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Abstract 

Background:  Several topological (2D) and geometric (3D) molecular descriptors (MDs) are calculated from local 
vertex/edge invariants (LOVIs/LOEIs) by performing an aggregation process. To this end, norm-, mean- and statistic-
based (non-fuzzy) operators are used, under the assumption that LOVIs/LOEIs are independent (orthogonal) values of 
one another. These operators are based on additive and/or linear measures and, consequently, they cannot be used 
to encode information from interrelated criteria. Thus, as LOVIs/LOEIs are not orthogonal values, then non-additive 
(fuzzy) measures can be used to encode the interrelation among them.

Results:  General approaches to compute fuzzy 2D/3D-MDs from the contribution of each atom (LOVIs) or cova‑
lent bond (LOEIs) within a molecule are proposed, by using the Choquet integral as fuzzy aggregation operator. The 
Choquet integral-based operator is rather different from the other operators often used for the 2D/3D-MDs calcula‑
tion. It performs a reordering step to fuse the LOVIs/LOEIs according to their magnitudes and, in addition, it consid‑
ers the interrelation among them through a fuzzy measure. With this operator, fuzzy definitions can be derived from 
traditional or recent MDs; for instance, fuzzy Randic-like connectivity indices, fuzzy Balaban-like indices, fuzzy Kier–Hall 
connectivity indices, among others. To demonstrate the feasibility of using this operator, the QuBiLS-MIDAS 3D-MDs 
were used as study case and, as a result, a module was built into the corresponding software to compute them 
(http://tomoc​omd.com/qubil​s-midas​). Thus, it is the only software reported in the literature that can be employed to 
determine Choquet integral-based fuzzy MDs. Moreover, regression models were created on eight chemical data‑
sets. In this way, a comparison between the results achieved by the models based on the non-fuzzy QuBiLS-MIDAS 
3D-MDs with regard to the ones achieved by the models based on the fuzzy QuBiLS-MIDAS 3D-MDs was made. As a 
result, the models built with the fuzzy QuBiLS-MIDAS 3D-MDs achieved the best performance, which was statistically 
corroborated through the Wilcoxon signed-rank test.

Conclusions:  All in all, it can be concluded that the Choquet integral constitutes a prominent alternative to compute 
fuzzy 2D/3D-MDs from LOVIs/LOEIs. In this way, better characterizations of the compounds can be obtained, which 
will be ultimately useful in enhancing the modelling ability of existing traditional 2D/3D-MDs.
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Introduction
In several application areas, mainly in the multi-criteria 
decision-making, the information aggregation process is 
the main step to perform [1–3]. In such a process, the indi-
vidual criteria are combined into a single value (global cri-
terion), in such a way that all properties contained in each 
individual criterion are included or reflected in the global 
criterion, by using an aggregation operator [4, 5]. Thus, sev-
eral aggregation operators may be used to obtain different 
global criteria. In this way, decision-makers could consider 
diversity of criteria with the purpose of making the best 
final decision. Traditional aggregation operators, where 
individual criteria are considered as values independent 
of one another, are those most frequently employed (e.g. 
OWA-like functions [6–8]). These operators are based on 
linear and/or additive measures and, thus, they are not suit-
able to deal with the dependency among criteria.

The dependency or interaction among criteria is an 
intrinsic feature present in the decision-making tasks in 
the real world. For example, if various work teams are 
analyzed to select the one with the best teamwork, and 
with this purpose the efficiency of each worker belonging 
to a same team is measured, then the efficiency of each 
team to do teamwork is not the sum of the individual effi-
ciencies, but the interaction among its workers to achieve 
the best teamwork. Therefore, it is most suitable to use 
non-additive measure-based operators, instead of tradi-
tional operators, for an approximate modeling of people’s 
assessment practices. In this sense, the concept of fuzzy 
(non-additive) measure, also known as capacity, was 
introduced by Sugeno, in order to model the importance 
of a coalition within a set of interrelated criteria [9].

According to Lebesgue’s philosophy [10], once a measure 
is defined, it is possible to obtain an integral with regard to 
that measure. Thus, associated with the concept of fuzzy 
measure, there is the concept of fuzzy integral [11, 12], being 
the Choquet integral one of the most popular [13–17]. The 
Choquet integral constitutes a generalization of the Leb-
esgue integral [10], as well as of other traditional operators 
(e.g. OWA-like functions), due to the fact that they coincide 
when the measure used is additive. The Choquet integral 
has been successfully used in several applications, such as: 
face recognition [18], rule-based systems [19], data mining 
[20] and decision-making [21–23]. The success of the Cho-
quet integral as aggregation operator is due to, as already 
pointed out, its ability of including dependency among cri-
teria by means of a fuzzy measure [14, 15].

One of the applications of the aggregation operators is 
in the chemical structures encoding. This process con-
stitutes an essential step to perform several studies in 
the cheminformatics field, such as molecular similar-
ity [24] and quantitative structure–activity relationships 
(QSAR) [25–27]. The codification of chemical structures 

is performed by means of the molecular descriptors 
(MDs) calculation. The MDs are values computed from 
symbolic molecular representations, by applying differ-
ent mathematical transformations [28] based on a wide 
variety of theories, such as quantum chemistry [29] and 
information theory [30]. The MDs are useful values in the 
sense that they can contribute to obtain a better compre-
hension on the interpretation of molecular properties, 
and/or they can integrate a model to predict biological 
activities in novel compounds [28].

As it can be seen in [28], several procedures to determine 
MDs are based on the calculation of Local Vertex Invari-
ants (LOVIs) or Local Edge Invariants (LOEIs). These pro-
cedures perform an aggregation process on the LOVIs/
LOEIs computed to determine the final value (MD) that 
characterizes the molecular structure (e.g. Randić–Raz-
inger index [31] and local Balaban index [32]). The LOVIs 
and LOEIs depict each atom (vertex) and covalent bond 
(edge) of a molecule, respectively. They are computed from 
graph-based molecular representations without depend-
ing on any atom/bond numbering, nor on the rotation 
and translation of the molecules. LOVIs/LOEIs are rep-
resented into n-dimensional vectors, where n denotes the 
total number of atoms/bonds. The summation, summation 
of squares, min and max are the operators often used to 
obtain global MDs from LOVIs/LOEIs, being the summa-
tion operator the one most commonly used.

