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Abstract 

Background:  We present a text-mining tool for recognizing biomedical entities in scientific literature. OGER++ is a 
hybrid system for named entity recognition and concept recognition (linking), which combines a dictionary-based 
annotator with a corpus-based disambiguation component. The annotator uses an efficient look-up strategy com-
bined with a normalization method for matching spelling variants. The disambiguation classifier is implemented as a 
feed-forward neural network which acts as a postfilter to the previous step.

Results:  We evaluated the system in terms of processing speed and annotation quality. In the speed benchmarks, 
the OGER++ web service processes 9.7 abstracts or 0.9 full-text documents per second. On the CRAFT corpus, we 
achieved 71.4% and 56.7% F1 for named entity recognition and concept recognition, respectively.

Conclusions:  Combining knowledge-based and data-driven components allows creating a system with competitive 
performance in biomedical text mining.
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Background
Text mining is often the only answer to retrieving spe-
cific information in the vast amount of biomedical scien-
tific literature. Reliably extracting basic entities such as 
chemicals, genes/proteins, diseases, or organisms is the 
foundation of most approaches to text mining. The task 
of detecting spans of text that denote an entity of interest 
is usually referred to as named entity recognition (NER). 
It is commonly modeled as a tagging problem, where the 
text is a sequence of tokens that are classified as relevant 
or irrelevant and if multiple entity types are targeted 
assigned a type. In the closely related task of concept 
recognition (CR, often also referred to as entity linking, 
normalisation, or grounding), entities are additionally 
annotated with unique identifiers.

In terms of methodology, many approaches have 
been taken towards biomedical entity recognition. The 
evolution of methods reflects the advances that can 

be observed in all areas of natural language process-
ing (NLP). Early systems were based on hand-written 
rules for extracting entities [1–3]. Over the last decade, 
supervised machine-learning systems have become very 
popular. For NER, Conditional Random Fields (CRF) 
have long dominated the field [4–7]. Knowledge-based 
approaches using hand-crafted resources like gazetteers 
are widespread among CR systems [8–11], even though 
data-driven components are used frequently to generate 
and/or rank entity candidates [12–16]. In multi-model 
architectures, multiple models are combined in a serial 
[17] or parallel manner (ensemble systems) [18–20] or 
use unlabeled data for improving domain representation 
[21]. Approaches to tackling both NER and CR include 
sequential pipelines [22] and joint models [23, 24]. Very 
recently, the renaissance of neural networks (NN) observ-
able in many subfields of artificial intelligence and NLP 
finally found its way to NER for the biomedical domain 
[25–29] and even CR [30].

In this work, we present OGER++, a hybrid NER-
CR system for text mining in the biomedical domain. It 
combines a fast, dictionary-based entity recognizer and 
normalizer with a corpus-based disambiguation filter. 
The technical and qualitative performance of previous 
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versions were described in [31, 32], respectively. More 
recently, we wrote an application based on OGER for 
the OpenMinTeD platform [33]. In the present work, 
we describe new experimental results and benchmarks 
performed with the current version of the software. The 
code base of OGER is freely available from https​://githu​
b.com/OntoG​ene/OGER; the demo web service is run-
ning at https​://pub.cl.uzh.ch/purl/OGER.

Methods
OGER—OntoGene’s Entity Recognizer—is a versatile, 
extensible software package written for multiple appli-
cations. It can be used as a Python library, executed as a 
command-line tool, or run as a REST server with an API 
and a browser interface. Through a software hook, it can 
be extended by the user through custom Python mod-
ules. By OGER++, we refer to a publicly accessible web 
service hosted at our institute which provides on-the-fly 
document annotation using a large terminology resource 
and corpus-based disambiguation. In the following, we 
describe this actively running instance of OGER.

OGER++ performs document annotation in four 
steps: (1) document structure parsing, (2) entity rec-
ognition/normalization, (3) disambiguation, (4) seri-
alization. A wide range of input and output formats are 
supported (Steps 1 and 4), including plain-text, PubMed/
PMC XML, BioC [34] (XML and JSON), and PubAnno-
tator JSON [35, 36], among others. In the format conver-
sion, textual content and basic structure (sections) are 
retained, as well as a limited set of metadata (document 
ID for most formats, all metadata for BioC). In Step 2, a 
dictionary-based strategy is applied to locate mentions 
of biomedical entities in the text and link them to iden-
tifiers of curated terminology resources, as described in 
the next section. This procedure frequently generates 
ambiguous annotations (i.e. the same text span is linked 

to multiple entities), which are addressed in Step  3, as 
discussed in the subsequent section.

