related metadata, in a 
single query. A Konstanz Information Miner (KNIME) workflow has been developed to produce structural representa-
tions observed using HRMS (“MS-Ready structures”) and links them to those stored in a database. These MS-Ready 
structures, and associated mappings to the full chemical representations, are surfaced via the US EPA’s Chemistry 
Dashboard (https​://compt​ox.epa.gov/dashb​oard/). This article describes the workflow for the generation and linking 
of ~ 700,000 MS-Ready structures (derived from ~ 760,000 original structures) as well as download, search and export 
capabilities to serve structure identification using HRMS. The importance of this form of structural representation for 
HRMS is demonstrated with several examples, including integration with the in silico fragmentation software applica-
tion MetFrag. The structures, search, download and export functionality are all available through the CompTox Chem-
istry Dashboard, while the MetFrag implementation can be viewed at https​://msbi.ipb-halle​.de/MetFr​agBet​a/.
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Background
In recent years the use of high-resolution mass spec-
trometry (HRMS) instrumentation coupled to gas and 
liquid chromatography has become increasingly common 
in environmental, exposure and health sciences for the 
detection of small molecules such as metabolites, natu-
ral products and chemicals of concern [1–5]. Advances 
in instrumentation have led to faster acquisition times, 
lower limits of detection, and higher resolution, improv-
ing the rapid identification of chemicals of interest. 

However, the bottleneck of data processing has evolved 
to become the foremost challenge for non-targeted and 
suspect screening analyses (NTA and SSA, respectively) 
[1, 2, 6]. Workflows to address data processing can vary 
substantially between laboratories and depend on access 
to various software and programming capabilities. Com-
mon data processing workflows in NTA and SSA often 
utilize a combination of vendor-specific software, open 
source platforms, and in-house resources [1, 3, 7].

In NTA the analyst generally uses peak-picking soft-
ware to identify molecular features to find the (pseudo)
molecular ion (m/z) along with associated isotopic peaks 
and calculate the neutral monoisotopic mass (Fig.  1a, 
b). Monoisotopic masses can be searched in struc-
ture databases to retrieve tentative candidates or can be 
used in combination with isotopic distributions and/or 
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fragmentation data to arrive at a molecular formula(e) 
before candidate searching (Fig. 1c). Candidate selection 
often combines concepts such as database searching and 
data source ranking [7–9], spectral matching [10, 11] and 
retention time feasibility [7, 12–14] to identify the most 
probable structures, with database presence and meta-
data proving critical to success [7, 15]. When fragmen-
tation information was combined with metadata and 
retention time information in MetFrag2.2, the number 
of correct identifications improved from 22% (105 of 473 
correct) to 89% (420 of 473) on candidates retrieved from 
ChemSpider [16] using molecular formulae [7]. However, 
mixtures and salts (and thus their associated metadata) 
were excluded from candidate lists as these would not 
be observed at the calculated exact mass or formula used 
for searching. Yet, multi-component forms of a chemical 
(e.g., mixtures and salts, Fig.  1c) may contain the com-
ponent observed via HRMS. Excluding these from data-
base searches limits which substances can be identified by 
excluding variants of a structure and associated metadata.

Despite the prevalence of structure databases and 
online chemistry resources in NTA workflows, rela-
tively little work has been done within the community to 
curate and standardize chemical structures in databases 
to optimize searching and identification with HRMS data 
[22, 23]. To maximize the search capabilities of struc-
ture databases, both the substance form, commonly 

represented by a structure (Fig. 1c), and the “MS-Ready” 
form (Fig. 1b) of the structure should be contained within 
databases and linked. When properly linked, both the 
observed form and variants of the structure observed via 
HRMS can be presented, thereby allowing the analyst to 
subsequently access metadata that may provide increased 
evidence in structure identification [5, 9, 15, 22, 24].

To link particular forms of a substance to their structure 
components (i.e., salts and mixtures) and their related 
MS-Ready forms, structure standardization is required. 
Various curation and standardization approaches are 
already defined in cheminformatics [25–28] and in use 
within the quantitative structure–activity relationship 
(QSAR) modeling community [27, 29]. QSAR modelers 
generally need desalted, neutralized, non-stereospecific 
structures, typically excluding inorganics and mixtures, 
to facilitate calculating molecular descriptors used in 
subsequent modeling approaches. Workflows describ-
ing the generation of QSAR-Ready structures have pre-
viously been published [27, 28, 30]. The requirements 
to produce MS-Ready structures are similar (vide infra), 
thus the processing rule set to produce QSAR-Ready files 
could be altered to provide an MS-Ready form of the data 
with a number of appropriate extensions. Hence, a pre-
vious QSAR-Ready structure preparation workflow [28, 
30] was adapted to produce MS-Ready chemical struc-
ture forms that are amenable to structure identification 

