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Evaluating parameters for ligand‑based 
modeling with random forest on sparse data 
sets
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Abstract 

Ligand-based predictive modeling is widely used to generate predictive models aiding decision making in e.g. drug 
discovery projects. With growing data sets and requirements on low modeling time comes the necessity to analyze 
data sets efficiently to support rapid and robust modeling. In this study we analyzed four data sets and studied the 
efficiency of machine learning methods on sparse data structures, utilizing Morgan fingerprints of different radii and 
hash sizes, and compared with molecular signatures descriptor of different height. We specifically evaluated the effect 
these parameters had on modeling time, predictive performance, and memory requirements using two implementa-
tions of random forest; Scikit-learn as well as FEST. We also compared with a support vector machine implementation. 
Our results showed that unhashed fingerprints yield significantly better accuracy than hashed fingerprints ( p ≤ 0.05 ), 
with no pronounced deterioration in modeling time and memory usage. Furthermore, the fast execution and low 
memory usage of the FEST algorithm suggest that it is a good alternative for large, high dimensional sparse data. 
Both support vector machines and random forest performed equally well but results indicate that the support vector 
machine was better at using the extra information from larger values of the Morgan fingerprint’s radius.
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Background
Ligand-based modelling is a widely used method where 
the ligand’s activity for a biological target, usually a meas-
urement obtained from a bioassay, can be correlated to 
certain features of the ligand. The derived model can then 
be used for predicting the biological activity of new novel 
chemical compounds. Examples of applications include 
studies on bio-availability  [1], bioactivity of GPCR-asso-
ciated ligands [2], mitochondrial toxicity [3], organ toxic-
ity [4], hepatotoxicity [5] and aquatic toxicity [6].

In quantitative structure–activity relationships (QSAR), 
chemical structures are represented as numerical features 
via algorithms referred to as molecular descriptors. An 
important example is ECFP (Extended-Connectivity Fin-
gerprints), which are molecular descriptors specifically 

developed for structure–activity modelling. The original 
article of ECFP illustrate the strengths of the algorithm 
and how it can be applied in a variety of computational 
chemistry domains  [7]. In classification problems ECFP 
has, for example, been valuable for predicting inhibition 
of Cytochrome P450, 2D6 and 3A4 [8] and of Escherichia 
coli dihydrofolate reductase [9]. It has also been applied 
in quantitative structure–property relationships (QSPR) 
for studying melting points and aqueous solubility of 
organic compounds [10].

Machine learning (ML) algorithms is an important 
component in structure–activity modelling and analysis 
of compounds, and an example of a widely used method 
is support vector machines (SVMs). This method has 
proven to be successful for correlating molecular struc-
tures to toxicity and activity of compounds  [3, 4, 11, 
12]. SVMs have also shown to be useful for drug trans-
port predictions  [13] and to model and study interac-
tions of antibiotic compounds  [14]. Another important 
and successful machine learning method is the random 
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forest (RF)  [15], which like SVM has proven to be valu-
able in toxicity and bio-activity studies  [2, 5, 6, 16, 17], 
and also for investigating diverse representations of clini-
cal events [18] as well as predicting adverse drug events 
from electronic health records [19]. RF has been one of 
the most widely used ML algorithms together with SVM, 
and studies have demonstrated that RF is a powerful yet 
easy-to-implement method in both QSAR and descriptor 
selection [20, 21].

Although extensive and rigorous research have been 
performed in the area of QSAR and ML methods, there 
are few comprehensive studies on RF together with Mor-
gan fingerprints [22], a powerful ECFP variant [7], so we 
set out to study random forest in general, and the random 
forest implementation FEST (Fast Ensembles of Sparse 
Trees) in particular, together with Morgan fingerprints.

The Python package Scikit-learn contains a well known 
and much used random forest implementation which we 
decided to use as a reference point. Since SVM is highly 
used in QSAR and since SVM together with molecular 
signatures has been shown to perform well for this kind 
of QSAR tasks [23, 24] we decided to include an SVM as 
well in the study as another reference point.

