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modeling laboratory R package for fitting 
and assessing machine learning models
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Abstract 

The goal of chemmodlab is to streamline the fitting and assessment pipeline for many machine learning models in 
R, making it easy for researchers to compare the utility of these models. While focused on implementing methods for 
model fitting and assessment that have been accepted by experts in the cheminformatics field, all of the methods in 
chemmodlab have broad utility for the machine learning community. chemmodlab contains several assessment utili‑
ties, including a plotting function that constructs accumulation curves and a function that computes many perfor‑
mance measures. The most novel feature of chemmodlab is the ease with which statistically significant performance 
differences for many machine learning models is presented by means of the multiple comparisons similarity plot. 
Differences are assessed using repeated k‑fold cross validation, where blocking increases precision and multiplicity 
adjustments are applied. chemmodlab is freely available on CRAN at https ://cran.r‑proje ct.org/web/packa ges/chemm 
odlab /index .html.
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Introduction
It is now commonplace for researchers across a variety 
of fields to fit machine learning models on complex data 
to make predictions. The complexity of these data (e.g., 
large number of features, non-linear relationships with 
the response) often means it is difficult to determine 
a priori what machine learning modeling routine and 
what descriptors (also known as features, predictors, or 
covariates) will result in the best performance. A com-
mon approach to this problem is to fit many descriptor 
set and modeling routine (D–M) combinations, and then 
compute measures of prediction performance for held 
out data to choose a D–M combination by assessing rela-
tive performance.

Sometimes in a particular domain, there are only a 
few modeling routines that are widely accepted, and 
researchers tend to use these methods exclusively. Unfor-
tunately, this will not always work well for every data 
set and researchers might learn from other fields where 
different modeling methods tend to be more successful. 
There are a myriad of modeling methods implemented in 
R that may be worthwhile for researchers to try (see [1] 
and [2] for an overview of these methods). However, the 
lack of knowledge of the syntactic minutiae and statisti-
cal methodology that is required to fit and compare dif-
ferent modeling routines in R often prohibits users from 
attempting them.

chemmodlab [3] currently implements 13 differ-
ent machine learning models. Fitting the entire suite of 
models requires little user intervention—all models are 
fit with a single command. Sensible defaults for tuning 
parameters are set automatically, but users may also tune 
models outside of chemmodlab (in caret [4], for example) 
and then manually set the tuning parameters.
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While the R package caret has a similar goal, the fit-
ting of many D–M combinations and the determination 
of statistically significant performance differences still 
requires some knowledge of R programming and statisti-
cal methods. chemmodlab further automates this process 
and provides several plotting utilities for easily assessing 
the results, lowering the barrier of entry for researchers 
unfamiliar with these methods.

The R package RRegrs [5] automates the process of 
fitting and assessing many cheminformatics regression 
models. Their pipeline also performs automated descrip-
tor preprocessing, repeated cross validation, assessment 
of applicability domain, and provides tools for visualiz-
ing model performance measures. The R package camb 
[6] provides an alternative cheminformatics regression 
modeling pipeline. Some of the novel contributions of 
this package are tools for descriptor calculation, explora-
tory data analysis, and ensemble modeling. chemmodlab 
complements these packages by providing novel meth-
ods for model fitting and assessment in both regression 
and classification frameworks. We have placed particular 
emphasis on implementing classification model assess-
ment methods that directly address the aspects of predic-
tion performance that are of interest in cheminformatics 
(e.g., initial enhancement, accumulation curves). Again, 
the most novel aspect of chemmodlab is the means by 
which statistically significant differences in these perfor-
mance measures are computed and visualized for many 
D–M combinations.

chemmodlab may also be useful in non-chemical appli-
cations, and we regard this to be a strength rather than a 
weakness. This package, however, was directly motivated 
by a need to assess machine learning models that relate 
chemical structure to observed endpoints using criteria 
relevant for, and catered to, cheminformatic applications. 
It is availability of these assessment criteria that uniquely 
defines this package as cheminformatic.

One motivation for this package was the observa-
tion that once performance measures are computed 
for several different D–M combinations, researchers 
often do not consider the randomness and uncertainty 
involved in obtaining the observed performance meas-
ures. If one model has prediction performance that is 
marginally better than another, it is tempting to claim 
improvement. However, very slight changes in the origi-
nal data set or in how assessment was conducted could 
have led to a reversal of observed performance. By 
accounting for the inherent uncertainty in data collec-
tion and model assessment, a stronger and more defen-
sible claim can be made about differences in prediction 
performance. For example, a carefully constructed con-
fidence interval that does not contain zero for the dif-
ference in performance measures between two D–M 

combinations would reliably identify significant differ-
ences between the two D–M combinations, even after 
accounting for uncertainty.

Figure  1 shows an example of this. Many classification 
models have been fit to two different descriptor sets to 
predict a binary response variable. There are a total of 18 
D–M combinations to be compared. The D–M combina-
tions were assessed using repeated tenfold cross validation 
and the area under the receiver operating characteristic 
curve (AUC) performance measure. A multiple compari-
sons similarity (MCS) plot visualizes the differences in 
model performance (Fig.  1). The descriptor sets will be 
discussed in detail later on, but for now, it is sufficient to 
say that the Pharmacophore descriptors are far more inter-
pretable than the Burden Number descriptors. The Burden 
Numbers-Random Forest (RF) combination is the best 
performing D–M combination (AUC: .76). However, the 
Pharmacophore-Least Angle Regression (LAR) combina-
tion (AUC: .71) involves a highly interpretable linear model 
with a subset of the Pharmacophore descriptors selected. 
This .05 difference is small and without additional inves-
tigations it is unclear whether it is statistically significant.