However, as it has already been pointed out, the use of 
different aggregation operators yields diversity of global 
criteria, that is why decision-makers consider several alter-
natives to make the best final possible decision. Thus, if 
the MDs whose calculation is based on the aggregation of 
atom/bond contributions (LOVIs/LOEIs) are determined 
using several operators, then diversity of global characteri-
zations of the molecules can be computed. For instance, if 
on the well-known LOVIs called vertex degree, the kurto-
sis function and the traditional OWA operator are applied, 
then an aggregation indicating the tailedness of this LOVIs 
vector, and a weighted aggregation, giving more impor-
tance to the vertices (atoms) with the highest degrees, can 
be calculated, respectively. Both examples are quite differ-
ent from the common use of the summation operator.

Inspired on this idea, recent strategies to compute topo-
logical (2D) and geometric (3D) MDs from atom/bond con-
tributions (LOVIs/LOEIs) have been introduced [33–38]. 
These 2D/3D-MDs employ aggregation operators based on 
Minkowski norms (e.g. Euclidean norm), central tendency 
statistics (e.g. arithmetic mean) and dispersion statistics (e.g. 
kurtosis). As it has been confirmed elsewhere [39–41], the 
use of these operators contribute to obtain global 2D/3D-
MDs with better information content (variability) and lin-
ear independence (orthogonality) than other 2D/3D-MDs 
reported in the literature. In addition, the diversity of the 
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2D/3D-MDs computed with these operators allowed to 
achieve successful outcomes in comparative modeling tasks 
[42, 43], as well as in several practical applications [44–46].

Nonetheless, up to date, the global 2D/3D-MDs com-
putation from atom/bond contributions (LOVIs/LOEIs) 
is based on additive operators, under the assumption that 
these contributions are non-interrelated values. However, 
it is well-known that the biological activities or properties 
of the compounds do not only depend on the molecular 
shape, but also on the interactions that are often non-cova-
lent in nature. Thus, non-additive (fuzzy) measure-based 
aggregation operators (e.g. Choquet integral) may be used, 
with the purpose of obtaining an approximate characteri-
zation of the interrelation that each atom (or bond) has, 
regarding the other ones. In this way, 2D/3D-MDs orthog-
onal to the other existing ones may be obtained, because of 
the fuzzy basis of their computations.

To the best of our knowledge, only two fuzzy MD types 
have been introduced: (1) by using pharmacophore-based 
molecular similarity [47], and (2) by using the number of 
interposed bonds as the measure of separation among 
atoms depicting pharmacophore kinds (2D-FPT MDs) 
[48, 49]. Therefore, fuzzy 2D/3D-MDs computed through 
an aggregation process on atom/bond contributions 
(LOVIs/LOEIs) have not been reported to date. Conse-
quently, this work is aimed at introducing a different way 
for the global 2D/3D-MDs computation from LOVIs/
LOEIs, by using the Choquet integral as fuzzy aggrega-
tion operator. This report is planned as follows. Second 
section defines some concepts regarding the fuzzy meas-
ures and the Choquet integral. Third section presents the 
adaptation of several procedures to compute fuzzy MDs. 
Fourth section presents a practical example. Fifth section 
studies the feasibility of using this approach. Last section 
describes the main findings and conclusions.

Background of fuzzy measures and Choquet 
integral
Definition of fuzzy measure and singleton measure. 
Lmδ‑measure: fuzzy measure composed of maximized 
L‑measure and Delta‑measure
The fuzzy measures (or capacities) are functions that 
determine a weight considering the interrelation (or 

dependency) among criteria within a subset [11, 14]. For-
mally, let a universal set X = {x1, x2, . . . , xN } and P(X) be 
the power set of X , P(X) = 2N , then a fuzzy measure [9] 
or capacity [13] on X is a set function µ : P(X) → [0, 1] that 
fulfils the following axioms:

1.	 µ(∅) = 0 (lower boundary condition).
2.	 µ(X) = 1 (upper boundary condition).
3.	 If A, B ∈ P(X) ∧ A ⊆ B ⇒ µ(A) ≤ µ(B) (mono-

tonicity).

Therefore, for any A ⊆ X , µ(A) can be considered as the 
degree of importance (or weight) of the combination A of 
criteria. If |A| = 1 , then µ(A) = µ(xi) , and it constitutes 
the traditional weight when element xi is considered sepa-
rately. It is important to highlight that µ(xi) is denominated 
as fuzzy density or singleton measure, denoted as s(xi) , 
when any A ⊆ X has a single element xi . Moreover, a fuzzy 
measure is additive if µ(A ∪ B) = µ(A)+ µ(B) , when-
ever A ∩ B = ∅ . Thus, it is enough to determine ∀ xi ∈ X 
the corresponding s(xi) to define the measure completely. 
Other important properties of the fuzzy measures are the 
superadditivity and subadditivity. The former indicates 
high synergy or cooperative action among the criteria of a 
set, while the latter expresses the opposite. So, the additiv-
ity can be interpreted as the no interaction among the cri-
teria of a set.

Several fuzzy measures have been reported in the litera-
ture, such as the Sugeno λ-measure [9] (that was the first 
one proposed), the P-measure [50], the Shapley values 
[51], the k-order fuzzy measure [52], among others [53–
55]. The λ-measure and P-measure are among the most 
widely employed. The λ-measure is not a closed form [9], 
whereas the P-measure is not sensitive enough, because 
it only determines the max value of the input set [50] (see 
Additional file 1). In addition, when the number of criteria 
is large, then the computation of the λ parameter is quite 
complex in the λ-measure, because a polynomial equation 
of higher order must be resolved. In order to tackle these 
drawbacks, a fuzzy measure comprised of the Maximized 
L-measure (Lm-measure) [56, 57] and Delta-measure 
(δ-measure) [58], denoted as Lmδ-measure, was proposed 
by Liu et al. [54, 59].

Formally, a fuzzy Lmδ-measure, gLmδ
 , on finite set 

X = {x1, x2, . . . , xN } is defined as follows:

(1)gLmδ
(A) =















maxx∈A s(x) L = −1
(1+L)

�

x∈A s(x)[1+Lmaxx∈A s(x)]

1+L
�

x∈A s(x)
− Lmaxx∈A s(x) L ∈ (−1, 0]

L(|A|−1)
�

x∈A s(x)[1−
�

x∈A s(x)]
(n−|A|)

�

x∈X−A s(x)+L(|A|−1)
�

x∈A s(x)
+

�

x∈A s(x) L ∈ (0,∞)
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where A ⊆ X , L ∈ [−1, ∞) , s(·) is a singleton meas-
ure for each xi ∈ X , 

∑

x∈X s(x) = 1 , gLmδ
(∅) = 0 and 

gLmδ
(X) = 1 . This fuzzy measure satisfies the following 

properties: (1) Lmδ-measure is an increasing function on 
L ; (2) if L = −1 , then Lmδ-measure is just the P-measure; 
(3) if L = 0 , then Lmδ-measure is additive (it coincides 
with the λ-measure when � = 0—see Additional file  1); 
(4) if −1 < L < 0 , then Lmδ-measure satisfies the subad-
ditivity property (low synergism); and (5) if 0 < L < ∞ , 
then Lmδ-measure satisfies the superadditivity property 
(high synergism).