In this article the following thoughts and ideas are 
examined further: Perhaps working with hashed finger-
prints of smaller sizes would speed up the modeling or 
make it require less memory without resulting in worse 
models? How many collisions would hashing to differ-
ent fingerprint size give rise to in typical QSAR data sets? 
What effect does different values for the random forest 
parameter Max features have on the prediction models? 
What radii should be used for the Morgan fingerprints? 
Higher values would mean more data and it would seem 
reasonable to expect more data to give better models but 
at the cost of modeling time. Would there be a trade-
off there? Random forests do not require the extended 
parameter search that support vector machines require 
so can they be trained faster for the QSAR problem?

Methods
Data
Four different public datasets were used in this study, 
containing 5000–7000 compounds each (Table 1). Three 
of them were obtained from the tox21 challenge (https​
://tripo​d.nih.gov/tox21​/chall​enge/data.jsp), and contains 
data from QHTS assays to identify small molecules that: 
(1) activate the aryl hydrocarbon receptor (nr-ahr), (2) 
act as agonists of the estrogen receptor alpha signaling 
pathway using the BG1 cell line (nr-er), and (3) disrupt 
the mitochondrial membrane (sr-mmp) [25]. The fourth 
data set was obtained from the paper “Benchmark Data 
Set for in Silico Prediction of Ames Mutagenicity” by 
Hansen and co-workers [26].

Structure standardization was performed using the 
IMI eTOX project standardizer (version 0.1.7. https​
://pypi.pytho​n.org/pypi/stand​ardis​er) in combination 
with the MolVS standardizer (version 0.0.9. https​://
pypi.pytho​n.org/pypi/MolVS​) for tautomer standardiza-
tion. The Python libraries Matplotlib  (version 2.1.0) and 
Seaborn (version 0.8.0) were used to illustrate the results 
of this study [27, 28].

Morgan fingerprints
There are numerous ways of generating molecular finger-
prints. In this study, the open-source Python framework 
RDKit (version 2017.09.1) was used to generate Morgan 
fingerprints  [29]. The atomic invariants of these finger-
prints use connectivity information similar to the the 
Extended Connectivity Fingerprints (ECFP) family of fin-
gerprints  [7, 29]. The Morgan algorithm initially assigns 
an integer identifier to each non-hydrogen atom, then 
iteratively, by extending the connectivity of each atom to 
its neighbouring atoms, updates the numerical identifiers 
based on these neighbouring atoms [7]. There are mainly 
two parameters to be set for the generation of the Mor-
gan fingerprint: (1) bit size (or hash size)—the length of 
the bit string for the molecular features to be contained 
in; (2) radius—the number of neighbours × bond lengths 
away to take into account when calculating the identi-
fiers of the atoms. A fingerprint collision occur when a 
feature falls into a bin (a dataset column) of another fea-
ture—resulting in more than one molecular substructure 
being compressed into a single, now hashed, feature. It 
is also possible to use an unhashed version of the finger-
print, which means that the compression of the bit string 
is bypassed and hence encode explicitly defined patterns. 
In this study, both the unhashed and hashed Morgan fin-
gerprints were generated and compared (Table 2).

Molecular signatures
In addition to the Morgan fingerprints, molecular signa-
tures  [30] were generated and evaluated. The molecular 
signatures is a molecular descriptor similar to the Mor-
gan fingerprints in the sense that its identifiers are based 
on the neighbouring of atoms. Contrary to the Morgan 
fingerprint, the signature descriptors do not hash the 
information into an index, but generate explicitly defined 

Table 1  The data sets used in the study

Dataset Negatives Positives Sum

sr-mmp 4763 884 5647

nr-ahr 5599 700 6299

nr-er 5235 623 5858

cas-N6512 3007 3502 6509

https://tripod.nih.gov/tox21/challenge/data.jsp
https://tripod.nih.gov/tox21/challenge/data.jsp
https://pypi.python.org/pypi/standardiser
https://pypi.python.org/pypi/standardiser
https://pypi.python.org/pypi/MolVS
https://pypi.python.org/pypi/MolVS
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substructures, which are then mapped to numerical 
identifiers. Equivalent to the radius of Morgan finger-
prints, signatures have a height parameter which extends 
away one or several bonds from the investigated atom 
(Table 2).