By performing multiple cross validation splits and 
using these splits as a blocking factor to improve preci-
sion, chemmodlab is able to test for statistical significance 
of performance measure differences and visualize these 
results in a manner that can be easily interpreted by the 
user. The question this addresses is: if the experiment were 
repeated with changes to the training and/or test set, would 
the best performing model still be the best? Again referring 
to Fig. 1, the MCS plot indicates that a significance level of 
0.01 leads to the conclusion that the two aforementioned 
D–M combinations (Burden Numbers-RF, and Pharmaco-
phores-LAR) are equivalent, and hence the more interpret-
able model may be selected for further investigations. This 
inference has been multiplicity-adjusted for the 

(

18

2

)

= 153 
pairwise comparisons that were made.

chemmodlab is a re-creation and extension of the for-
mer ChemModLab webserver [7]. Some notable exten-
sions to the previous software are:

• chemmodlab has been redesigned so that it is usable 
in the R environment. Models are fit with a simple 
command, producing an object that can be easily 
passed to plotting and performance assessment func-
tions;

• much more control over the model fitting and assess-
ment functions. There are now many arguments for 
customizing the procedures and the output they pro-
vide, including the appearance of the plots generated. 
As an example, chemmodlab now has support for 
user supplied tuning parameters so that models can 
be better fit to the data at hand;
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• many new model performance measures for classifi-
cation and regression have been implemented;

• and functions for computing molecular descriptors 
and applicability domain have been added;

chemmodlab is organized into two successive compo-
nents: (1) model fitting, which is primarily conducted via 
function ModelTrain, and (2) model assessment, which is 
conducted via function CombineSplits.

Results and discussion
Preparing the data
We will use a cheminformatics data set to illustrate a 
typical analysis pipeline in chemmodlab. Our goal is to 

build machine learning models that relate a chemical’s 
structure to an observed endpoint. These models are 
generally referred to as quantitative structure–activity 
relationship (QSAR) models. See [8] for an excellent 
review of the ways in which these models have played 
a crucial role in the drug discovery process. Often the 
“endpoint” (or response variable) is a measure of a com-
pound’s biological activity, which may be either binary, 
indicating active/inactive, or a continuous measure, 
e.g., representing binding affinity for a target protein. 
Chemical descriptors represent various levels of organ-
ization of a chemical’s structure. See [8] for an overview 
of commonly used chemical descriptors.

The data we will analyze is from a cytotoxicity assay 
conducted by the Scripps Research Institute Molecular 
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 <−Method
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         p−val<.01;  0.01 ≤ α
0.01 ≤ p−val<.05;  0.05 ≤ α
0.05 ≤ p−val<.10;    0.1 ≤ α

0.1 ≤ p−val<.90;    0.9 ≤ α
0.9 ≤ p−val<1

Multiplicity−adjusted p−values;
QSAR models different at level α

Fig. 1 MCS plot using area under the receiver operating characteristic curve as the performance measure
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Screening Center. There are 3,311 compounds, 50 of 
which are active. Visit the website [9] for more details.

For completeness, the preprocessing of the data set 
analyzed will be shown. First, the response variable and 
molecule IDs are read in from file.

aid364 <- read.csv("AID_364_response.csv")
head(aid364)

## CID Outcome
## 1 5388992 1
## 2 5388983 1
## 3 663143 1
## 4 10607 1
## 5 5388972 1
## 6 11970251 1

Next, two descriptor sets are added to the data frame. 
Both of these sets were computed using the software 
PowerMV—see [10] for more information. The first set 
of 24 continuous descriptors are a modification of the 
Burden number descriptors [11].

desc.lengths <- c()
d <- read.csv("BurdenNumbers.csv")
head(d[, 1:5])

## Row WBN_GC_L_0.25 WBN_GC_H_0.25 WBN_GC_L_0.50 WBN_GC_H_0.50
## 1 5388992 -2.40010 1.98339 -2.52864 2.50835
## 2 5388983 -2.40010 1.98240 -2.52868 2.50398
## 3 663143 -2.41650 1.32890 -2.53910 2.05778
## 4 10607 -2.38337 2.17677 -2.52643 2.33232
## 5 5388972 -2.29039 1.97468 -2.41743 2.46177
## 6 11970251 -2.29039 2.22488 -2.41748 2.56161

aid364 <- merge(aid364, d, by.x = "CID", by.y = "Row")
desc.lengths <- c(desc.lengths, ncol(d[-1]))

The number of descriptors in each descriptor set are 
also stored, as this information will be used to parse the 
data frame later on. The second descriptor set contains 
147 binary descriptors, indicating the presence/absence 
of “pharmacophore” features, described in more detail in 
[10].

d <- read.csv("Pharmacophores.csv")
head(d[, 1:6])

## Row NEG_01_NEG NEG_02_NEG NEG_03_NEG NEG_04_NEG NEG_05_NEG
## 1 5388992 0 0 0 0 0
## 2 5388983 0 0 0 0 0
## 3 663143 0 0 0 0 0
## 4 10607 0 0 0 0 0
## 5 5388972 0 0 0 0 0
## 6 11970251 0 0 0 0 0

aid364 <- merge(aid364, d, by.x = "CID", by.y = "Row")
desc.lengths <- c(desc.lengths, ncol(d[-1]))

A subset of this data set, containing all 50 active com-
pounds and an additional 450 compounds, is included in 
chemmodlab.

Model fitting: the ModelTrain function
For the model fitting component of chemmodlab, the 
primary function is ModelTrain, which fits a series of 
machine learning models to a data set.

Function ModelTrain takes as input a data frame with 
an (optional) ID column, a response column, and descrip-
tor columns. We have processed the aid364 data set so 
that it follows this format. The specification of an ID col-
umn allows users to easily match response predictions to 
their observation IDs in the chemmodlab output.

chemmodlab can currently handle responses that are 
continuous or binary (represented as a numeric vector 
with 0 or 1 values). Assessment assumes preference for 
large response values. Users can specify which columns 
in the data frame they would like to consider as dis-
tinct descriptor sets. At the moment, the response and 
descriptors may only be binary or continuous, though we 
are currently working on support for categorical variables 
of more than two levels.