Mathematical definition of the Choquet integral
The Choquet integral was first presented in capacity 
theory [13]. Its use as an integral with regard to fuzzy 
measures was then introduced by Hohle [60] and, it 
was later rediscovered by Murofushi and Sugeno [61, 
62]. This integral, as an n-place operator, has been 
used in several works [18–23], in order to fuse infor-
mation when interrelated criteria are accounted for. 
Formally, let a finite set X = {x1, x2, . . . , xN }|X ∈ ℜN

≥0 
and µ be a fuzzy measure on N  , then the Choquet inte-
gral of X  with respect to µ is a function Cµ : ℜN

≥0 → ℜ≥0 
according to the next expression:

where (·) denotes a permutation on N  , so that 
x(1) ≥ x(2) ≥ · · · ≥ x(N ) . That is, x(i) is the i-
th largest value in the set {x1, x2, . . . , xN } . Thus, 
A(i) =

{

x(i), . . . , x(N )

}

 when i ≥ 1 , and A0 = ∅ . So, for 
instance, if X = {x1, x2, x3}|x2 ≥ x3 ≥ x1 , then the Cho-
quet integral-based aggregation is computed as follows:

(2)

Cµ(x1, x2, . . . , xN ) =

N
∑

i=1

x(i)
[

µ
(

A(i)

)

− µ
(

A(i−1)

)]

Cµ(x1, x2, x3) = x2[µ(x2, x3, x1)− µ(x3, x1)]

+ x3[µ(x3, x1)− µ(x1)]

+ x1[µ(x1)]

As it can be seen, this operator performs a reorder-
ing of its arguments according to their magnitudes, 
as the OWA-like operators do [6, 7]. Indeed, as it has 
been demonstrated elsewhere [15, 63, 64], the Cho-
quet integral constitutes a generalization of the latter. 
Moreover, it can be observed that since the values are 
ordered in decreasing order, then µ

(

A(i)

)

≥ µ
(

A(i−1)

)

 . 
Lastly, it is important to highlight that the Choquet 
integral fulfils some properties, such as: (1) it is a con-
tinuous function; (2) it is homogeneous of degree 1; (3) 
it is monotonic and idempotent, if and only if µ is a 
fuzzy measure; and (4) it is compensative when µ is a 
normalized fuzzy measure.

Extending traditional functions to derive Choquet 
integral‑based fuzzy descriptors
Table  G3 in [28] shows several traditional functions to 
derive classic 2D/3D-MDs from atom/bond contributions 
(LOVIs/LOEIs), e.g. the Zagreb indices [65], the Balaban-
like indices [66], the Wiener-type indices [67], among oth-
ers [28]. As it can be observed, these functions are mainly 
based on the summation and product aggregation opera-
tors. Consequently, the functions described in Table  G3 
do not consider the possible interrelation among LOVIs/
LOEIs, which are only aggregated of linear and/or addi-
tive ways. Therefore, in order to consider the dependency 
among LOVIs/LOEIs, some of these traditional functions 
can be extended to compute fuzzy 2D/3D-MDs (FMDs), 
by using the Choquet integral 

(

Cµ

)

 with respect to a fuzzy 
measure µ as shown below:

(3)
MD

1
(

L,α
′

, �
′
)

= α
′

·

A
∑
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L
�′
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1
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(

L,α
′

, �
′
)
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(

α
′

· L�′1 , . . . ,α
′
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)

(4)
MD

4
(

L,α
′

, �
′
)

= α
′

A
∑

i=1

A
∑

j=1

aij

(

Li · Lj
)�

′

→ FMD
4
Cµ

(

L,α
′

, �
′
)

= Cµ(L1, . . . , LW )|Lw = aij · α
′

·
(

Li · Lj
)�′

∀i, j ∈ V

(5)
MD

5
(

L,α
′

, �
′
)

= α
′

A
∑

i=1

A
∑

j=1

(

Li · Lj
)�

′

→ FMD
5
Cµ

(

L,α
′

, �
′
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′

·
(

Li · Lj
)�′

∀i, j ∈ V , i �= j

(6)MD6
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L,α
′

, �
′
)

= α
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K
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(

nk
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i=1

Li

)�
′

k

→ FMD6
Cµ

(

L,α
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′
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K
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k=1

Cµ

(
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′

1 , . . . , L
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nk
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where Li and Lj are the LOVI values for any pair vertices 
vi and vj (atoms) of a molecular graph G , A is the num-
ber of vertices, V  represents the set of vertices of G , aij 
denotes the coefficients of the adjacency matrix of G (1 
for adjacent vertices, 0 otherwise), K  is the total number 
of graph fragments to be considered, nk is the number of 
vertices within the kth fragment, and α′ and �′ are two 
real parameters. The superscript in notation MD rep-
resents the numbering used to identify these functions 
in Table G3 in [28]. Accordingly, this numbering is also 
used to identify the corresponding fuzzy formulations 
(

FMDCµ

)

 . Note that these definitions can also be used 
to compute fuzzy 2D/3D-MDs from LOEIs in place of 
LOVIs.

From these fuzzy formulations, several specific descrip-
tors can be computed, for instance: (1) from FMD1

Cµ
 for 

α
′
= �

′
= 1 , fuzzy DIVATI MDs [41], fuzzy GT-STAF 

MDs [34] and fuzzy QuBiLS-MAS MDs [37] can be 
obtained, when the LOVIs vector is computed with some 
of those families; (2) if vector L is computed with the ver-
tex degree invariant, then from FMD1

Cµ
 for α′

= 1 and 

�
′
= 2 , from FMD4

Cµ
 for α′

= �
′
= 1 and from FMD4

Cµ
 for 

α
′
= 1 and �′

= −1
/

2 , the fuzzy first Zagreb index [65], 
the fuzzy second Zagreb index [65] and the fuzzy Randic 
connectivity index [68] can be obtained, respectively; (3) 
from FMD4

Cµ
 for α′

= B
C+1

 (B is the number of graph 
edges (covalent edges) and C is the number of rings) and 
�
′
= −1

/

2 , the fuzzy Balaban-like indices can be deter-
mined [32]; (4) from FMD6

Cµ
 for α′

= 1 and �′
= −1

/

2 , the 
fuzzy Kier–Hall connectivity indices can be obtained [69]; 
and (5) from FMD7

Cµ
 , fuzzy autocorrelation MDs can be 

computed. A practical example is presented below.