Fig. 1  Using the example of the structure of diphenhydramine (DTXSID4022949 [17]): in HRMS, molecular features and associated ions are used to 
identify the pseudomolecular ion at a specific m/z (a). This information is then used to calculate the neutral monoisotopic mass and/or molecular 
formula (b). Both a neutral mass and formula can be searched in structure databases to retrieve matching candidate results (c). The MS-Ready 
form of a structure (b DTXCID802949 [18]) and the substance form(s) of a chemical (c DTXSID4022949 [17]; DTXSID80237211 [19]; DTXSID4020537 
[20]; DTXSID10225883 [21]) are linked such that all can be retrieved in a single query with the EPA’s DSSTox database. DTXCID indicates the unique 
chemical identifier and DTXSID indicates the unique substance identifier, linked to metadata
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using database searching. The resulting Konstanz Infor-
mation Miner (KNIME) workflow, associated rule set 
and software processing module for the generation of 
MS-Ready structures are provided as an outcome of this 
work and available for download from a Github reposi-
tory [31]. In addition, this workflow was used to generate 
MS-Ready forms (~ 700,000) for the ~ 760,000 chemicals 
substances in DSSTox [32] for access via the US EPA’s 
CompTox Chemistry Dashboard (hereafter “Dashboard”) 
[33]. The functionality in the Dashboard includes the 
ability to search, export and download MS-Ready struc-
tures. Several examples are provided to demonstrate the 
value of MS-Ready structures, including integration and 
demonstration of identification in NTA through the in 
silico fragmenter MetFrag [7]. Through accessibility to 
MS-Ready structures and the integration between the 
Dashboard and MetFrag, valuable resources to support 
structural identification of chemicals, now including mix-
tures and salts, are available to the community.

Methods
MS‑Ready processing workflow
The MS-Ready processing workflow is an extension of the 
workflows described in detail by Mansouri et al. to curate 
and prepare QSAR-Ready structures for use in the devel-
opment of prediction models [28, 30]. The related QSAR-
Ready workflow is openly available on GitHub [34]. The 
free and open-source environment KNIME (Konstanz 
Information Miner) was used to design and implement 
the workflow [35]. Only free and open source KNIME 
nodes were used in the workflow. Cheminformatic steps 
were mainly performed using INDIGO nodes [36]. The 
nodes for each step were grouped into metanodes to ease 
readability and increase flexibility and future updates.

The MS-Ready workflow and transformation files are 
available on GitHub [31] and consisted of the following 
steps:

1.	 Consistency checking: file format, valence, and struc-
tural integrity.

2.	 Removal of inorganics and separation of mixtures 
into individual components.

3.	 Removal of salts and counterions (the salts list is 
available in Additional file 1).

4.	 Conversion of tautomers and mesomers to consistent 
representations. Examples include: nitro and azide 
mesomers, keto–enol tautomers, enamine–imine 
tautomers, enol-ketenes, etc. [37–39].

5.	 Neutralization of charged structures and removal of 
stereochemistry information.

6.	 Addition of explicit hydrogen atoms and aromatiza-
tion of structures.

7.	 Removal of duplicates using InChIKey [40].

Differences between the QSAR-Ready and MS-Ready 
workflows exist primarily in the handling of salts and 
counterions, chemical mixtures, metals, and organo-
metallics (Fig.  2). For the generation of both QSAR 
and MS-Ready structures, salts and solvents are sepa-
rated and removed from mixtures via an exclusion list 
(Fig.  2a). The exclusion list used during QSAR-Ready 
structure preparation (189 structures, SDF file pro-
vided as Additional file  2) was substantially reduced 
for MS-Ready structures (32 structures, SDF file pro-
vided as Additional file  1), allowing a greater number 
of secondary components that are observable in MS to 
be retained and linked to the original substances via 
MS-Ready forms (e.g., benzoate, fumarate, citrate). For 
MS-Ready structures, all records still containing mul-
tiple components were separated out, deduplicated if 
necessary, and retained, with all components linked to 
the original substance (Fig. 2b, c). For the QSAR-Ready 
workflow, in contrast, chemical mixtures are excluded 
due to the complexity merging activity estimates for 
components of the mixture (Fig. 2b, c). The MS-Ready 
workflow retains organometallics containing covalent 
metal–carbon bonds within the chemical structure 
while the QSAR-Ready workflow does not (Fig.  2d), 
primarily because most descriptor packages used for 
QSAR modeling cannot handle organometallic com-
pounds. However, users of MS-Ready structures for 
environmental and exposure NTA applications need to 
include substances such as organomercury and organo-
tin compounds, due to their toxicity and use as, for 
example, fungicides and antifouling agents.