For our example, we previously stored the number of 
descriptors in each descriptor set in an integer vector 
named desc.lengths, with the ordering of the integers 
matching the order of the descriptor sets in aid364:

desc.lengths

## [1] 24 147

Users can also name the descriptor sets by provid-
ing a character vector to the des.names argument. If this 
character vector is specified, all of ModelTrain output 
and downstream chemmodlab functions will name the 
descriptor sets accordingly:
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des.names = c("BurdenNumbers", "Pharmacophores")

The specification of distinct descriptor sets in a data 
frame is illustrated in the following call to ModelTrain:

cml <- ModelTrain(d = aid364, ids = TRUE, xcol.lengths = desc.lengths,
des.names = des.names, nfolds = 10, nsplits = 3,
seed.in = c(11111, 22222, 33333))

The nsplits argument sets the number of splits to use 
for repeated validation and nfolds sets the number of 
folds to use for each cross validation split. The default 
values have been used. seed.in sets the seeds used to 
randomly assign folds to observations for each repeated 
cross-validation split. If NA, the first seed will be 11111, 
the second will be 22222, and so on.

If the descriptor set columns are not identified by the 
user, ModelTrain assumes there is one descriptor set, 
namely all columns in d except the response column 
and optional ID column. Alternatively, the argument 
xcols may be used to explicitly specify the columns cor-
responding to each descriptor set. Also, if it is more 
convenient, descriptor sets can be provided as a list 
of matrices with the argument x and the response as a 
numeric vector with the argument y.

Descriptor set creation
In the event that a user has not precalculated descrip-
tors, chemmodlab can compute descriptor sets for use in 
model building, based on chemical structures provided 
by the user. ModelTrain accepts molecule objects that 
are created by the package rcdk [12] that supports most 
of the widely used chemical file formats (SMILES, SDF, 
InChI, Mol2, CML, etc.). When molecules are provided 
to ModelTrain, the names of predefined descriptor sets 
and/or fingerprints must also be provided. ModelTrain 
then calls either rcdk or the package fingerprint [13] to 
compute the requested descriptors sets for the molecules 
provided. rcdk computes these descriptors by interfacing 
with the chemistry development kit (CDK) [14, 15].

We use the bpdata data set [16, 17] provided by the 
rcdk package to illustrate. The first column of bpdata 
contains 277 chemical structures in SMILES format, with 
a majority of the molecules being alkanes and substituted 
alkanes. The second column of bpdata contains boiling 
points, the endpoint we would like to predict.

library(rcdk)
data(bpdata)
mols <- parse.smiles(bpdata[, 1])
bp <- bpdata[, 2]

ModelTrain may now be given the molecule object, 
mols, along with a list of molecular descriptor categories 
to be generated by CDK:

cml <- ModelTrain(descriptors = c("topological", "electronic"),
y = bp, mols = mols)

Users may also provide any of the 11 fingerprint types 
computed by the fingerprint package [13].

cml <- ModelTrain(descriptors = c("fp.maccs", "fp.standard"),
y = bp, mols = mols)

Model fitting: chemmodlab models
Currently, 13 different machine learning models are 
implemented in chemmodlab. The details of each mod-
eling method, including descriptions of the default 
parameters, are provided at https ://jrash .githu b.io/
chemm odlab /. Briefly, the current models are: elastic 
net (ENet), k-nearest neighbors (KNN), lasso (Lasso), 
least angle regression (LAR), neural networks (NNet), 
partial least squares linear discriminant analysis 
(PLSLDA), partial least squares (PLS), principal com-
ponents regression (PCR), ridge regression (Ridge), 
random forest (RF), two implementations of recursive 
partitioning (Tree, RPart), and support vector machines 
(SVM).

These models have been carefully chosen to provide 
good coverage of the spectrum of model flexibility and 
interpretability available for models implemented in R. 
Typically, models that are more flexible (e.g., NNet) are 
capable of fitting more complex relationships between 
predictors and response, but suffer in terms of model 
interpretability relative to other less flexible models (e.g., 
Lasso). By testing for significant differences between 
model performance measures, we hope to find interpret-
able models whose performance is not significantly dif-
ferent from (i.e., plausibly equivalent to) the best model, 
suggesting a model that provides an understanding of the 

https://jrash.github.io/chemmodlab/
https://jrash.github.io/chemmodlab/
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relationship between the predictors and response that 
exceeds mere prediction.

Some modeling strategies may not be suitable for both 
binary and continuous responses. Six of the models have 
implementations in R that directly support both binary 
and continuous responses (Tree, RPart, RF, KNN, NNet, 
and SVM). However, six methods (Lasso, LAR, Ridge, 
ENet, PCR, and PLS) assume that responses have equal 
variances and normal distributions. This assumption 
is often reasonable for continuous responses, but may 
be suspect if the response is binary. For these latter six 
methods, binary responses are treated as continuous, 
resulting in continuous response predictions that are 
not restricted to range between 0 and 1. A threshold can 
then be applied to obtain a binary predicted response. 
The model assessment functions discussed later allow 
users to select this threshold. Finally, PLSLDA cannot be 
applied to a continuous response, but if the user wishes 
to analyze this type of data, a threshold value may be 
used to convert a continuous response to a binary one.

In cheminformatics applications, descriptors often 
show strong multicollinearity. Since this is often prob-
lematic for machine learning models, we have specifi-
cally included several models in chemmodlab that are 
known to be resilient to multicollinearity (e.g., PCR and 
PLS). However, with the exception of PCR, which uti-
lizes uncorrelated linear combinations of the original 
descriptors and is a highly interpretable model, models 
for which prediction is not considerably affected by mul-
ticollinearity do suffer in terms of model interpretability. 
For example, when one variable of a set of highly posi-
tively correlated variables is selected for inclusion in the 
Lasso linear model, the selection of the variable is essen-
tially arbitrary. Fitting the same Lasso model to a slightly 
different data set would likely result in the selection of a 
different variable from the same set.

chemmodlab has been designed in a way that it is eas-
ily extensible to new machine learning modeling meth-
ods, and new modeling methods will be added as the 
authors identify those that have broad utility to our 
users. Support for other models can be requested here: 
https ://githu b.com/jrash /chemm odlab /issue s.

chemmodlab automatically performs data preproc-
essing before fitting the models that require it (e.g., 
centering and scaling variables before PCR), so the 
user need not worry about preprocessing of descriptors 
prior to model fitting.