Practical example: Choquet integral‑based fuzzy 
QuBiLS‑MIDAS molecular descriptors
Geometric multi-linear algebraic MDs, also known as 
QuBiLS-MIDAS, were introduced as a novel frame-
work to characterize molecular structures [39, 40]. These 
3D-MDs are the only ones that encode structural infor-
mation between two atoms of a molecule using several 
metrics (e.g. Soergel) [39], as well as chemical informa-
tion corresponding to the relations between three and 

(7)
MD7

(

L,α
′

, �
′

, k
)

= α
′ ∑

i∈k

∑

j∈k

aij
(

Li · Lj
)�

′

→ FMD7
Cµ

(

L,α
′

, �
′

, k
)

= Cµ(L1, . . . , LW )

|Lw = aij · α
′

·
(

Li · Lj
)�′

∀i, j ∈ k

four atoms through multi-metrics (e.g. bond and dihedral 
angle) [40]. QSAR studies on eight benchmark chemi-
cal datasets were carried out [43], where the QuBiLS-
MIDAS 3D-MDs yielded significantly superior outcomes 
with respect to 12 2D/3D-QSAR methodologies estab-
lished in the literature. The QuBiLS-MIDAS 3D-MDs 
were also applied in the prediction of inhibitory activity 
of bromodomain modulators (BRD2, BRD3 and BRD4) 
with successful results [46].

Traditional (no fuzzy) definition of the QuBiLS‑MIDAS 
descriptors
The traditional QuBiLS-MIDAS MDs are computed  
from atom-level descriptors (LOVIs). Thus, the k-th 
atom-level two-linear 

[

(∗)(NQ)

ns(ss,ds,mp)b
a,k
(F)

(

x̄, ȳ
)

]

 , three-linear 
[

(∗)(NQ)

ns(ss,mp)tr
a,k
(F)

(

x̄, ȳ, z̄
)

]

 and four-linear 
[

(∗)(NQ)

ns(ss,mp)qu
a,k
(F)

(

x̄, ȳ, z̄, w̄
)

]

 
QuBiLS-MIDAS 3D-MDs are calculated as N-linear 
(multi-linear) algebraic maps in Rn , in a canonical basis 
set, when geometric coordinate-based relations among 
two (N = 2) , three (N = 3) and four (N = 4) atoms are 
considered, respectively [39, 40]. The formulation (indi-
cial notation) of these 3D-MDs is as follows:

where n is the number of atoms, “a” is a particular atom 
(a = 1, . . . , n) , the indices i, j, l, h =  1 . . . n denote the 
entries of the matrices and property vectors, 
k = ±1, . . . , ±12 is the power of the matrices, and 
x1(∗), . . . , xn(∗) , y1(∗), . . . , yn(∗) , z1(∗), . . . , zn(∗) and 
w1(∗), . . . , wn(∗) are the coefficients of the property vec-
tors x(∗) , y(∗) , z(∗) and w(∗) , respectively, when central 
chirality aspects are codified (*) or not [70]). Moreover, 
ns(ss,ds,mp)(NQ)G

a,k
(F) , ns(ss,mp)(NQ)GT

a,k
(F) and 

(8)

(∗)(NQ)

ns(ss,ds,mp)b(F)
Lka =

(∗)(NQ)

ns(ss,ds,mp)b
a,k
(F)

(

x̄, ȳ
)

= ns(ss,ds,mp)(NQ)G
a,k
ij(F)x

i(∗)yj(∗)

(9)

(∗)(NQ)

ns(ss,mp)tr(F)
Lka =

(∗)(NQ)

ns(ss,mp)tr
a,k
(F)

(

x̄, ȳ, z̄
)

= ns(ss,mp)(NQ)GT
a,k
ijl(F)x

i(∗)yj(∗)zl(∗)

(10)

(∗)(NQ)

ns(ss,mp)qu(F)
Lka =

(∗)(NQ)

ns(ss,mp)qu
a,k
(F)

(

x̄, ȳ, z̄, w̄
)

= ns(ss,mp)(NQ)GQ
a,k
ijlh(F)x

i(∗)yj(∗)zl(∗)wh(∗)
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ns(ss,mp)(NQ)GQ
a,k
(F) denote the two-, three- and four-tuple 

atom-level matrices for each atom “a”, respectively. From 
these atom-level matrices, then atom-level descriptors 
(LOVI) are determined. Each LOVI constitutes an entry 
(La) in the corresponding vector of atom-level descrip-
tors Lk (LOVIs vector). The notations ( NQ , F, ns, ss, ds 
and mp) between parentheses are not mandatory during 
the calculation and they will be explained below.

Keep-all total matrices ( Gk , GTk and GQk ) are the 
basis to compute these 3D-MDs. For k = 1 , the entries 
of the matrices G1 , GT1 and GQ1 denote the informa-
tion encoded for the relations between two, three and 
four atoms of a molecule, respectively, by using several 
metrics and multi-metrics (see Tables 1–2 in [43]). From 
these matrices, neighborhood-quotient matrices ( NQGk , 
NQGTk and NQGQk ) may be obtained, which contain 
information of the inter-atomic relations that satisfy 
certain molecular cutoffs [71]. Local-fragment matrices 
( Gk

F , GTk
F and GQk

F ) may also be computed (see Equa-
tion  13 in [39] and Equations  17–18 in [40]) to encode 
information of chemical fragments or atom-types (F) 
of interest. Normalized matrices may also be obtained 
using the simple-stochastic (ss—see Equation  10 in [39] 
and Equations 13–14 in [40]), double-stochastic (ds) [72] 
and mutual probability (mp—see Equation 12 in [39] and 
Equation 15–16 in [40]) procedures. If no normalization 
procedure is used, then the matrices are non-stochastic 
(ns).

Finally, from the keep-all (neighborhood-quotient) non-
stochastic (simple-stochastic, double-stochastic or mutual-
probability) total (local-fragment) matrices 
[ ns(ss,ds,mp)(NQ)Gk

(F) , ns(ss,mp)(NQ)GTk
(F) and 

ns(ss,mp)(NQ)GQk
(F) ], the respective atom-level matrices 

are calculated (see Equation 9 in [39] and Equations 3–4 in 
[40]) with the purpose of determining the vectors of 
LOVIs (see Eqs.  8–10). After that, and considering the 
atom-level descriptors (LOVIs) as independent values of 
one another, then the (non-fuzzy) global k-th two-linear, 
three-linear and four-linear QuBiLS-MIDAS 3D-MDs are 
obtained using one or several (non-fuzzy) aggregation 
operators based on the Minkowski definition (e.g. Euclid-
ean norm), central tendency statistics (e.g. harmonic 
mean) and dispersion statistics (e.g. variance) [39, 40].