Mapping MS‑Ready structures to substances
For the purpose of structure identification using the 
Dashboard, MS-Ready structures must be mapped to the 
associated chemical substances in the underlying DSS-
Tox database [32]. Chemical substances within DSSTox 
are identified by unique DTXSIDs (DSSTox Substance 
Identifiers) and can denote a mixture, polymer or single 
chemical while DTXCIDs (DSSTox Chemical Identifier) 
are unique chemical structure identifiers. A structure-
data file (SDF) of all chemical structures (DTXCIDs) 
associated with substances (DTXSIDs) was exported and 
passed through the MS-Ready preparation workflow. 
The resulting MS-Ready structures were then loaded 
back into the DSSTox structure table, omitting duplicate 
structures as identified by standard InChIKey [40] gener-
ated using the JChem Java API [41]. Mappings between 
the original DSSTox structure and its MS-Ready form 
was stored in a structure relationship mapping table.
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Accessibility to MS‑Ready results
Once mapped within the database, functionality to 
support searching based on MS-Ready structures 
was incorporated into the Dashboard [33] to support 
mass spectrometry-based NTA and SSA. MS-Ready 
structures can be searched using the Advanced Search 
page based on a single molecular formula [42] or can 
be searched in batch mode (i.e., 1–100 s of masses or 
formulae at a time) in the Batch Search interface [43]. 
The Batch Search interface allows for MS-Ready struc-
ture searching of both molecular formulae and monoi-
sotopic masses. As the form of a chemical structure 
observed via HRMS is linked to all substances contain-
ing the structure (e.g., the neutral form, all salt forms, 
mixtures), when a molecular formula or monoisotopic 
mass is searched using MS-Ready structures, both 
single component and multi-component substances 

can be returned. This is distinct from an exact for-
mula search whereby results returned match the input 
formula exactly (e.g., excluding mixtures where only 
a component matches that given formula). Figure  3 
demonstrates the difference between an exact formula 
search (returning candidates to the left of the figure) 
and an MS-Ready search (which returns all candi-
dates shown in the figure). Both exact formula and 
MS-Ready formula searches can be conducted within 
the Advanced Search and Batch Search pages of the 
Dashboard. Screenshots of the search interfaces and 
resulting file are provided in Additional file  3: Figs. 
S1–S4. Users can download the results with export 
options including SMILES and the identifiers that cor-
respond with the substance (CASRN, preferred name, 
synonyms), chemical and MS-Ready forms. Column 

Fig. 2  Original substances (left) and processed, linked chemical structures (right) indicating similarities and differences between the QSAR-Ready 
and MS-Ready workflows. a Salt and stereochemistry removed for both QSAR- and MS-Ready purposes; b, c mixtures separated and linkages 
retained for MS-Ready, discarded for QSAR-Ready; d organometallics with metal–carbon bonds retained in MS-Ready, discarded in QSAR-Ready. The 
identities of the associated MS-Ready structures are visible in the “Linked Substances” tab of individual substance records in the Dashboard
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headers specify the individual component structure 
(DTXCID) that was matched to the input as well as 
the mapped substance (DTXSID) and substance-
associated data (Additional file  4: Tables S1 and S2). 
Additionally, users can include other data from the 
Dashboard export pane that is relevant to their needs 
(e.g., exposure data, bioactivity data, property pre-
dictions, presence in lists). This MS-Ready batch 
search option is designed to enable candidate retrieval 
through searching large numbers of suspect formu-
lae and masses (Additional file  4: Table  S2) [9]. By 
selecting the “MetFrag Input File” option in the Batch 
search, users can generate a file (including any selected 
metadata) containing all relevant structural informa-
tion required for MetFrag to upload and process MS-
Ready structures correctly (see below).

An MS-Ready file generated from all chemical struc-
tures contained within the DSSTox database is avail-
able for download [44]. With this file, users may create 

their own databases to incorporate into instrument 
software for screening.