Model fitting: specifying model parameters with user.
params
Sensible default values are selected for each tunable 
model parameter, however users may set any parameter 
manually using the user.params argument.

MakeModelDefaults is a convenience function that 
makes a list containing the default parameters for all 
models implemented in ModelTrain. Users may set any 
parameter manually by generating a list with this func-
tion and modifying the parameters assigned to each 
modeling method:

params <- MakeModelDefaults(n = nrow(aid364),
p = ncol(aid364[, -c(1, 2)]), classify = TRUE, nfolds = 10)

params[1:3]

## $NNet
## size decay
## 1 2 0
##
## $PCR
## NULL
##
## $ENet
## lambda
## 1 1

params$NNet$size <- 10
params[1:3]

## $NNet
## size decay
## 1 10 0
##
## $PCR
## NULL
##
## $ENet
## lambda
## 1 1

This list can then be provided to the user.params argu-
ment to assign the tuning parameter values used by 
ModelTrain:

https://github.com/jrash/chemmodlab/issues
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cml <- ModelTrain(USArrests, models = "NNet", nsplits = 3,
user.params = params)

Model assessment: repeated k‑fold cross‑validation
For each descriptor set, ModelTrain performs repeated 
k-fold cross validation for the selected set of machine 
learning models.

For each cross-validation split, observations are ran-
domly assigned to one of k folds, splitting the data set 
into k blocks that are approximately equal in size. The 
number of cross validation folds (k) is set with the nfolds 
argument. Users may also use the seed.in argument to set 
the seed for each split, so that the ModelTrain results are 
reproducible. Each block is iteratively held out as a test 
set, while the remaining k − 1 blocks are used to train 
each D–M combination. Predictions for the held out test 
set are then made with the resulting models.

Many resampling methods for assessing model perfor-
mance involve partitioning a data set into a training set 
and test set. With these methods, predictions are made 
on observations that are not involved in training. This 
results in model performance measures that are less 
likely to reward over-fitting.

Since performance measures can be highly variable [18] 
depending on which observations are held out and which 
are involved in training, the repetition of this procedure 
during k-fold cross validation and the averaging of the 
performance measures often result in a more accurate 
estimation of model performance than a one-time split.

Finding the right number of cross-validation folds 
for the estimation of a performance measure involves 
consideration of the bias-variance trade off. The mean 
squared error of an estimator, a measure of how accu-
rately an estimator estimates the true value of a param-
eter, can be partitioned into two components, bias and 
variance:

where θ̂ is the estimator of the true performance meas-
ure, θ , for the population of test sets similar to the data 
set under consideration. The first component is squared 
bias and the second is variance. An increase in either the 
bias or variance will decrease the quality of an estimator. 
When a resampling method substantially over- or under-
estimates a performance measure on average, it is said to 
have high bias. Bias is often related to size of the data set 
that is held out as a test set [18]. The smaller the number 
of folds in k-fold cross validation, the more observations 
are held out in each fold, and the less observations that 
are used to train a model. Fewer observations in a train-
ing set means that a model is likely to perform worse, 
and model predictions tend to miss the target. Thus, 

E[(θ̂ − θ)2] = (E[θ̂ ] − θ)2 + Var[θ̂ ],

performing k-fold cross validation with two folds, where 
there is 50% of the data in each fold, would likely result in 
high bias.

In contrast, a performance measure estimator suffers 
from high variance when its estimate varies considerably 
when there are slight changes made to the training and/
or test set. Leave-One-Out-Cross-Validation (LOOCV) 
refers to k-fold cross validation with k equal to n , the 
number of observations. LOOCV often suffers from high 
variance [18]. This is due to the fact that the training set 
changes very little with each iteration of LOOCV. Thus, 
performance measure estimates tend be highly positively 
correlated. The mean of a highly correlated variable has 
higher variance than an uncorrelated one. Decreasing 
the number of folds tends to decrease the correlation of 
performance measure estimates and lower the variance. 
Therefore, the ideal number of folds to use for cross vali-
dation is often somewhere between 2 and n . The number 
of folds often used for k-fold cross validation are 5 and 
10, as these values frequently provide a good balance 
between bias and variance.

Several studies [19–21] have shown that repeated cross 
validation can reduce the variance for a k-fold cross vali-
dation procedure with low bias, achieving a more accu-
rate estimation of model performance. When k-fold cross 
validation is repeated in chemmodlab, multiple iterations 
of random fold assignment, or “splits”, are performed. 
Because the observed performance measures may vary 
greatly depending on the definition of folds during k-fold 
cross validation, all models are built using the same fold 
assignment, thus using fold definition as a “blocking 
factor” in the assessment investigation. This process is 
repeated for multiple k-fold cross validation runs. The 
user may choose the number of these splits with the 
nsplit argument.

There are a myriad of potential model violations that 
may lead to over- or under-estimation of model perfor-
mance measures. These include but are not limited to: 
a misspecification of the structural form of the model 
(e.g., more descriptors, or a function of the descrip-
tors should be used), correlation between responses, 
measurement error in predictors, non-constant vari-
ance in the response, collinearity between descriptors, 
and non-normality of the response. Also, the types of 
model violations that occur in the training and test sets 
generated by k-fold cross validation may vary depend-
ing on how the data is split, resulting in over- or under-
estimation of a performance measure depending on how 
the data was split. Since it is implausible to account for 
all model violations, our approach is to treat the effect of 
model violation as a nuisance variable. By doing several 
random splits and averaging the k-fold cross validated 
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performance measures, we “average out” the model viola-
tion effect on the performance measure estimate.