Random forests
Random forests are ensembles of decision trees  [31]. 
According to the strong law of large numbers, growing a 
large number of decision trees lead to better generaliza-
tion and prevention of over-fitting. This generalization 
error converges as the number of trees grow and depend 
on the strength of and correlation between the individual 
trees  [15, 32]. Importantly, the correlation between the 
individual trees is reduced by several random processes 
in the random forest algorithm. First, for the S num-
ber of trees in the forest, S number of new datasets are 

randomly sampled (with replacement). Second, a ran-
dom subspace method is used which selects a subset of 
m features from the total number of features M before 
each split—normally determined by the information gain 
or Gini impurity metric [33]. The splitting, or branching, 
continues until it reaches a leaf node, which contains a 
class label probability. Hence the ensemble of trees pro-
duces S outputs for an input x, each with its own prob-
ability for the classes. This is then averaged across the 
ensemble of trees to generate a final prediction of the 
class with the highest probability.

Fast ensembles of sparse trees (FEST) is a software 
written in C for learning various types of decision tree 
committees from high dimensional sparse data [34] that 
efficiently handles sparse data structures. The current 
implementation allows for setting different hyperparame-
ter values for RF, such as (1) Max features (the maximum 
number of allowed splitting features to be considered), 
(2) number of trees, (3) maximum depth of the tree, and 
(4) relative weight for the negative class.

Scikit-learn’s random forest classifier (Scikit RF) is 
part of an open source machine learning framework in 
Python [35]. Scikit RF allows for experimenting with the 
same hyperparameters as the FEST implementation and 
many more. Like FEST, Scikit RF supports sparse matrix 
operations, but also parallelization, which can speed up 
model training when using multiple CPUs.

In this study the information gain metric was used for 
both RF implementations, and Maximum Depth param-
eter was set to large enough (1000) to not affect the tree 
depth. To accommodate for inbalanced datasets, the 
parameter relative negative weights (FEST) and class 
weights (Scikit RF) were set to balance the classes. Max 
features and Number of trees were two hyperparameters 
selected for investigations (Table 3).

Support vector machines
Scikit-learn’s C-support vector classifier (Scikit SVM) [35] 
is based on the Libsvm implementation of support vec-
tor machines  [36]. Like the FEST and Scikit RF imple-
mentations, Scikit SVM handles sparse data structures 
in an efficient way. Support vector machines use kernel 
functions to non-linearly map inseparable inputs X to a 
higher dimensional space φ(X) where they can be linearly 
separated by a hyper-plane. Scikit SVM handles high 
dimensional data efficiently by solving the dual problem, 
where instead of learning a weight vector w of possibly 
thousands of dimensions which require significant com-
putational power, instead learns a vector α in the dual 
problem which contains all zeros except for the support 
vectors. In this study, the radial basis function (RBF) was 
used as kernel, and the hyperparameters investigated 

Table 2  Overview of  the  molecular descriptors used 
in the study

Morgan fingerprints Molecular signatures

Hash size Radius Height

128 1 1–1

256 2 1–2

512 3 1–3

1024

2048

4096

Unhashed

Table 3  Overview of  the  different machine learning 
methods and parameter settings used in the study

aValues indicate the multiplicating factor by the square root of the number of 
features

FEST and Scikit RF Scikit SVM

Max featuresa Trees C γ

0.1 10 0.01 1× 10
−6

0.3 30 0.1 3× 10
−6

1.0 100 1 1× 10
−5

3.0 300 10 3× 10
−5

10.0 1000 100 1× 10
−4

1000 3× 10
−4

1× 10
4 0.001

1× 10
5 0.003

1× 10
6 0.01

1× 10
7 0.03

1× 10
8 0.1
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were Cost (C) and the kernel parameter gamma (γ) 
(Table 3).

Model evaluation
In this investigation, ROC–AUC was used as metric 
for evaluating the different models. A receiver operat-
ing characteristic curve (ROC-curve) is a graphical plot 
illustrating the true positive rates (TPR) against the false 
positive rate (FPR) at different thresholds. The AUC is 
then the area under this curve, which has shown to be a 
valid and advantageous metric for evaluating ML algo-
rithms  [37]. For each hyperparameter combination, a 
5-fold randomly shuffled cross-validation was utilized to 
yield a cross-validated ROC–AUC score; the procedure 

was repeated five times to produce a more robust met-
ric with respect to the models performance. In the case 
of Scikit SVM, ROC–AUC scores were calculated with 
respect to the decision function.