Integration with MetFrag
The export option (“MetFrag Input File (Beta)” under 
Metadata) was added to the Batch Search page to cre-
ate an MS-Ready export file suitable for direct import 
into the in silico fragmenter MetFrag [7, 47]. As out-
lined above, mixtures and salts are excluded in MetFrag 
by default. However, through the MS-Ready export file, 
MetFrag can now process the component of the mixture 
observed at the given input formula (i.e., the MS-Ready 
form) and retain the metadata and identifiers associ-
ated with the substance form (mixture, salt, original 
substance). Column headers in the Dashboard export 
were elaborated to distinguish the individual compo-
nent structure (DTXCID) and associated data from data 
related to the substance (DTXSID). By default, the export 
file from the Dashboard contains the fields: INPUT; 
FOUND_BY; DTXCID_INDIVIDUAL_COMPONENT; 

Fig. 3  Results of both an exact formula (left) and MS-Ready formula search (all) demonstrated using the molecular formula of nicotine (C10H14N2), 
top left. A search of C10H14N2 using the MS-Ready search functionality [45] retrieves all 8 substances while an exact formula search [46] retrieves 
only the 5 on the left. The MS-Ready DTXCID representing the chemical structure of nicotine is present in 6 of the 8 example substances 
(DTXCID9028128). Metadata such as toxicity, exposure, and bioactivity data vary for all results. Accessing the data for the mixtures, salts, etc. is 
unachievable in a single search without linking through the MS-Ready form. Figure based on the concept illustrated by Schymanski and Williams 
(2017), with permission [22]
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FORMULA_INDIVIDUAL_COMPONENT; SMILES_
INDIVIDUAL_COMPONENT; MAPPED_DTXSID; 
PREFERRED_NAME_DTXSID; CASRN_DTXSID; FOR-
MULA_MAPPED_DTXSID; SMILES_MAPPED_DTX-
SID; MS_READY_SMILES; INCHI_STRING_DTXCID; 
INCHIKEY_DTXCID; MONOISOTOPIC_MASS_DTX-
CID (Additional file  4: Table  S3). Users can select any 
other additional data fields on the Batch Search page to 
include in the MetFrag scoring (details below). In this 
export file, MetFrag treats the “DTXSID” (substance 
identifier) field as the identifier, but takes the structural 
information (formula, mass, SMILES, InChI, InChIKey) 
from the fields denoted with DTXCID (which corre-
sponds with the structure observed in MS). The other 
fields are included in the export file so that users can 
display the mixture or components. Any additional 
data fields that contain numeric data are automatically 
imported by MetFrag and included as an additional 
“Database scoring term” in the “Candidate filter & Score 
Settings” tab (Additional file 5: Figure S5).

By default, MetFrag groups all candidates with the 
same InChIKey first block, reporting only results from 
the highest scoring member of the group. However, the 
MS-Ready search involves components of mixtures, 
where individual components are often also in the Dash-
board and contain different metadata. Merging these by 
the component InChIKey would result in a loss of the 
metadata obtained from the Dashboard search. To retain 
all candidates, the “Group candidates” option in the 
“Fragmentation Settings and Processing” tab should be 
deselected. Even if candidates are grouped, all substance 
identifiers within a group are still displayed and hyper-
linked to the Dashboard (see Additional file 5: Fig. S6).

MetFrag example calculations
To demonstrate the workflow, the results of an MS-
Ready formula search for C9H16ClN5 (terbutylazine) and 
C7H12ClN5 (desethylterbutylazine) were exported as.csv 
for import into MetFrag. The.csv file was imported into 
the MetFragBeta web interface [47] and the candidates 
were selected by molecular formula. Experimental frag-
mentation data were retrieved from the European Mass-
Bank [48] to conduct the queries in MetFrag. Spectral 
data for terbutylazine (DTXSID4027608 [49]) was col-
lected from record EA028406 [50], recorded at collision 
energy HCD 75 (higher-energy collisional dissociation) 
and resolution 7500 (MS/MS) on an LTQ Orbitrap XL 
(at Eawag, Switzerland). Spectral data for desethylter-
butylazine (DTXSID80184211) was also retrieved from 
MassBank, record EA067106 [51], likewise a MS/MS 
spectrum measured at HCD 75 and R = 7500 on the LTQ 
Orbitrap XL at Eawag. Metadata from the Dashboard 
that were included as scoring terms were: Data Sources, 