Some authors [22–24] argue that external validation is 
necessary to determine the predictive power of a QSAR 
model, and that cross validation is not sufficient to assess 
prediction performance. First, we would like to be care-
ful not to conflate cross validation prediction perfor-
mance and training set prediction performance. Training 
set prediction performance assesses predictions on data 
used in model training (also referred to as model building 
or fitting), and this will often be overly optimistic. Cross 
validation provides a less biased estimate of prediction 
performance on new data [25, 26]. This is because in each 
iteration, cross validation holds out a fold of data, trains 
the model on the remaining data, and makes predictions 
on the held out fold; in this sense, cross validation does 
use external data for assessment of predictive perfor-
mance. In order for cross validation to provide an accu-
rate estimate, it is essential that every step of a multistep 
modeling procedure is performed within the cross valida-
tion procedure. This means that the “held out” folds must 
be removed before any variable selection or data filtering 
is performed. See [1] for a careful discussion.

There are numerous reasons why k-fold cross validated 
model performance measures may not agree with those 
obtained by external validation, as was observed in [22]. 
As previously discussed, estimates of model performance 
measures from a single split in the data often suffer from 
high variance, resulting in a poor estimate of the true 
prediction performance of a model on new data, par-
ticularly when the data sets are small [27]. This was the 
case in [22], but chemmodlab can ameliorate this because 
multiple splits are run by default.

Another common cause of “over-confident” k-fold 
cross validation is that variable selection is not per-
formed within the cross validation process. This will lead 
to overfitting and over-confident performance measures 
[27, 28]. This may, in part, explain the over-confident 
q2 values observed in [22]. The task of variable selec-
tion (i..e., identification of the most important descrip-
tors) often follows the task of model selection. Strictly 
speaking, chemmodlab is focused on the task of model 
selection, but its strength in identifying statistically 
equivalent models can also provide guidance in variable 
selection. For example, chemmodlab could conclude sta-
tistical equivalence between D–M combination A and 
D–M combination B, where A has far fewer and more 
interpretable descriptors than B. The practitioner would 
likely choose to use D–M combination A, thus simulta-
neously conducting model selection and variable selec-
tion. Additionally, some of the models in chemmodlab 

automatically perform variable selection (e.g., Lasso, 
ENet). Most importantly, chemmodlab carefully imbeds 
the entire selection process within repeated cross valida-
tion, so variable selection happening outside of the cross 
validation process is not an issue.

The assumptions of k-fold cross validation may also 
be violated. When building prediction models, all meth-
ods assume that the training data is representative of 
real-world data; if this assumption fails, all hope is lost. 
Another assumption of k-fold cross validation is that 
excluded compounds are independent of compounds 
that remain in the set. Although this is often a reasonable 
assumption, replication and pseudo-replication could 
invalidate this assumption. QSAR models are often devel-
oped for compounds in an analog series, where blocks 
of compounds have highly similar descriptor values. 
Xu et  al. [29] demonstrate dramatic effects of properly 
addressing this assumption by shifting from leave-one-
out cross validation (which suggested optimistic model 
performance) to leave-one-solute-out cross validation 
(which removed dependencies and consequently was 
more similar to results from external validation). To 
incorporate the Xu et al. [29] adjustments, the user would 
need to provide more input to chemmodlab for describ-
ing the experimental setup, and we are considering a 
future package update to handle this. In the meantime, 
our multiple runs of k-fold cross validation may suffi-
ciently break the dependency patterns, thus indirectly 
correcting for a possibly invalid assumption.

The ideal scenario for assessing predictive performance 
of a model is to have a very large training set that may 
be used for internal validation, plus several large sets that 
may be used for external validation. Because resources 
often make this impossible, the use of an effective and 
efficient internal validation strategy is critical [1]. k-fold 
cross validation has been shown to be both an effective 
and efficient method for assessing predictive perfor-
mance of models [25, 26, 30–34].

For external validation, it would be ideal to have a large 
independently collected data set to assess how well a pre-
dictive model generalizes to data collected under differ-
ent conditions (e.g., collected from different labs or under 
different experimental conditions) [35]. However, a data 
set like this is often not available. Often, what researchers 
call external validation is equivalent to a single random 
split of a small data set. In this scenario, repeated k-fold 
cross validation will likely provide users with a more 
accurate estimate of model performance. As explained 
previously, k-fold cross validation averages performance 
measures from several splits in the data, resulting in a 
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reduction of variance of the model performance estimate 
[34].

We will see later how, in addition to increased accuracy 
in estimation of performance measures, repeated cross 
validation allows one to measure the standard error of 
model performance measures, quantifying how sensitive 
performance measures are to fold assignments.

Model assessment: accumulation curves
plot.chemmodlab takes a chemmodlab object output by 
the ModelTrain function and creates a series of accumu-
lation curve plots for assessing model performance.

The accumulation curve (or hit enrichment curve) for 
binary responses shows the number of positives versus 
the number of “tests” performed, where testing order is 
determined by the k-fold cross validated predicted prob-
ability of a response being positive. The max.select argu-
ment sets the maximum number of tests to plot for the 
accumulation curves. By default, 

⌊

min(300, n
4
)
⌋

 is used, 
where n is the number of observations. This prioritizes 
finding actives in a relatively small number of tests.

Two series of plots are constructed. In the “descrip-
tor” series, there is one plot per cross validation split and 
descriptor set combination; the accumulation curves for 
each modeling method are plotted together so that they 
can be compared. In the “methods” plot series, there is 
one plot per cross validation split and modeling method 
combination; the accumulation curves for each descrip-
tor set are plotted together so that they can be compared.

By default, a large number of accumulation curve plots 
are constructed. The splits argument may be used to only 
plot a subset of splits. The meths argument may be used 
to only plot a subset of methods in the “methods” series. 
The series argument specifies whether the “methods” 
series of plots, the “descriptors” series of plots, or both 
are generated.

plot(cml, splits = 1, series = "descriptors")

plot(cml, splits = 1, meths = c("SVM", "RF"), series = "methods")

An “ideal” curve is plotted on these graphs to demon-
strate the accumulation curve of a model that correctly 
identifies the p positives in the first p tests. Thus, at m 
tests, models with accumulation curves that are nearest 
to the ideal curve are preferable. Also, if an accumula-
tion curve has a slope that is parallel to the ideal curve 
for an interval of tests, the model has ideal performance 
for that interval. A “random” curve shows the accumula-
tion curve if the testing order were decided at random. At 
m tests, models with accumulation curves that are below 

the random curve have worse performance than random 
chance. Models that were fit as classification models (see 
“Model fitting: chemmodlab models”) are represented 
as solid lines with different colors and shapes specifying 
the modeling method. Models that were fit as continuous 
models and then thresholded are differentiated by line 
type and color.