Fuzzy definition of the QuBiLS‑MIDAS descriptors based 
on the Choquet integral
So far, QuBiLS-MIDAS 3D-MDs are computed from 
LOVIs considered as non-interrelated values. However, 
as already pointed out, the biological activities or prop-
erties of the compounds do not only depend on the 
molecular shape, but also on the interactions that are 
often non-covalent in nature. Therefore, the interrelation 

among atomic contributions (LOVIs) may be an aspect 
to consider during molecular encoding. In this way, from 
the corresponding LOVIs vector and considering their 
coefficients as interrelated values of one another, then the 
fuzzy global k-th two-linear, three-linear and four-linear 
QuBiLS-MIDAS 3D-MDs are computed using the defini-
tion of Choquet integral (see Eq. 2) as shown below:

where Cµ(. . .) is the Choquet integral with respect to a 
fuzzy measure µ ; and (∗)(NQ)

ns(ss,ds,mp)b(F)
Lka , (∗)(NQ)

ns(ss,mp)tr(F)
Lka and 

(∗)(NQ)

ns(ss,mp)qu(F)
Lka are the kth two-linear, three-linear and four-

linear atom-level descriptors (LOVIs), respectively, 
determined for each atom “a” of a molecule, according to 
Eqs. 8–10. Note that these formulations coincide with the 
definition FMD1

Cµ
 for α′

= �
′
= 1 (see Eq.  3). Scheme  1 

shows a flowchart regarding the calculation of these 
fuzzy 3D-MDs.

The Lmδ-measure [54, 59] (see Eq. 1) is used to compute 
the importance (weight) of the interrelation among atom-
level descriptors (LOVIs) during the fuzzy QuBiLS-
MIDAS 3D-MDs calculation. As it can be seen in Eq. 1, 
the Lmδ-measure depends on a singleton measure s(x) , so 
that 

∑

x∈X s(x) = 1 , being X a finite set of elements. In 
this case, set X is the LOVIs vector 

(

Lk
)

 computed for a 
compound, either the kth two-linear, three-linear or four-
linear atom-level QuBiLS-MIDAS 3D-MDs. Therefore, 
the singleton measure s

(

Lka
)

 , ∀ Lka ∈ Lk , determines the 
belonging degree of the descriptor for atom “a” ( Lka—see 
Eqs. 8–10) within the set of atom-level descriptors 

(

Lk
)

 . 
To this end, the following two functions [73] were used:

Aggregated Objects Type 1 (AO1):

Aggregated Objects Type 2 (AO2):

(11)

(∗)(NQ)

ns(ss,ds,mp)b
k
(F)

(

x̄, ȳ
)

= Cµ

(

(∗)(NQ)

ns(ss,ds,mp)b(F)
Lk1, . . . ,

(∗)(NQ)

ns(ss,ds,mp)b(F)
Lkn

)

(12)

(∗)(NQ)
ns(ss,mp)tr

k
(F)

(

x̄, ȳ, z̄
)

= Cµ

(

(∗)(NQ)

ns(ss,mp)tr(F)
Lk1, . . . ,

(∗)(NQ)

ns(ss,mp)tr(F)
Lkn

)

(13)

(∗)(NQ)
ns(ss,mp)qu

k
(F)

(

x̄, ȳ, z̄, w̄
)

= Cµ

(

(∗)(NQ)

ns(ss,mp)qu(F)
Lk1, . . . ,

(∗)(NQ)

ns(ss,mp)qu(F)
Lkn

)

(14)s(Lki ) =
bαi

∑n
i=1 b

α
i

, i = 1, 2, . . . , n

(15)s(Lki ) =
(1− bi)

α

∑n
i=1 (1− bi)α

, i = 1, 2, . . . , n
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where α ∈ [0, 1] ; and bi constitutes the ith largest of the 
atom-level descriptors Lk1, L

k
2, . . . , L

k
n . As it can be ana-

lyzed, these functions calculate the belonging degree 
according to the magnitude of the atom-level descrip-
tors, that is, the highest belonging degrees are assigned 
to the highest atom-level descriptors. The AO1 and AO2 
functions are commonly used in the weightings com-
putation for OWA-like operators [73]. However, they 
satisfy the same mathematical constraints as the single-
ton measures for the Lmδ-measure and, thus, they were 
considered to compute the fuzzy densities in this work. 
Scheme  2 shows an example of the calculation of these 
fuzzy 3D-MDs.

Lastly, the computation of these fuzzy global 3D-MDs 
can be performed through the module built into the 
QuBiLS-MIDAS software (http://tomoc​omd.com/
qubil​s-midas​) [35]. As it can be seen in Fig.  1, in this 
module, the value of the L-parameter corresponding 
to the Lmδ-measure (see Eq. 1), as well as the singleton 
measure to be used, can be customized. Several default 
configurations, determined according to their results 
in cheminformatics studies, are also provided. These 

fuzzy 3D-MDs can also be obtained using the distrib-
uted computation module coupled to the heterogene-
ous and non-dedicated T-arenal platform (http://tomoc​
omd.com/t-arena​l) [74].

Performance of the Choquet integral‑based fuzzy 
QuBiLS‑MIDAS molecular descriptors
This section is dedicated to demonstrating the feasibil-
ity of using the Choquet integral in the fuzzy MDs cal-
culation, by using the QuBiLS-MIDAS 3D-MDs as study 
case. To this end, models based on the multiple linear 
regression (MLR) technique were built using the Moby-
Digs software, which uses the Genetic Algorithm (GA) 
meta-heuristic as search method [75]. The leave-one-out 
cross validation 

(

Q2
loo

)

 was used as the fitness function. 
The models retained for further validation were selected 
according to the best bootstrapping value 

(

Q2
boot

)

 . All 
the datasets were optimized with the CORINA software 
(https​://www.mn-am.com/produ​cts/corin​a). From now 
on, the ‘atomic contributions’ term is only to refer to the 
atom-level QuBiLS-MIDAS 3D-MDs (LOVIs).