PubMed Reference Count, ToxCast % active and the 
presence in two lists: Norman Priority [52] and STOFF-
IDENT [53]. The use of data sources in the Dashboard 
for identification of unknowns has been documented 
[9] and combined ranking schemes using multiple data 
streams and database presence are being optimized in 
current research. The metadata selected here should not 
be considered finalized scoring parameters but primarily 
to demonstrate functionality. The fragmentation settings 
were Mzppm = 5, Mzabs = 0.001, Mode = [M+H]+, Tree 
depth = 2, Group candidates = deselected. In addition to 
the Dashboard scoring, the MetFrag Scoring Term “Exact 
Spectral Similarity (MoNA)” was activated [54]. On the 
MetFrag web interface, the combination of the regu-
lar MetFrag Fragmenter score (ranging from 0 to 1), the 
spectral similarity term (also ranging from 0 to 1) and 
each metadata field creates an additive score, with the 
maximum determined by the number of metadata fields 
selected. For example, the MetFrag Fragmenter score, 
spectral similarity score and 5 metadata categories men-
tioned here will result in a maximum score of 7, where 
the scores for each individual category are automati-
cally scaled between 0 and 1 based on maximum values 
(no data gives score = 0). While it is possible to perform 
more sophisticated scoring via the command line ver-
sion, this is beyond the scope of the current article—
the work presented here is intended to demonstrate the 
potential for the MS-Ready approach to support identi-
fication efforts. Additional examples not described in the 
text are provided in the Additional file 5 (Figures S7–S8 
for C10H14N2, the formula of nicotine, and C17H21NO, the 
formula of diphenhydramine, respectively).

Results and discussion
Linking metadata via MS‑Ready structures
It has been demonstrated that data sources and other 
metadata linked to chemical structures improve identifi-
cation of unknowns [7, 15, 55]. Substances in the Dash-
board contain different linked metadata [22], making 
access to all forms of a chemical structure important for 
identification (Fig. 3). Beyond data sources alone, chemi-
cal functional use and product occurrence data [56, 57] 
are metadata that can help analysts arrive at the source of 
a chemical in a sample through mapping via MS-Ready 
structures. Nicarbazin (DTXSID6034762, C19H18N6O6 
[58]), a coccidiostat used in poultry production, is a 
two component chemical (with the associated formulae 
for the two separate structures being C13H10N4O5 and 
C6H8N2O) whose components would dissociate in the 
environment, leading to the observation of individual 
components only via HRMS. Neither of the single com-
ponents has known commercial uses (yet) that would 
result in environmental occurrence. By mapping the two 



Page 7 of 16McEachran et al. J Cheminform  (2018) 10:45 

observable components to the source substance, the ana-
lyst is potentially able to identify the substance likely used 
in commerce with an observed formula search (Fig.  4), 
thereby improving exposure characterization where 
accurate identification of source substances is critical. 
Furthermore, the presence of one part of a component 
may indicate the presence of the other component in the 
sample, triggering further identifications. Informing the 
analyst of the most likely substance, rather than just the 
chemical structure identified by HRMS, may allow deci-
sion makers and risk assessors the ability to link chemi-
cal identifications and substances. The application of this 
during candidate selection in non-target screening is dis-
cussed further below.

Non‑target collaborative trials
In 2013, the NORMAN Network coordinated a collabo-
rative non-targeted screening trial on a river water sam-
ple [2]. Several examples from this trial indicated the 
need for improved curation of chemical structures as well 
as better metadata linkage across substances in a sample 
during non-targeted screening. Participants reported, for 
instance, mass matches to the salt form of a substance in 
a suspect list (e.g., tris[4-(diethylamino)phenyl]methy-
lium acetate, C31H42N3.C2H3O2 reported at m/z 516.3565 
by one participant, which could not be observed in the 
sample as the acetate would dissociate). Using MS-Ready 

structures can reduce errors associated with identifying 
salt forms by searching at the single component level and 
returning mapped substances. The complex nature of 
considering metadata and sample context in non-target 
identification is further demonstrated with the tenta-
tive annotations provided for the masses m/z = 229.1094 
and 201.0781 (see Fig. 5, adapted from Fig. 2 in [2]). For 
m/z = 229.1094, most participants provided the tentative 
annotation for terbutylazine (DTXSID4027608, which 
many participants had as a target analyte). Propazine 
(DTXSID3021196) is not approved for use in Europe and 
should not be detected in typical environmental samples, 
yet it was still reported three times due to the high refer-
ence count. For m/z = 201.0781, the presence of terbuty-
lazine provides strong evidence to support the tentative 
annotation of desethylterbutylazine (DTXSID80184211), 
although many participants reported simazine (DTX-
SID4021268) due to its higher reference count (Fig.  5). 
Simazine and desethylterbutylazine (with the often co-
eluting desethylsebutylazine, DTXSID20407557) can 
often be distinguished using fragmentation information.