Results and discussion
We studied the effect of two random forest implementa-
tions (Scikit RF and FEST) and a C-support vector clas-
sifier (Scikit SVM) on sparse datasets for ligand-based 
modelling. Specifically evaluating combinations of 
parameters according to Tables 2 and 3, and their effect 
on ROC–AUC, memory usage and run-time.

All datasets were subjected to descriptor generation 
using Morgan fingerprints and molecular signatures 
(Tables 2 and 4). Hashed versions of the Morgan finger-
prints were generated with 128, 256, 512, 1024, 2048, and 
4096 bins.

Every hyperparameter combination of each ML 
method was trained on the datasets with every descriptor 
parameter combination (Tables 1, 2 and 3). ROC–AUC, 
memory usage and run-time were measured for all runs.

Overall the tested machine learning algorithms and 
descriptors produce models of similar prediction capac-
ity (Fig. 5) which is not surprising considering these are 
all commonly used methods in QSAR and should be 
expected to produce good results. There are however 
some differences that might be relevant depending on 
use cases.

Effect of hashed versus non‑hashed features
To illustrate both the way hashing reduces the dimen-
sions of a data set, as well as decreases the “resolution” of 
the fingerprints, collisions for all data sets using the Mor-
gan fingerprint were plotted (Fig. 1).

Further investigation into hash sizes illustrated that 
there are no obvious differences between Scikit SVM, 
Scikit RF and FEST in terms of ROC–AUC scores, with 
a plateauing of performance beyond 1024 bit, and a spike 
from 4096 to unhashed (Fig.  2; “Appendix”). However, 
our results show that unhashed fingerprints yield better 
performance compared to hashed fingerprints accord-
ing to the difference between the areas under the two 
ROC curves using the method of Hanley and McNeil [38] 
(for the full result table, see Additional file 1: Table S1). 
For all statistically significant cases ( p ≤ 0.05 ) were the 
ROC curve area for unhashed fingerprints larger than for 
hashed fingerprints for each dataset, respectively. Also, 
for almost all of the non-significant cases (265 out of 268 
cases) were the ROC curve area larger for unhashed fin-
gerprints than for hashed fingerprints. Considering the 
significant improvements in predictive performance, 
with no pronounced difference in memory usage or run-
time (Figs.  3, 4), the preferred choice should be to use 

Table 4  Number of  of  compounds and  number 
of  descriptors generated for  the  different data sets 
and molecular descriptors

aNumber of compounds for molecular signatures are lower because the 
algorithm couldn’t generate descriptors for some compounds

Data sets

sr-mmp nr-ahr nr-er cas N6512

Morgan fingerprints

#Compounds 6299 5647 5858 6509

Radius 1 3352 3525 3350 2935

Radius 2 21,542 23,695 21,974 19,131

Radius 3 49,764 55,725 51,200 48,325

Molecular signatures

#Compoundsa 6193 5546 5761 6396

Height 1–1 504 514 487 405

Height 1–2 7524 8021 7547 6758

Height 1–3 33,237 36,601 33,900 31,581

Fig. 1  Collisions per feature. Number of collisions per feature for 
different hash sizes averaged over the four datasets using the Morgan 
fingerprint descriptor. Error bars are standard deviation of the mean
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Fig. 2  Effect of hash size and radius on predictive performance with Scikit RF, FEST and Scikit SVM. Each data point is an average of the best 
ROC-AUC score for each dataset. Error bars are pooled standard deviations

Fig. 3  Effect of Max features and hash size on number of nodes (per tree), memory usage and run time for the two random forest implementations 
with 1000 trees. Data points are average values of the four datasets, and although imperceptible due to minuscule values: error bars are pooled 
standard deviations

Fig. 4  Effect of gamma ( γ ) and hash size on memory usage and run-time for Scikit SVM with Cost (C) equal to 1. Data points are  average values of 
the four datasets, error bars are pooled standard deviations
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unhashed fingerprints. This result is also in line with 
previously reported results on fingerprints in a virtual 
screening setting [39].