Dictionary‑based entity recognition and normalization
OGER has its roots in the OntoGene term annotation 
pipeline, a knowledge-based information extraction sys-
tem for scientific biomedical literature that has been 
successfully applied to a range of entity types (genes/pro-
teins, chemicals, diseases, among others [37–40]). It has 
been reimplemented from scratch in Python and is being 
developed continuously. As such, it has seen consider-
able improvements in terms of flexibility and processing 
speed.

The core recognition procedure relies on a list of tar-
get terms (the dictionary), which are connected to 
entity identifiers. Since extraction with an exact-match 
strategy would lead to very low coverage, we perform a 
series of preprocessing steps which have a normalizing 
effect. For example, the text is tokenized in an aggressive, 
lossy way which collapses spelling alternations like e.g. 
“SRC1”/“SRC 1”/“SRC-1” into a single representation. A 
more detailed description of the preprocessing steps can 
be found in [41].

At indexing time, each term (name) from the diction-
ary is converted to a sequence of tokens through the 
same preprocessing steps that are used for the docu-
ments (see Fig.  1 for an example), thus assuring that 
all potential matchings will be preserved. These token 
sequences are indexed in a hash table, which maps 
the term to its dictionary entry (containing the identi-
fier and other metadata). In case of ambiguity (multiple 
entries have the same token sequence), the value of the 
hash table will contain multiple entries; for synonyms 
(multiple terms for the same concept), multiple entries 
are indexed. For an efficient look-up of variable-length 
sequences, an additional hash table maps the first token 

Fig. 1  Term indexing using two hash tables. The examples illustrate how dictionary entries are indexed (left) and how the look-up is performed 
(right)

https://github.com/OntoGene/OGER
https://github.com/OntoGene/OGER
https://pub.cl.uzh.ch/purl/OGER
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of a term (trigger) to the length of the token sequence. 
At prediction time, each token of the text (preprocessed 
the same way as the dictionary terms) is looked up in the 
trigger index. If a match is encountered, candidate token 
sequences of appropriate length are extracted from the 
text, starting from the matching token. The extracted 
sequences are then looked up in the main index. Thanks 
to the trigger index, the number of look-ups per token is 
1 in the common case (no trigger), i.e. complexity class 
O(s) (best case) with respect to the number of tokens per 
sentence. Using only the main index, a look-up would be 
required for each contiguous subsequence of the sen-
tence, i.e. O(s2) or, if the token count of the longest entity 
is known, O(s × tmax).

For the present work, we used two different configu-
rations of terminology resources. In the experiment for 
evaluating annotation quality, we used the ontologies 
included in the CRAFT corpus [42], i.e. ChEBI [43], 
Cell Ontology [44], Gene Ontology [45], NCBI Taxon-
omy [46], Protein Ontology [47], and Sequence Ontol-
ogy [48]. For the speed benchmarks, we used the default 
configuration of OGER’s web service, which uses up-to-
date versions of the resources mentioned above and, in 
addition, Cellosaurus [49], CTD chemicals and diseases 
[50], MeSH [51], Swiss-Prot [52], and Uberon [53]. All 
resources were aggregated and converted to a unified for-
mat using the Bio Term Hub, a meta-resource for collect-
ing and combining curated terminology resources [54].

Corpus‑based disambiguation
The dictionary-based concept-recognition module pro-
duces many spurious annotations. Words from the 
common vocabulary may be erroneously annotated as 
a biomedical entity (such as lead), and some terms are 
linked to identifiers of the wrong entity type (this often 
happens with abbreviations). Since OGER can produce 

multiple annotations for the same text span, the list 
of annotations might contain both correct and wrong 
results. Therefore, we augmented OGER with a postfilter 
component that removes spurious annotations.