The EPA’s Non-Targeted Analysis Collaborative Trial 
(ENTACT) was initiated following the NORMAN col-
laborative trial [2]. ENTACT is an inter-laboratory 
trial where participating laboratories and institutions 
were provided blinded chemical mixtures and environ-
mental samples for NTA and SSA [59, 60]. The blinded 

Fig. 4  The substance Nicarbazin (DTXSID6034762) and its two components (DTXCID8023761; DTXCID50209864), separated as a result of the 
MS-Ready workflow. The MS-Ready forms are linked to the source substance and enable retrieval of associated structures and metadata through a 
single database query
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chemical mixtures included several multi-component 
substances that could be either mismatched or unidenti-
fied without a linkage between the MS-Ready form of a 
chemical structure and its multi-component form (e.g., 
chemical mixtures, salts). For the purposes of ENTACT, 
identification of the original substances added to the 
mixtures is critical to the trial evaluation. Methapyrilene 
fumarate (DTXSID0047404 [61]), for example, is a mix-
ture of two chemical components (in a 3:2 ratio) that 
would be observed separately (DTXCID003278 [62]; 
DTXCID8028133 [63]), while raloxifene hydrochlo-
ride (DTXSID1034181 [64]) is a substance containing a 
hydrochloride salt that would be matched incorrectly 
from MS data without the appropriate standardization 
and linking. Linking the MS-Ready forms of these chemi-
cals to the substance forms facilitates identification by 
including all variants in the search results with associ-
ated metadata. For example, blinded analysis of one of 
the ENTACT mixtures resulted in the observation of 
m/z = 262.1385 in ESI+ (Sobus et al. submitted for pub-
lication). With this exact mass and associated isotopic 
peaks, the formula C14H19N3S was generated. When the 
formula was searched in the Dashboard (C14H19N3S [65]) 
the results included both the single component methapy-
rilene (DTXSID2023278 [66]) and the multi-component 
methapyrilene fumarate (DTXSID0047404 [61]) in the 
top 5 results as ranked by data source count. An exact 
formula search would not have returned the substance 
originally added to the ENTACT mixture, which was in 
fact methapyrilene fumarate. The MS-Ready search in 
the Dashboard and the linkages are especially benefi-
cial when the structures identified by HRMS differ from 
the form of the substance initially contained within the 

mixture (e.g., Fig. 4). In addition to the Dashboard MS-
Ready functionality in the user interface, files containing 
MS-Ready forms of the chemical structures, mapped to 
the original chemical substances contained within the 
mixtures, were provided to the participants as part of 
ENTACT and are available via the Dashboard as an Excel 
spreadsheet [44].

Enhanced searching: an example with perfluorinated 
chemicals
With an increasing focus on perfluorinated chemicals 
and their effects on the environment and public health 
[67–71], it is not only important to be able to accurately 
identify perfluorinated structures in environmental sam-
ples but also to identify the potential sources of the con-
taminant for exposure characterization. Perfluorinated 
chemicals also present a challenge for NTA, as the pres-
ence of monoisotopic fluorine renders calculation of pos-
sible molecular formulae very challenging [5, 72]. As a 
result, SSA and compound database searching is advan-
tageous to finding these compounds. Perfluorosulfonic 
acids (e.g., PFOS, DTXSID3031864 [73]), perfluorocar-
boxylic acids (e.g., PFOA, DTXSID8031865 [74]), and 
other similar structures are thought to occur in the envi-
ronment as anions [67]. Hence, these structures are often 
reported in the literature as anions, but have also been 
reported as neutral acids. In chemical databases these 
structures can be represented in their neutral forms, as a 
part of chemical mixtures, and as multi-component salts 
(e.g., PFOS-K, DTXSID8037706 [75]), representing the 
myriad of chemical forms available in commerce (see the 
linked MS-Ready substances for PFOS currently in the 
Dashboard [76]). PFOS would generally be observed by 