An advantage of using unhashed fingerprints is that the 
features have a particular substructure assigned to them 
and can therefore be traced back to the actual molecu-
lar features. Thus using unhashed fingerprints mean 
that each feature represents a certain molecular sub-
structure, and by assessing feature importance, this can 
be helpful in interpreting model results in a chemical 
context [40–42].

An explanation of how memory usage and run-time for 
RF models trained on unhashed Morgan fingerprints are 
similar to hashed fingerprints could be that more infor-
mation with unhashed fingerprints results in shorter 
trees, i.e. the splits are better. Concretely, hashed finger-
prints are compressed and contain a lot of noise, which 
makes it harder for the trees to separate the class labels 
and reach leaf nodes.

Effect of Max features for the two random forests
In the case of Scikit RF, a clear decrease in memory usage 
can be observed with increasing number of features. 
This is highly correlated with the number of nodes in 
the trees (Fig.  3) indicating that more features to select 
from at each node results in better splits and shorter 
trees. Interestingly, this pattern cannot be observed with 
FEST. FEST however has a lower memory consump-
tion and faster training than Scikit RF for all tested val-
ues of the Max features setting. Figure  4 illustrates the 
fast training-time of Scikit SVM, as well as its memory 
usage. Although the Scikit SVM could outperform RF in 
terms of run-time for a single run, Scikit SVM was sen-
sitive to hyperparameter settings and required extensive 
grid-searches (see “Hyperparameter space of Scikit SVM” 
section).

Effect of fingerprint radii
We further investigated unhashed fingerprint radii 
including molecular signatures for comparison (Fig.  5). 

Fig. 5  Effect of fingerprint radii/height on predictive performance with Scikit RF, FEST and Scikit SVM. Grey markers represent the four datasets. Red 
markers/dashed lines indicate the average of the four datasets, with error bars being pooled standard deviations
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This is important in order to evaluate how increased 
sizes of substructures improve the separation of the two 
classes (i.e. improve predictive performance) by the ML 
methods.

For SVM it seems that more data does indeed results 
in a better model whereas for the random forest imple-
mentations no upward trend can be observed when 
increasing the radius (Fig. 5). One reason why no upward 
trend is seen with random forest could be that the num-
ber of features of radius/height 1 “drown” in the much 
larger number of features of radius/height 2 and 3. The 
random subspace methods randomly selects a subset of 
features m among the total number of features M, where 
M is dominated by radii/heights 2 and 3, which are 
more abundant than radii/heights of 1 and hence cannot 
reduce entropy to the same extent.

Random forest and support vector machines
As stated before it seems that SVM and RF perform very 
equally well on our data sets but it is interesting to note 
that as more data is included by adding more heights to 
the molecular signatures, or larger radii to the Morgan 
fingerprints, the RF seems to decrease in performance 
where SVM seems to increase. Based on this it seems 
reasonable to theorize that with more data and extensive 
grid search for the SVM parameters it is possible that 
SVM could perform better than RF but at much larger 
computational costs. If and when it is worth it probably 
varies from project to project. Also, we did not see this in 
our case, our Scikit SVM models did not perform better 
than our random forest models.

Hyperparameter space of Scikit SVM
For the comparison between RF and Scikit SVM, an 
extensive grid search for the hyperparameters of Scikit 
SVM was needed. We evaluated Cost (C) and gamma ( γ ) 
according to Table 3, by projecting the ROC–AUC scores 
of different hyperparameter combinations to a heat map 
(Fig. 6).

These heat plots illustrate the delicacy with which 
SVM models in QSAR (Fig. 6) must be treated where just 
a small space of possible hyperparameter values gives 
scores that compare with (and sometimes exceed) models 
from the random forest implementations. However, these 
observations agree with previous results from a study by 
Alvarsson et al. [43], where heat plots of models trained 
on molecular signatures were made with seven different 
public QSAR datasets. This suggest that the “hot spots” 
are found at very similar hyperparameter combinations 
for Morgan fingerprints and molecular signatures mean-
ing that the parameter values that needs to be tested in 
order to optimise the SVM models actually are feasible 
and even though it requires more computation than ran-
dom forest it could be justified in some cases.