Scheme 1  General workflow for the calculation of the Choquet integral-based fuzzy QuBiLS-MIDAS molecular descriptors. (1) Computation 
of the molecular vectors according to the atomic properties selected; (2) Computation of the molecular vectors considering chiral properties 
(optional); (3) Computation of the non-stochastic two-tuple, three-tuple or four-tuple matrices, for k = 1 , from 3D Cartesian coordinates of each 
atom; (4) Consider atom-types or local-fragments (optional); (5) Apply molecular cutoffs (optional); (6) Computation of the simple-stochastic, 
double-stochastic and mutual probability matrices, as well as of the kth matrices using the Hadamard product; (7) Split the matrices calculated in 
atom-level matrices; (8) Computation of the atom-level indices (descriptors) using the molecular vectors calculated in the steps 1–2; and (9) Apply 
the Choquet integral on the vector of atom-level descriptors

http://tomocomd.com/qubils-midas
http://tomocomd.com/qubils-midas
http://tomocomd.com/t-arenal
http://tomocomd.com/t-arenal
https://www.mn-am.com/products/corina
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Configurations for the computation of fuzzy densities
This study is to determine the best configurations for the 
computation of fuzzy densities. To this end, two project 
groups with the same configuration of Choquet inte-
gral-based fuzzy QuBiLS-MIDAS 3D-MDs were built 
(see Additional file 2). In both project groups, the value 
of the α-parameter of the functions AO1 (see Eq. 14) or 
AO2 (see Eq. 15) was varied into the interval [0, 1] , with 
a step equal to 0.1. In this way, all the possible configu-
rations were assessed. The value of the L-parameter of 
the Lmδ-measure (see Eq. 1) was set to − 0.5 and 0.5, in 
order to determine the best configurations when a low 
and a high synergism among the atomic contributions is 
accounted for. The Cramer’s steroids set [76–80] is the 
one used to fulfill the goals of this study. This dataset 
is composed of 31 steroids, so that structures 1–21 and 
22–31 belong to the training and test sets, respectively. 
Compound number 31 is left out at being outlier.

These projects on the steroid’s dataset were calculated 
(see Additional file 2 for SDF format). For each descrip-
tors matrix obtained (see Additional file 3), models from 
1 to 4 variables were created by using the GA-MLR 
method, in order to predict the binding affinity to the 
CBG protein [81]. The statistical methods Y-scrambling, 
bootstrapping, external validation and Fisher function 
were determined for each model, in order to create a data 
matrix Mnx k , where the n rows and the k columns denote 
the statistics computed and the configurations to be com-
pared, respectively (see Additional file 4). In this way, the 
rank (first step of the Friedman test [82]) for each con-
figuration can be computed (see Additional file  5). The 
configurations selected as the best ones were those with a 
rank lesser than the difference between the average rank 
and the standard deviation calculated for a same group.

As a result, Fig.  2 shows the average bootstrap-
ping 

(

Q2
boot

)

 and external predictive 
(

Q2
ext

)

 accuracies 

Scheme 2  Workflow for the calculation of a specific fuzzy two-linear descriptor based on the linear algebraic form, Euclidean metric, 
simple-stochastic matrix, electronegativity as property, and the Choquet integral as aggregation operator. (1) Computation of the simple-stochastic 
matrix for k = 1 

(

ssG
1
)

 from the 3D coordinates matrix, by using the Euclidean metric; (2) Computation of the property vector using the 
electronegativity property, X̄e ; (3) Split the ssG

1 matrix into “n” (number of atoms) atom-level matrices, ssG
a,1 , where “a” represent a specific atom; (4) 

Computation of the atom-level descriptors, by multiplying each ssG
a,1 matrix by the X̄e vector, and then a linear combination is performed on each 

vector obtained (linear algebraic form); and (5–6) Apply the Choquet integral on the entries of the vector L̄ , considering the L-parameter of the 
Lmδ-measure equal to − 0.5 (subadditivity) and 0.5 (superadditivity), respectively
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corresponding to the best configurations based on 
functions AO1 (see Eq.  14) and AO2 (see Eq.  15). On 
one hand, the configurations AO1 (α = 0.2) , AO1 
(α = 0.3) , AO2 (α = 0.6) and AO2 (α = 0.0) are those 
with the best outcomes when a low synergism is con-
sidered during the fuzzy QuBiLS-MIDAS 3D-MDs cal-
culation (see Fig. 2a). On the other hand, at considering 
a high synergism (see Fig. 2b), the configurations with 
the best behavior are AO1 (α = 0.8) , AO1 (α = 0.9) , 
AO1 (α = 0.2) , AO2 (α = 0.6) and AO2 (α = 0.5) . In all 
cases, the average performance achieved by the models 
is suitable, at presenting Q2

boot > 0.7 and Q2
ext > 0.6.

Nonetheless, in a general sense, the configurations 
obtained for a high synergism (Fig. 2b) present a compa-
rable-to-superior behavior with regard to the configura-
tions obtained for a low synergism (Fig. 2a). These results 
suggest that the dependency among atomic contributions 
is an important aspect to consider during the molecular 
codification with the QuBiLS-MIDAS 3D-MDs. Thus, at 
least preliminarily, the methodological contribution of 
this report is justified, in which the 2D/3D-MDs fuzzy 
calculation from LOVIs/LOEIs is presented. However, 
more studies must be carried out to prove the feasibil-
ity of this fuzzy approach with respect to the traditional 

approach, where the atom/bond contributions (LOVIs/
LOEIs) are considered as non-interrelated values.

Performance of the Choquet integral‑based (fuzzy) 
QuBiLS‑MIDAS descriptors versus norm‑, mean‑ 
and statistic‑based (non‑fuzzy) QuBiLS‑MIDAS descriptors
In this section, QSAR models based on the QuBiLS-
MIDAS 3D-MDs were built to assess the applicability of 
the Choquet integral in the fuzzy MDs computation from 
LOVIs/LOEIs. Note that the superiority of the QuBiLS-
MIDAS 3D-MDs in modeling tasks was confirmed in 
[43], where its performance was assessed and compared 
with regard to 12 methodologies reported in the litera-
ture. Therefore, the current study is only devoted to per-
forming an internal analysis among the models built with 
the fuzzy 3D-MDs (based on Choquet integral) with 
respect to the models built with the non-fuzzy 3D-MDs 
(based on traditional operators).

Chemical datasets to assess the performance between fuzzy 
and non‑fuzzy QuBiLS‑MIDAS descriptors
Eight well-known benchmark datasets were used to carry 
out this study. These datasets have been widely employed 
in the literature [83–86], including the analysis to assess 
the performance of the QuBiLS-MIDAS MDs in QSAR 

Fig. 1  Module built into the QuBiLS-MIDAS software to create different configurations of the Choquet integral-based aggregation operator
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[43]. The datasets are composed of angiotensin convert-
ing enzyme (ACE) inhibitors, acetylcholinesterase inhibi-
tors (ACHE), ligands for the benzodiazepine receptor 
(BZR), cyclooxygenase-2 inhibitors (COX2), dihydro-
folate reductase inhibitors (DHFR), inhibitors of glycogen 
phosphorylase b (GPB), thermolysin inhibitors (THER) 
and thrombin inhibitors (THR). A description of these 
datasets is shown in Table  1, whereas Additional file  6 
contains the corresponding SDF (Structure Data Format) 
files.