In Fig. 2, we have plotted the accumulation curves for 
the first cross validation split, generating two plots in the 
“descriptors” series, one for each descriptor set. Compar-
ing the accumulation curves for models utilizing Burden 
Number descriptors, SVM and RF have much better hit 
rates than the other models for the initial 100 compounds 
prioritized for testing. However, if more than 100 tests 
were to be performed, the KNN method would have the 
best performance. Intersections between model accumu-
lation curves indicate the number of tests at which one 
model’s performance overtakes another’s. Considering 
the Pharmacophore fingerprints, the RF method has ideal 
performance initially, but is eventually superceded by the 
KNN method, as was the case for the Burden Number 
descriptors.

The next series of plots (Fig. 3) is the “methods” series. 
When the Split 1 descriptor set performances are com-
pared for the SVM method, the Pharmacophore finger-
prints have considerably worse performance than the 
Burden Numbers. This is sensible as SVM performance 
often suffers in high dimensional spaces. Comparing 
descriptor set performances for the RF method, the Bur-
den Number descriptors have slightly improved perfor-
mance over the Pharmacophore fingerprints for all but 
the initial few tests. However, at any number of tests at 
which Burden Numbers outperform Pharmacophores, 
Burden Numbers only provide a few more hits. There-
fore, it is plausible that if this experiment were performed 
again with a different, but similar data set, Pharmacoph-
ores would perform equally as well as Burden Numbers. 
One may be concerned about the statistical significance 
of this improved performance. This observation has 
motivated the construction of the CombineSplits func-
tion, which rigorously tests for statistically significant 
differences.

The accumulation curve has also been extended to 
continuous responses. In QSAR models, a continuous 
response is often a measure of binding affinity (e.g., pKi) 
where a large positive value is preferable. Therefore, in 
these accumulation curves, testing order is determined 
by ordering the predicted response in decreasing order. 
The response is then accumulated so that 

∑m
i=1 yi is the 

sum of the y over the first m tests. The binary response 
accumulation curve is a special case of this.
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Model assessment: multiple comparisons similarity plot
CombineSplits evaluates a specified performance meas-
ure across all splits. This function assesses how sensi-
tive performance measures are to fold assignments, or 
small changes to the training and test sets. Intuitively, 
this assesses how much a performance measure may vary 
if predictions were made on a test set that is similar to 
the data set analyzed. Multiplicity-adjusted statistical 
tests are used to determine the best performing D–M 
combination.

As input, CombineSplits takes a chemmodlab object 
produced by the ModelTrain function. Combine-
Splits can use many different performance measures 
to evaluate binary classification model performance 
(namely: error rate, sensitivity, specificity, area under 
the receiver operating characteristic curve, positive pre-
dictive value also known as precision, F1 measure, and 
initial enhancement). By default, CombineSplits uses 

initial enhancement proposed by [36] to assess model 
performance. Initial enhancement is also known as the 
hit enrichment factor in the cheminformatics literature. 
Initial enhancement at m tests is the hit rate—the frac-
tion of accumulated positives at m tests—divided by 
the proportion of positives in the entire data set. This is 
a measure of a model’s hit rate fold improvement over 
random chance. A desirable model will have an initial 
enhancement much larger than one. A typical number of 
tests for initial enhancement is m = 300.

CombineSplits(cml)

## Analysis of Variance on: ’enhancement’
## Using factors: Split and Descriptor/Method combination
## Source DF SS MS F p-value
## Model 19 72.5318 3.8175 22.8131 <.0001
## Error 34 5.6894 0.1673
## Total 53 78.2212
## R-Square Coef Var Root MSE Mean
## 0.9273 12.9890 0.4091 3.1494
## Source DF SS MS F p-value
## Split 2 1.463 0.732 4.372 0.0194
## Desc/Meth 17 71.069 4.181 24.983 <.0001

An advantage of performing repeated k-fold cross vali-
dation with ModelTrain is that the output can be viewed 
as a designed experiment with two factors: D–M com-
bination and split (fold assignment). Therefore, Com-
bineSplits performs an analysis of variance (ANOVA) to 
identify significant differences between the mean per-
formance measures according to factor levels. The linear 
model corresponding to this ANOVA is:

where αi corresponds to ith level of the split factor and 
βj to the jth level of the D–M combination factor. From 
the ANOVA table in this example, the split main effect 
is marginally significant (p-value of 0.0194), indicating 
that there is a significant difference between mean initial 
enhancement across splits, averaging over D–M combi-
nations. In other words, some splits result in significantly 
larger initial enhancement values than other splits. This 
endorses our decision to treat splits as a blocking fac-
tor. The D–M combination main effect is highly signifi-
cant (p-value ≤  0.0001). The “Error MS” estimates the 
variance in the performance measures within the groups 
corresponding to each combination of factor levels. The 
“Model MS” estimates the variance between groups.

The multiple comparisons similarity plot in Fig. 4 shows 
the results for tests of significance among all pairwise dif-
ferences of mean model performance measures. Along 
both the x- and y-axes, D–M combinations are ordered 
from best to worst performance measure. Because there 
can potentially be a large number of methods (18 in the 

Yij = µ+ αi + βj + ǫij ,
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example leading to 
(

18

2

)

= 153 pairwise comparisons), an 
adjustment for multiple testing is necessary. We use the 
Tukey–Kramer multiple comparisons procedure (see [37] 
and [38]).

In Fig.  4, Burden Numbers-KNN, Burden Numbers-
RF, Pharmacophore-KNN, and Burden Numbers-SVM 
are the top performing models. We conclude that for the 
population of compounds that are similar to the data set 
analyzed, the initial enhancement of these four models 
is plausibly the same. The intuition is that if predictions 
were made on a new test set that is similar to the data set 
under consideration, these four models would plausibly 
have very similar prediction performance.