Availability
All datasets and code for the analysis is available at: https​
://githu​b.com/pharm​bio/kense​rt_rf_spars​e, with an 
archived release at Zenodo http://doi.org/10.5281/zenod​
o.12917​87.

Conclusions
We present evidence that hashing of Morgan fingerprints 
descriptors for QSAR modeling has a negative effect on 
predictive performance, with no significant improvement 

a b
Fig. 6  Heat plots illustrating ROC-AUC scores with different hyperparameter combinations of Scikit SVM. a modelled on unhashed Morgan 
fingerprints with radius 3; b modelled on molecular signatures with height 1-3. Both plots are averages of the four datasets

https://github.com/pharmbio/kensert_rf_sparse
https://github.com/pharmbio/kensert_rf_sparse
http://doi.org/10.5281/zenodo.1291787
http://doi.org/10.5281/zenodo.1291787
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in computational efficiency. The FEST implementation 
was found to be capable of producing models of the same 
prediction quality as Scikit RF (SciKit), using less com-
putational time and with lower memory requirements, 
however Scikit RF can be more easily parallelized on 
multi-core computers. The usefullness of this depends on 
the problem; building multiple smaller models is “embar-
rassingly parallelizable” and then the faster FEST imple-
mentation can be recommended but when building fewer 
large models than the built in parallelisation of Scikit RF 
will be relevant. For the Scikit implementation of random 
forest it was found that higher values for the Max features 
setting actually resulted in lower memory use but this 
could not be seen for FEST. Furthermore, no clear trend 
was identified that an increased number of features, i.e. 
increased radii/height, impacts favorably on the predictive 
performance for the random forest implementations. Eval-
uations of Scikit SVM and random forests demonstrate 
that both methods perform well but that SVM requires 
a more extensive grid search and tuning to reach high 
ROC–AUC scores but perhaps is better at taking advan-
tage of the additional data found in higher radii of molecu-
lar signatures/Morgan fingerprints. Considering the easy 
and robust implementation of random forests this method 
could be considered a good initial choice for most cases 
and when the best results are needed SVM can be tested as 
well but at possibly a higher computational cost.

Additional file

Additional file  1: Table  S1. Computed p values according to the dif
ference between the areas under two ROC curves using the method of 

Hanley and McNeil.
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Appendix
See Table 5.

Table 5  Effect of  hash size on  predictive performance 
with Scikit RF, Fest and Scikit SVM