Fig. 5  Tentative annotations of m/z 229.1094 (top) and m/z 201.0781 provided by NORMAN Collaborative Trial participants. Number of detects 
indicates the number of participants in the collaborative trial who provided the structural annotation of the selected compound. Reference data is 
from ChemSpider. Source data and figure modified from Schymanski et al. [2]
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an analyst via HRMS as a negatively charged m/z feature 
(C8F17O3S−), and when a neutral monoisotopic mass is 
calculated, the analyst is likely to arrive at the molecular 
formula of the neutral acid form of PFOS (C8HF17O3S). 
Searching the neutral formula of PFOS (C8HF17O3S) in 
the Dashboard MS-Ready Batch Search option returns 
the neutral acid, the sulfonate (C8F17O3S−), and multi-
ple salts and mixtures containing PFOS in the results 
list (Fig.  6). These results include the neutral form and 
the substance forms thought to occur in the environ-
ment and used in consumer products/commerce, along 
with associated metadata. Many forms of PFOS may be 
contained in other public databases, and other strate-
gies have been developed to counteract the anion/neu-
tral form issue during compound searching (e.g., UC2 by 
Sakurai et al. [77]). The current MS-Ready functionality 
in the Dashboard provides mappings to multiple forms of 
chemicals related via their “MS-Ready” form in a single 
search, improving researchers’ ability to identify sources 
and improve exposure characterization with increased 
coverage and access to metadata.

Non‑target identification: in silico methods and candidate 
searching
In this section two examples from the NORMAN Col-
laborative Trial (Fig.  5) are used to show how the MS-
Ready form of a mixture will help analysts combine MS 
evidence (such as fragments) with mixture metadata for 
candidate screening in NTA. By crosslinking with the 
MS-Ready form through the export format described 

above, the candidates can be processed using MS-Ready 
structures, with metadata from the mixture in MetFrag. 
As described in the Methods (MetFrag Example Calcu-
lations), two MetFrag scoring terms plus five metadata 
terms were used, which would result in a maximum pos-
sible score of 7 for candidates in each example.

The results for the top three candidates from the first 
example, C9H16ClN5, using fragmentation data from ter-
butylazine are shown in Fig.  7. This demonstrates how 
the combination of fragmentation prediction, MS/MS 
library matching, and metadata supports the annotation 
of terbutylazine (MetFrag Score 7.0, including an exact 
spectral match of 1.0 from MoNA—i.e., a Level 2a iden-
tification [24]) above propazine (MetFrag Score 5.5, exact 
spectral match 0.5774, i.e., a poor match). The presence 
of the C4H9

+ fragment at m/z = 57.0698, explained by 
MetFrag, indicates the presence of a butyl substituent, 
absent from propazine (Fig.  8). Sebutylazine, the third 
candidate, has a much lower score due to fewer metadata 
(see Fig. 7), although the fragmentation data is very simi-
lar to terbutylazine (Fig. 8).

The second example, the MS-Ready search for 
C7H12ClN5 with the spectral data of desethylterbutyla-
zine, was run with the same settings, but with the candi-
date grouping activated. The top three candidates from 
the MetFrag web interface [47] are given in Fig.  9 and 
detailed scores are provided in Additional file 5: Table S4. 
The top-ranked candidate with the selected metadata 
and default scoring is simazine (Score 4.98 of maximum 
7.0). It is also clear from the numerous DTXSID values 

Fig. 6  Partial results from an MS-Ready formula search of the neutral formula of PFOS (C8HF17O3S) in the Dashboard [78]. The neutral acid, the 
sulfonate (C8F17O3S−), and multiple salts and mixtures containing PFOS are returned in the results list
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displayed in the “Identifier” column for simazine that 
there are many substances (mixtures, salts) in the Dash-
board that contain simazine as one component (11 of the 
21 candidates returned in the MS-Ready search). Deseth-
ylterbutylazine is in second place with a score of 4.26. 
Additional file  5: Figs. S7 and S8 show MetFrag results 
for additional searches correctly placing nicotine (DTX-
SID1020930) and diphenhydramine (DTXSID4022949) 
as the top result, respectively, with the same metadata 
options included and candidate grouping activated.