There are different characteristics of the top perform-
ing models that may lead to a researcher choosing one 
over the other. While KNN is not the most interpret-
able model, there are fast heuristic KNN regression 
methods implemented in R such as FNN [39] that make 
predicting on large data sets quite manageable. RF has a 

time complexity comparable to the fast heuristic KNN, 
yet also results in a more interpretable model. Meas-
ures of variable importance can be computed for RF, 
which allow users to identify the subset of variables 
that are most important for prediction. The Burden 
Numbers-SVM model is the least interpretable of the 
set and has time complexity that scales the worse with 
n (between O(n2) and O(n3) time complexity). Though 
the Burden Numbers-KNN model is the best perform-
ing model according to mean initial enhancement, this 
model performance measure is only .45 larger than the 
Burden Numbers-RF model and the difference is not 
statistically significant. Since the Burden Numbers-RF 
model is more interpretable and works just as well with 
large data, this modeling method may be preferable.

The Pharmacophore-RF model is only significantly dif-
ferent from the best performing model at a level between 
.01 and .05, but may be preferrable, as both the descriptor 
set and the model are highly interpretable.

For many applications, users may know the number of 
tests they would like to perform. This is often the case in 
drug discovery when chemists have a set number of com-
pounds they would like to assay and the goal is to enrich 
this set of compounds with as many actives as possible. 
The number of tests used for initial enhancement may be 
modified with the m argument (Fig. 5):

CombineSplits(cml, m = 100)

Figure 5 underscores the practical importance of using 
an appropriate number of tests for initial enhancement. If 
a significance level of .05 were to be used, the Pharmaco-
phore-KNN model is no longer among the best perform-
ing models at m = 100 , while the highly interpretable 
model, Pharmacophore-RF, is now among the best. This 
model is the clear choice if an interpretable model is 
desired.

These results support the observations regarding 
descriptor set accumulations curves for the RF model in 
Fig. 3. While there appeared to be a slight improvement 
using Burden Number descriptors in lieu of Pharmaco-
phore fingerprints, this improvement may not be consid-
ered statistically significant.

In this particular example, specificity does not do a 
good job at distinguishing the best performing models, as 
the set of plausibly best performing models is quite large 
(Fig. 6). This is due to the fact that there are many models 
that have an average specificity that is similar to the best 
performing model:
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CombineSplits(cml, metric = "specificity")

Sensitivity, however, distinguishes the best performing 
model much better (Fig. 7):

CombineSplits(cml, metric = "sensitivity")

For binary responses, model performance may also 
be assessed with misclassification rate (Fig.  8). How-
ever, this measure may be inappropriate for drug dis-
covery because it equally penalizes false positives and 

false negatives. As we will explain in detail later on, 
researchers in cheminformatics tend to be less con-
cerned with false negatives and instead prioritize 
finding actives early. Therefore, a measure like initial 
enhancement may be more appropriate.

CombineSplits(cml, metric = "error rate")

This example illustrates how using misclassification 
rate can be misleading if this is the only model perfor-
mance measure. Misclassification rate suggests several 
models (such as Pharmacophore-PLS and Pharmacoph-
ore-LAR) are among the best performing models, but 
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these models actually have very low sensitivity (both 
.04). These models identify only a few of the 50 true posi-
tives in the data set. If the goal of a medicinal chemist is 
to identify all of the active compounds in their data set, 
these models may actually have poor performance.

It is also possible that models with high sensitivity 
incorrectly identify many compounds as active. The 
positive predictive value (PPV), also known as preci-
sion, measures the percentage of compounds that were 
correctly predicted to be active. PPV is an important 
means of evaluating search engines. A search engine 
often finds a multitude of potentially relevant docu-
ments, but a user is only capable of looking at the first 
few results. Search engines need to have very high 

PPV, even at the expense of sensitivity and specificity 
[40]. The goal is not to correctly identify all the rele-
vant documents or all the irrelevant ones, but to iden-
tify the most relevant documents in the top few results 
returned. In the context of drug discovery, testing 
potential drugs can be expensive and time consuming. 
Medicinal chemists can only test a small proportion of 
the compounds in their data set, so the goal is to test 
compounds only when the certainty of activity is high. 
Therefore, models with low PPV (i.e., a high false posi-
tive rate) may be less than ideal.

Figure  9 shows that the best performing models 
according to PPV (Pharmacophore-SVM, Pharmacoph-
ore-RF, Pharmacophore-PLS, Burden Numbers-RF) all 
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Fig. 5 MCS plot using initial enhancement at 100 tests as the performance measure
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have a perfect PPV value—every compound predicted to 
be active was indeed active.

CombineSplits(cml, metric = "ppv")

When a model has both high sensitivity and PPV, this 
means that many of the actives in the data set were iden-
tified with a low number of false positives. The F1 meas-
ure strives to strike this balance between sensitivity and 
PPV. It is the harmonic mean of sensitivity and PPV. 
Burden Numbers-SVM and Burden Numbers-RF are the 
models that find the best balance, with Pharmacophore-
RF being only marginally significantly different (Fig. 10).

CombineSplits(cml, metric = "fmeasure")

The area under the receiver operating characteristic 
curve (AUC) has also been implemented in chemmodlab 
(Fig. 1).

Table  1 summarizes the performance of the top per-
forming D–M combinations over all performance meas-
ures considered. Burden Numbers-RF is consistently 
the top performer, followed by Burden Numbers-SVM. 
However, if a significance level of .01 were used, Phar-
macophore-RF becomes a strong competitor. The fact 
that Pharmacophore-RF is among the best models for 
PPV, but is marginally significantly different for AUC, 
suggests that there may be a threshold for the predicted 
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Fig. 6 MCS plot using specificity for all compounds as the performance measure
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probabilities other than .5 that will lead to better predic-
tion performance for Burden Numbers-RF and Burden 
Numbers-SVM.