Method Radius Hash size Mean SD
ROC AUC​

Scikit RF 1 128 0.849175 0.0023297

Scikit RF 1 256 0.854675 0.00229456

Scikit RF 1 512 0.857525 0.00262345

Scikit RF 1 1024 0.85965 0.00294236

Scikit RF 1 2096 0.85945 0.00357561

Scikit RF 1 4096 0.85945 0.00348676

Scikit RF 1 Unhashed 0.879925 0.00144135

Scikit RF 2 128 0.843675 0.00222542

Scikit RF 2 256 0.853675 0.0033908

Scikit RF 2 512 0.859175 0.00176494

Scikit RF 2 1024 0.863025 0.0014151

Scikit RF 2 2096 0.8633 0.00241454

Scikit RF 2 4096 0.8644 0.00129808

Scikit RF 2 Unhashed 0.87795 0.00214126

Scikit RF 3 128 0.834875 0.00240936

Scikit RF 3 256 0.8472 0.00245917

Scikit RF 3 512 0.85435 0.00269165

Scikit RF 3 1024 0.858525 0.00269258

Scikit RF 3 2096 0.8603 0.0031249

Scikit RF 3 4096 0.862875 0.00200624

Scikit RF 3 Unhashed 0.876575 0.00171391

FEST 1 128 0.849275 0.00152151

FEST 1 256 0.856275 0.00226661

FEST 1 512 0.85865 0.00271616

FEST 1 1024 0.8594 0.00257633

FEST 1 2096 0.860975 0.00175784

FEST 1 4096 0.861525 0.00239008

FEST 1 Unhashed 0.879325 0.00281158

FEST 2 128 0.844275 0.00282975

FEST 2 256 0.8531 0.00292104

FEST 2 512 0.85865 0.00290086

FEST 2 1024 0.8639 0.00189143

FEST 2 2096 0.864225 0.00191703

FEST 2 4096 0.86575 0.00242178

FEST 2 Unhashed 0.87755 0.00140624

FEST 3 128 0.83445 0.00234254

FEST 3 256 0.84695 0.00355633

FEST 3 512 0.8536 0.00216102

FEST 3 1024 0.858325 0.00195704

FEST 3 2096 0.86105 0.00356686

FEST 3 4096 0.863875 0.00230326

FEST 3 Unhashed 0.874625 0.00217658

Scikit SVM 1 128 0.845025 0.00236326

Scikit SVM 1 256 0.854125 0.00246475

Scikit SVM 1 512 0.85575 0.00195512

Scikit SVM 1 1024 0.857875 0.0023516

Scikit SVM 1 2096 0.858425 0.00126293

Scikit SVM 1 4096 0.85875 0.00224666

https://doi.org/10.1186/s13321-018-0304-9


Page 9 of 10Kensert et al. J Cheminform  (2018) 10:49 

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 17 May 2018   Accepted: 3 October 2018

References
	1.	 Tian S, Li Y, Wang J, Zhang J, Hou T (2011) ADME evaluation in drug dis-

covery. 9. Prediction of oral bioavailability in humans based on molecular 
properties and structural fingerprints. Mol Pharm 8(3):841–851. https​://
doi.org/10.1021/mp100​444g

	2.	 Wu J, Zhang Q, Wu W, Pang T, Hu H, Chan WKB (2018) WDL-RF: predicting 
bioactivities of ligand molecules acting with G protein-coupled receptors 
by combining weighted deep learning and random forest. Bioinformatics 
34:2271–2282. https​://doi.org/10.1093/bioin​forma​tics/bty07​0

	3.	 Zhang H, Chen QY, Xiang ML, Ma CY, Huang Q, Yang SY (2009) In silico 
prediction of mitochondrial toxicity by using GA-CG-SVM approach. 
Toxicol in Vitro 23(1):134–140

	4.	 Myshkin E, Brennan R, Khasanova T, Sitnik T, Serebriyskaya T, Litvinova E 
(2012) Prediction of organ toxicity endpoints by QSAR modeling based 
on precise chemical-histopathology annotations. Chem Biol Drug Des 
80:406–416

	5.	 Low Y, Uehara T, Minowa Y, Yamada H, Ohno Y, Urushidani T (2011) 
Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics 
approaches. Chem Res Toxicol 24(8):1251–1262. https​://doi.org/10.1021/
tx200​148a

	6.	 Polishchuk PG, Muratov EN, Artemenko AG, Kolumbin OG, Muratov 
NN, Kuz’min VE (2009) Application of random forest approach to QSAR 
prediction of aquatic toxicity. J Chem Inf Model 49(11):2481–2488. https​
://doi.org/10.1021/ci900​203n

	7.	 Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf 
Model 50(5):742–754

	8.	 Jensen BF, Vind C, Brockhoff PB, Refsgaard HHF (2007) In silico predic-
tion of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel 
weighted k-nearest neighbor and extended connectivity fingerprints, 

including structural fragment analysis of inhibitors versus noninhibitors. J 
Med Chem 50(3):501–511. https​://doi.org/10.1021/jm060​333s

	9.	 Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity 
fingerprints with Laplacian–modified Bayesian analysis in high-through-
put screening follow-up. J Biomol Screen 10(7):682–686. https​://doi.
org/10.1177/10870​57105​28136​5

	10.	 Zhou D, Alelyunas Y, Liu R (2008) Scores of extended connectivity 
fingerprint as descriptors in QSPR study of melting point and aqueous 
solubility. J Chem Inf Model 48(5):981–987. https​://doi.org/10.1021/ci800​
024c

	11.	 Yao XJ, Panaye A, Doucet JP, Zhang RS, Chen HF, Liu MC (2004) Compara-
tive study of QSAR/QSPR correlations using support vector machines, 
radial basis function neural networks, and multiple linear regression. J 
Chem Inf Comput Sci 44(4):1257–1266. https​://doi.org/10.1021/ci049​965i