The example in Fig.  9 demonstrates how users must 
think critically about the impact of the metadata on the 
results. While simazine (Score 4.98) outranks desethyl-
terbutylazine (Score 4.26), closer inspection reveals this 
result is due to metadata score influence. The experi-
mental data (fragmentation prediction, peaks explained, 
spectral similarity, exact spectral similarity) matches bet-
ter for desethylterbutylazine (6/8 peaks explained and 
scores close to or equal to 1 for the other experimental 
fields) than for simazine. Desethylterbutylazine does not 

Fig. 7  MetFrag combined results (top) and results for the top 3 candidates (bottom) retrieved with the MS-Ready search for C9H16ClN5. The score 
categories are (1st to 7th): MetFrag Fragmentation, Exact Spectral Similarity, Data Sources, Presence in NORMAN Priority list, Number of PubMed 
Articles, Presence in STOFF-IDENT, and Percent Active ToxCast Assays. Terbutylazine had the highest score, above propazine. Sebutylazine (which, if 
present, often co-elutes with terbutylazine in common NTA methods) has a lower score due to fewer metadata values (absent from NORMAN list 
and no ToxCast bioassay data)
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have a ToxCast Bioassay score and has no PubMed ref-
erences, resulting in two zero scores, while simazine has 
a score of 1 for both of these metadata categories. Fur-
thermore, while the MetFrag website [47] provides users 
with a convenient interface to score with a tick-box, users 
must be aware of the limitations inherent in providing a 
convenient interface. The data in each external category 
is imported and scaled between 0 and 1 using the mini-
mum and maximum values, which is not meaningful for 
all metadata categories (such as predicted properties). 

Note that it is possible to adjust the weighting and rela-
tive contributions of the scores by adjusting the bars on 
the “Weights” field at the top of the results page (once 
candidates are processed), while additional scoring pos-
sibilities are available via the command line version.

Improvements and future work
Beyond access to structures and workflows via the Dash-
board, future functionality of the Dashboard will allow 
for users to upload structure files and receive back the 

Fig. 8  MetFrag Fragmentation results for the top three candidates retrieved with the MS-Ready search for C9H16ClN5. Terbutylazine (top) has the 
highest score and includes the C4H9

+ fragment at m/z = 57.0698 indicating the presence of a butyl substituent, absent from propazine (middle)
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MS-Ready version of the structures of interest, increas-
ing standardization across database searching and com-
pound identification. Alterations to the output format 
(as described in the Methods) will enable other in silico 
fragmentation and compound identification tools, meth-
ods, and software to use the work described here. Fur-
ther flexibility in file formats will be implemented to 
achieve broader usability. As with any chemical structure 

standardization workflow, algorithms are modified to 
deal with edge cases as they are identified. As the data-
base content continues to expand, the algorithm is 
improved as failures are identified. While the MS-Ready 
approach may lead to potentially confusing results sets 
containing structures with different formulae and masses 
than specified in the original search parameters, com-
munication, education, and transparency within the 

Fig. 9  MetFrag combined results (top) and results for the top 3 candidates retrieved with the MS-Ready search for C7H12ClN5 (as displayed in the 
web interface). The score categories are (1st to 7th): MetFrag Fragmentation, Exact Spectral Similarity, Data Sources, Presence in NORMAN Priority 
list, Number of PubMed Articles, Presence in STOFF-IDENT, and Percent Active ToxCast Assays. Candidate merging was activated and the 10 forms of 
simazine have been merged into one result (with metadata from the highest scoring entry)
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Dashboard interface, download files, and publications 
will serve to clarify and provide guidance. Finally, to 
facilitate access to the underlying data for structure iden-
tification on the broadest scale, an application program-
ming interface (API) and associated web services to allow 
instrument software integration is forthcoming. These 
will enable access via applications such as Python, R, and 
Matlab to facilitate integration of Dashboard data into 
user-specific applications.

Conclusions
Database searching is a vital part of NTA and SSA work-
flows. The accurate mapping of MS-Ready structures to 
chemical substances improves accessibility to structure 
metadata and improves searching of the represented 
chemical space. By providing access to MS-Ready data 
from DSSTox, both via the Dashboard and as down-
loadable datasets, users of HRMS instrumentation who 
perform NTA/SSA experiments will benefit from this 
approach as an enhancement to other online databases 
that do not support MS-Ready structural forms. The 
integration into the in silico fragmenter MetFrag lets 
users further explore the use of this approach in identi-
fication of unknowns. The openly available workflow for 
generation of MS-Ready structures allows others to pro-
cess their own data for preparation of MS-Ready data 
files and extend the data handling to account for errors 
and specific cases that we have not yet identified.

Additional files

Additional file 1. MS-Ready exclusion list.

Additional file 2. QSAR-Ready exclusion list.

Additional file 3. CompTox Chemistry Dashboard search interfaces 
(Figures S1–S4).

Additional file 4. Download file column header descriptions and 
example output files for MS-Ready and MetFrag Input File batch searches 
(Tables S1–S3).

Additional file 5. Additional MetFrag results and data (Figures S5–S8, 
Table S4).
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