Methodology to assess the performance between fuzzy 
and non‑fuzzy QuBiLS‑MIDAS descriptors
Three projects with a same configuration of non-fuzzy 
QuBiLS-MIDAS 3D-MDs were built, each of them using 
the norm-, mean-, statistic-based operators, respectively. 
Two other projects with the same previous configura-
tion were also created but using the Choquet integral 
to determine the respective fuzzy 3D-MDs. One of the 
Choquet integral-based projects was designed with the 
best fuzzy densities obtained for a low synergism among 
atomic contributions (see Fig. 2a), while the other project 

was planned with the best fuzzy densities for a high syn-
ergism (see Fig. 2b). The L-parameter of the Lmδ-measure 
was set to − 0.25, − 0.5 and − 0.75 (subadditivity) in the 
project considering a low synergism, while the opposite 
values (superadditivity) were used in the other project. 
Additional file  6 shows the XML files of the projects 
described.

These projects on each chemical dataset mentioned 
above (see Table 1) were computed. Then, the best 1500 
variables (MDs) according to the variability criterion [87] 
were retained by using the IMMAN software [88]. Poste-
riorly, the GA-MLR procedure was used to build several 
models for 3, 5 and 7 variables for each operator-type. 
The best model for each dimension on each dataset was 
retained (Additional file  7). A pool with the non-fuzzy 
3D-MDs and other pool with the fuzzy 3D-MDs included 
in the best models built on each dataset were created. 
From these pools, non-fuzzy and fuzzy models for 7 vari-
ables were built on each dataset, and the models with the 
best bootstrapping value were selected as the best ones 
(Additional file 8). The external validation 

(

Q2
ext

)

 statistic 

Fig. 2  Average bootstrapping accuracy 
(

Q2
boot

)

 and average external predictive accuracy 
(

Q2
ext

)

 achieved by the best configurations for the 
computation of fuzzy densities: a for a low synergism; b for a high synergism

Table 1  Description of the chemical datasets employed to assess the performance of the Choquet integral-based QuBiLS-
MIDAS descriptors

ACE ACHE BZR COX2 DHFR GPB THER THR

Total 114 111 163 322 397 66 76 88

Training 76 74 98 188 237 44 51 59

Test 38 37 49 94 124 22 25 29

Inactive 16 40 36

Activity pIC50 pIC50 pIC50 pIC50 pIC50 pKi pKi pKi

Value range 2.1–9.9 4.3–9.5 5.5–8.9 4.0–9.0 3.3–9.8 1.3–6.8 0.5–10.2 4.4–8.5
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parameter was computed for each model developed (see 
Additional file 7, Additional file 8).

The Q2
ext values (predictive abilities) obtained for each 

chemical dataset were used to establish a comparison and 
statistical assessment between the models built with the 
fuzzy and non-fuzzy QuBiLS-MIDAS 3D-MDs, respec-
tively. In this sense, an analysis by means of a boxplot 
graphic (box-and-whisker graphic) was firstly performed, 
in order to examine the shape of the distributions of the 
results achieved. Then, a Wilcoxon signed-rank test [89] 
was carried out to know whether the predictive abilities 
achieved by the fuzzy models and the predictive abili-
ties achieved by the non-fuzzy models differ. The SPSS 
software was used to perform the first analysis men-
tioned above, while the Keel [90] software was employed 
to perform the other one. A significance level α = 0.05 
was accounted for. Note that the ‘fuzzy model’ and ‘non-
fuzzy model’ terms are referred to the models built with 
the fuzzy and non-fuzzy QuBiLS-MIDAS 3D-MDs, 
respectively.

Analysis of the performance achieved by the fuzzy 
and non‑fuzzy QuBiLS‑MIDAS descriptors
Figure 3 shows a comparative graphic of the average per-
formance achieved by the models for 3, 5 and 7 variables, 
built with the fuzzy QuBiLS-MIDAS 3D-MDs, when 
a low (L-parameter < 0 in Eq.  1) and a high (L-parame-
ter > 0 in Eq.  1) synergism among atomic contributions 
is accounted for. As it can be seen, the fuzzy 3D-MDs 
calculated for a low synergism present the best behavior 
on ACE ( 

(

Q2
ext

)

 = 0.5667), BZR ( 
(

Q2
ext

)

 = 0.4052), COX2 
( 
(

Q2
ext

)

 = 0.2930) and GPB ( 
(

Q2
ext

)

 = 0.5931) datasets, 
while the fuzzy 3D-MDs determined for a high synergism 
present the best behavior on ACHE ( 

(

Q2
ext

)

 = 0.4303), 
DHFR ( 

(

Q2
ext

)

 = 0.3446), THER ( 
(

Q2
ext

)

 = 0.4541) and 
THR ( 

(

Q2
ext

)

 = 0.3270) datasets. So, it is evidenced that 
fuzzy QuBiLS-MIDAS MDs calculated both for a low 
and a high synergism contribute to codify useful chemi-
cal information, and that their performances depend on 
the molecular structures under study. Therefore, both 
types of fuzzy 3D-MDs should be jointly used with the 
purpose of creating models with better predictive ability.

In this sense, Fig. 4 shows a plotting of the external pre-
dictive ability yielded by the models of 7 variables created 

Fig. 3  Average external predictive 
(

Q2
ext

)

 accuracies corresponding to the models based on the best configurations for the calculation of fuzzy 
densities, both those determined for a low (L-parameter < 0) and a high (L-parameter > 0) synergism
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with the fuzzy and non-fuzzy QuBiLS-MIDAS 3D-MDs, 
respectively. The fuzzy MDs determined for a low and a 
high synergism among atomic contributions were used, 
while the non-fuzzy MDs used are those computed from 
the norm-, mean- and statistic-based operators. It can 
be seen that, in all the chemical datasets employed, the 
models built with the fuzzy MDs [(ACE, 

(

Q2
ext

)

 = 0.6103); 
(ACHE, 

(

Q2
ext

)

 = 0.5231); (BZR, Q2
ext = 0.5400); 

(COX2, 
(

Q2
ext

)

 = 0.3558); (DHFR, Q2
ext = 0.4638); 

(GPB, 
(

Q2
ext

)

 = 0.6447); (THER, Q2
ext = 0.4569); (THR, 

(

Q2
ext

)

 = 0.4072)] yield comparable-to-superior perfor-
mances with regard to the models based on the non-fuzzy 
MDs [(ACE, 

(

Q2
ext

)

 = 0.5629); (ACHE, 
(

Q2
ext

)

 = 0.3887); 
(BZR, 

(

Q2
ext

)

 = 0.5222); (COX2, 
(

Q2
ext

)

 = 0.3387); (DHFR, 
(

Q2
ext

)

 = 0.4390); (GPB, 
(

Q2
ext

)

 = 0.6442); (THER, 
(

Q2
ext

)

 = 0.4080); (THR, 
(

Q2
ext

)

 = 0.3600)]. Thus, it can 
be stated that MDs with better modeling ability can be 
calculated using the Choquet integral-based operator, if 
compared with the MDs computed from the traditional 
(non-fuzzy) operators.