	12.	 Cortes-Ciriano I (2016) Benchmarking the predictive power of ligand 
efficiency indices in QSAR. J Chem Inf Model 56(8):1576–1587. https​://
doi.org/10.1021/acs.jcim.6b001​36

	13.	 Norinder U (2003) Support vector machine models in drug design: appli-
cations to drug transport processes and QSAR using simplex optimisa-
tions and variable selection. Neurocomputing 55(1):337–346

	14.	 Zhou XB, Han WJ, Chen J, Lu XQ (2011) QSAR study on the interactions 
between antibiotic compounds and DNA by a hybrid genetic-based 
support vector machine. Monatshefte fuer Chemie/Chemical Monthly 
142(9):949–959. https​://doi.org/10.1007/s0070​6-011-0493-7

	15.	 Breiman L (2001) Random forests. Mach Learn 45(1):5–32
	16.	 Carlsson L, Helgee EA, Boyer S (2009) Interpretation of nonlinear 

QSAR models applied to Ames mutagenicity data. J Chem Inf Model 
49(11):2551–2558. https​://doi.org/10.1021/ci900​2206

	17.	 Cannon EO, Bender A, Palmer DS, Mitchell JBO (2006) Chemoinformatics-
based classification of prohibited substances employed for doping in 
sport. J Chem Inf Model 46(6):2369–2380. https​://doi.org/10.1021/ci060​
1160

	18.	 Henriksson A, Zhao J, Dalianis H, Boström H (2016) Ensembles of 
randomized trees using diverse distributed representations of clinical 
events. BMC Med Inf Decis Mak 16(2):69. https​://doi.org/10.1186/s1291​
1-016-0309-0

	19.	 Karlsson I, Boström H (2014) Handling sparsity with random forests when 
predicting adverse drug events from electronic health records. In: 2014 
ieee international conference on healthcare informatics, 15–17 Septem-
ber 2014, Verona. IEEE, pp 17–22

	20.	 Svetnik V, Liaw A, Tong C, Wang T (2004) Multiple classifier systems. In: 
Proceedings. Springer, Berlin

	21.	 Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) 
Random forest: a classification and regression tool for compound clas-
sification and QSAR modeling. J Chem Inf Comput Sci 43(6):1947–1958. 
https​://doi.org/10.1021/ci034​160g

	22.	 Morgan HL (1965) The generation of a unique machine description for 
chemical structures: a technique developed at chemical abstracts service. 
J Chem Doc 5(2):107–113. https​://doi.org/10.1021/c1600​17a01​8

	23.	 Norinder U, Ek ME (2013) QSAR investigation of NaV1.7 active com-
pounds using the SVM/signature approach and the bioclipse modeling 
platform. Bioorg Med Chem Lett 23(1):261–263

	24.	 Chen JJF, Visco DP Jr (2017) Developing an in silico pipeline for faster 
drug candidate discovery: virtual high throughput screening with the 
signature molecular descriptor using support vector machine models. 
Chem Eng Sci 159:31–42

	25.	 Huang R, Xia M, Nguyen D-T, Zhao T, Sakamuru S, Zhao J, Shahane SA, 
Rossoshek A, Simeonov A (2016) Tox21 challenge to build predictive 
models of nuclear receptor and stress response pathways as mediated by 
exposure to environmental chemicals and drugs. Front Environ Sci 3:85

	26.	 Hansen K, Mika S, Schroeter T, Sutter A, ter Laak A, Steger-Hartmann T 
(2009) Benchmark data set for in silico prediction of Ames mutagenicity. J 
Chem Inf Model 49(9):2077–2081

	27.	 Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 
9(3):90–95

	28.	 Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S, Gemperline 
DC et al (2017) mwaskom/seaborn: v0.8.1. https​://doi.org/10.5281/zenod​
o.54844​

	29.	 Landrum G (2017) RDKit documentation 2017.09.01 release. http://www.
rdkit​.org/RDKit​_Docs.curre​nt.pdf. Accessed 15 Nov 2017

Each data point is a mean of the four data sets. These values are plotted as Fig. 2 
in the publication
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