Several performance measures have been included for 
continuous responses. Though root mean squared error 
(RMSE) is used broadly in statistics, it may not be suit-
able for continuous chemical assay responses used in 
cheminformatics. This is because under-predicting and 
over-predicting biological activity is equally penalized. 
An appropriate alternative may be initial enhancement. 
Other options are the coefficient of determination ( R2 ) 
and Spearman’s ρ.

Model assessment: applicability domain
chemmodlab can also assess applicability domain using 
a Hotelling T 2 control chart. The function Applica-
bilityDomain adapts functions in the MSQC package 
[41] to compute control charts for chemmodlab model 
objects. The control charts can identify outliers in an 
external data set for which predictions are desired, 
hence identifying compounds whose model predictions 
may be considered extrapolations. The definition of 
outlier status is made relative to the descriptor set used 
in ModelTrain. The input is a descriptor matrix con-
tained in a chemmodlab model object and a matrix of 
the same descriptors computed for an external data set.
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Fig. 7 MCS plot using sensitivity for all compounds as the performance measure



Page 16 of 20Ash and Hughes‑Oliver  J Cheminform           (2018) 10:57 

train <- aid364[1:400, ]
test.burd <- aid364[401:500, 3:26]

cml <- ModelTrain(train, ids = TRUE, xcol.lengths = c(24, 147),
des.names = c("BurdenNumbers", "Pharmacophores"))

outliers <- ApplicabilityDomain(traindata = cml$data[[1]],
testdata = test.burd,
desname = "Burden Numbers",
pvalue = .01)

outliers

## $test.outliers
## [1] "10607" "5388972" "62770" "661645" "658734"
## [6] "660939" "662880" "219770" "658028" "661711"
## [11] "662613" "658786" "5546" "660706" "5389078"
## [16] "659987" "6603044" "657481" "662710" "658210"
## [21] "2708" "658828" "657754"

Hotelling T 2 control charts can be used to visu-
ally identify outliers (Fig.  11). For each observation in 
the external data set, Hotelling T 2 (the square of the 
Mahalanobis distance) is computed. This is a measure 
of how distant an observation’s descriptor profile is 
from the multivariate mean of the descriptor matrix, 
after adjusting for the descriptor correlation struc-
ture. This method is similar to the Euclidean distance-
based approach used by Tropsha and Golbraikh [42], 
but there is one important advantage. Observations 
that may not appear to be outliers according to Euclid-
ean distance from the mean can still be identified as 
outliers by Hotelling T 2 if they violate the correlation 
structure of the descriptor matrix (see [43]). Several 
cheminformatics studies have illustrated the utility of 
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Fig. 8 MCS plot using error rate for all compounds as the performance measure
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this approach [43, 44]. A significance level can be pro-
vided to compute an upper control limit (UCL) for the 
Hotelling T 2 statistic. Details on how these thresholds 
are computed for the external set can be found in [45]. 
Observations beyond the control limit are considered 
outliers, and are outside the applicability domain. The 
user may wish to omit these from prediction.

A limitation of this approach is that a p× p covari-
ance matrix needs to be estimated, where p is the number 
of descriptors. This is challenging when the descriptor 
space is high dimensional. However, other distance-based 
methods also suffer in high dimensional spaces due to the 
curse of dimensionality.

Conclusions and future directions
chemmodlab provides a comprehensive collection of 
methods for fitting and assessing machine learning mod-
els. While these methods have been selected for their 
utility to the cheminformatics community, they can be 
applied to any data set with binary or continuous vari-
ables. These methods are applicable to a wide range of 
research areas, and some model assessment approaches 
(the MCS plot, continuous valued accumulation curves) 
are novel additions to the collection of assessment 
approaches for machine learning methods available in R. 
The functions in chemmodlab aim to enable researchers 
to try many different model fitting and assessment proce-
dures with ease.
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Fig. 9 MCS plot using PPV (precision) for all compounds as the performance measure
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 <−Method
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         p−val<.01;  0.01 ≤ α
0.01 ≤ p−val<.05;  0.05 ≤ α
0.05 ≤ p−val<.10;    0.1 ≤ α

0.1 ≤ p−val<.90;    0.9 ≤ α
0.9 ≤ p−val<1

Multiplicity−adjusted p−values;
QSAR models different at level α

Fig. 10 MCS plot using F1 measure for all compounds as the performance measure

Table 1 The best performing D–M combinations according to all performance measures considered

Check indicates the D–M combination was among the best performers according to a performance measure using a significance level of 0.05. Check minus indicates 
marginal significant difference between the D–M combination and the best performer (significance level between .01 and .05). Performance measures considered 
were: initial enhancement at 300 tests, initial enhancement at 100 tests, specificity, sensitivity, error rate, positive predictive value, F1 measure, and area under the 
receiver operating characteristic curve

Descriptor Model IE 300 IE 100 Spec Sens Error Rate PPV F1 AUC 

Burd RF � � � � � � � �

Burd SVM � � � � � �

Phar RF � – � � � � � – � –

Burd KNN � � � �

Phar SVM � � �
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chemmodlab has many future directions in store. Par-
allel processing will be utilized so that model fitting for 
different descriptor sets, splits, and cross validation folds 
can be done in parallel. We also plan to interface chem-
modlab with caret, employing their functions for model 
tuning during our model fitting procedure. Support for 
categorical variables with more than two levels will be 
arriving soon. We will also incorporate more extensions 
to the accumulation curve as this approach is used exten-
sively in drug discovery. Extensions will include the area 
under the accumulation curve as an assessment meas-
ure and the construction of a mean accumulation curve 
over multiple splits. Error bars can be plotted for these 
curves so that significant differences between D–M 
combinations can be analyzed across the entire curves. 
Additional graphical output is planned, e.g., to provide 
receiver operating characteristic curves and precision 
recall curves along with accumulation curves, per user 
request. Finally, more modeling methods will be added 
as we identify those with appeal to our user base. Sup-
port for a particular model may be requested here: https 
://githu b.com/jrash /chemm odlab /issue s.
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