Moreover, Fig. 5a depicts the number of fuzzy QuBiLS-
MIDAS 3D-MDs, both for a low and a high synergism 
among atomic contributions, included in the models built 

on each dataset. As it can be seen, the fuzzy QuBiLS-
MIDAS 3D-MDs determined for a high synergism influ-
enced on the external predictive power of all models 
developed, being the models corresponding to the ACHE 
and THR datasets exclusive of these MDs. It can also 
be noted that the model developed on the ACE dataset 
presents more QuBiLS-MIDAS 3D-MDs for a high syn-
ergism than for a low synergism. A likewise behavior is 
shown by the models built on the BZR, COX2, DHFR, 
GPB and THER datasets, but in these cases, there are 
more fuzzy MDs for a low synergism.

Additionally, Fig.  5b shows the L-parameter average 
value for the MDs included in the models. In general, it 
can be seen that, albeit the superadditivity is exclusive for 
the ACHE and THR datasets, the amount of superaddi-
tivity on each dataset is moderate. This behavior can be 
due to the fact that the datasets used are comprised of 
congeneric compounds. That is, since the compounds are 
structurally similar, then MDs computed of additive way, 
or considering a low synergism among atomic contribu-
tions, may be those in achieving better correlations into 
a QSAR model. This assumption is supported in the aver-
age amount of low synergism obtained. As it can be seen, 

Fig. 4  External predictive accuracies 
(

Q2
ext

)

 corresponding to the models of 7 variables built with the fuzzy and non-fuzzy molecular descriptors, 
respectively
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the behavior for a low synergism is from moderate to 
high, except in the BZR dataset. Thus, at least preliminar-
ily, it can be stated that high amounts of superadditivity 
will contribute to compute better MDs in non-conge-
neric datasets than in congeneric datasets.

Statistical analysis of the performance achieved by the fuzzy 
and non‑fuzzy QuBiLS‑MIDAS descriptors
To carry out this analysis, the predictive abilities 

(

Q2
ext

)

 
achieved by the models built with the fuzzy and non-
fuzzy QuBiLS-MIDAS 3D-MDs on each dataset were 
accounted for. Figure  6 shows the boxplot graphic cor-
responding to the Q2

ext values obtained. Additional file 9 
shows the descriptive statistics calculated. On one hand, 
it can be firstly seen that there are not outlier predictive 
abilities. In addition, it can be seen that the lowest Q2

ext 
attained by the fuzzy models is better than the lowest 
Q2
ext attained by the non-fuzzy models; while the highest 

outcomes are comparable. It can also be observed that 
the Q2

ext values obtained with the fuzzy models are dis-
tributed almost symmetrically (skewness = 0.095); while 
the Q2

ext values obtained with the non-fuzzy models are 
skewed to the right (skewness = 0.727). These results sug-
gest that the models based on the fuzzy QuBiLS-MIDAS 
3D-MDs tend to have a better behavior.

On the other hand, according to the results obtained 
from the Wilcoxon signed-rank test (pvalue ≈ 0.008) 
(Additional file 10), it can be statistically stated that the 
Q2
ext values achieved by the fuzzy models differ to the 

ones achieved by the non-fuzzy models. In this sense, if 
the performances achieved by the models built on each 
dataset are examined (Additional file 8), it can be appre-
ciated that for the ACHE dataset, the fuzzy model built 
presents the best progress of all, for a 34.58% of improve-
ment with regard to the non-fuzzy model. Moreover, 
as for the THR, THERM, ACE, DHFR, COX2 and BZR 
datasets, the respective fuzzy models improve their pre-
dictive abilities a 13.11%, 11.99%, 8.42%, 5.65%, 5.05% and 
3.41% with respect to the ones achieved by the non-fuzzy 
models. Only in the GPB dataset, the improvement of the 
fuzzy model is insignificant (0.08%). Therefore, in a gen-
eral sense, it can be concluded that the Choquet integral-
based fuzzy 2D/3D-MDs calculation from LOVIs/LOEIs 
constitutes a prominent alternative to encode relevant 
chemical information.

Conclusions
General approaches to compute fuzzy 2D/3D-MDs from 
the contribution of each atom (LOVIs) or bond (LOEIs) 
within a molecule were introduced, by using the Cho-
quet integral as fuzzy aggregation operator. The Choquet 
integral is rather different from the other norm-, mean- 
and statistic-based (non-fuzzy) operators used to date. It 
performs a reordering step to fuse according to the mag-
nitude of the criteria and, in addition, it considers the 
interrelation among criteria by using a fuzzy measure. In 
this work, the fuzzy Lmδ-measure was used to compute 

Fig. 5  Bar graphics representing: a the number of fuzzy QuBiLS-MIDAS 3D-MDs for a low and a high synergism among atomic contributions 
included into the models built on each dataset used; and b the L-parameter average value for the fuzzy QuBiLS-MIDAS 3D-MDs included in the 
models built on each dataset used
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the importance of the interrelation among atom/bond 
contributions (LOVIs/LOEIs). In this way, fuzzy descrip-
tors can be derived from traditional or recent descrip-
tors; e.g. fuzzy Balaban-like indices.

The feasibility of this proposal was assessed using the 
QuBiLS-MIDAS descriptors, by performing modeling 
studies on eight chemical datasets. It was demonstrated 
that with the Choquet integral-based descriptors, models 
with better predictive power can be built, if compared to 
the models built with the descriptors computed from the 
other non-fuzzy operators. These outcomes were statisti-
cally corroborated using the Wilcoxon signed-rank test. 
All in all, it can be concluded that the use of the Cho-
quet integral as a fuzzy aggregation operator constitutes 
a prominent way to extract useful structural informa-
tion of the molecules and, in this way, enhance the mod-
eling capacity of several existing molecular descriptors in 
ADME-Tox and pharmacological endpoints.
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