The disambiguation procedure is illustrated in Fig.  2. 
For each annotated text span, the postfilter predicts a 
probability distribution over all entity types, including a 
label for not an entity. In the experiment with the CRAFT 
corpus (where a single text span can have multiple anno-
tations), we applied the following heuristic to produce a 
label:

1.	 consider the highest-ranked entity type;
2.	 if the score difference between the two top-ranked 

types is less than a fixed threshold θ , consider the 
second-ranked entity type as well;

3.	 remove occurrences of not an entity from the list of 
labels to be considered.

The threshold θ was empirically set to 0.3 based on 
hyperparameter optimization with 5-fold cross-valida-
tion on the training set. This heuristic produces zero, one, 
or two labels per text span, which are not necessarily a 
subset of the annotations originally generated by OGER. 
Depending on the task, they are used differently: In the 
case of NER, the produced labels are emitted directly. 
This means that an annotation might be re-classified, i.e. 
given an entity type that was not among OGER’s annota-
tions. For the CR task, however, the concept identifiers 
are needed, therefore the original OGER annotations are 
used, restricted to the entries that match the postfilter’s 
output. This means that any re-classified annotation is 
lost in CR, since no identifier can be provided.

The postfilter module is a machine-learning-based clas-
sifier that has to be trained on an annotated corpus. In 
the present work, we used the CRAFT corpus [42], which 

Fig. 2  Example illustrating the disambiguation procedure. The corpus-based postfilter accepts, rejects, or reclassifies annotations from the 
upstream concept-recognition module
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is a collection of 67 full-text articles manually annotated 
for multiple entity types. The annotations cover chemi-
cals, cell types, cellular components, organisms, genes/
proteins, sequence features and the non-physical types 
biological processes and molecular functions. For our 
experiments, we excluded gene annotations linked to 
NCBI Gene (Entrez Gene) and conflated biological pro-
cesses and molecular functions into a shared type BPMF. 
Annotations consisting of textually separated compo-
nents were split into multiple, contiguous annotations. 
We divided the corpus into 47 documents for training 
and 20 for testing, using the same split as in our previous 
work [32].

The postfilter is implemented as a feed-forward neural 
network (NN). The initial design [32] was revised later 
[55] and integrated into OGER++. The key differences 
between the first and the current system are described in 
the following.

Firstly, both feature extraction and training of the NN is 
now performed in Python, thereby making it seamlessly 
work with the knowledge-based system implemented 
in the same programming language. The former system 
relied on a Java framework specialized on key-phrase 
extraction, plus a specialized learning module in R, to 
accomplish these tasks, thus making it very cumbersome 
to use in a pipeline. Secondly, a larger set of features was 
included as input to the NN. All thirteen features from 
the previous work were re-implemented. Four additional 
features were devised and evaluated: 

•	 The vowel:consonant feature computes the propor-
tion of vowels and consonants. Lower vowel counts 
are typical for certain entity types such as proteins.

•	 The common vocabulary feature computes whether 
the n-gram occurs in a common-language diction-
ary such as Hunspell [56]. Biomedical entities are 
less likely to appear in a common dictionary as can 
be seen in Fig. 3. Thus, this feature can help in decid-
ing whether an n-gram should be ruled out as a bio-
medical entity mention. As Hunspell is intended to 
be used on single words, the percentages of terms 
known to Hunspell were calculated in two ways: In 
the “break-up” setting, the words of a term are looked 
up individually, while in the “no break-up” setting, 
they are passed to Hunspell as a whole. In the lat-
ter case, Hunspell always returns multi-word terms 
as not occurring in the dictionary. For some entity 
types, there are marked differences in the two per-
centages, notably for cells, biological processes, cel-
lular components, sequences and organ/tissue. This 
means that terms of these entity types are frequently 
made up of common words. The current system 

performs no break-up of term as a split-up does not 
improve the accuracy of annotation.

•	 The stop-words feature computes whether the 
n-gram is a stop-word. Some stop-words also have 
a biomedical meaning and therefore appear in ter-
minology resources. The NN can give lower weights 
to these words to decrease the rate of false-positives 
produced by these words. We used NLTKs [57] Eng-
lish stop-word list, which comprises 153 words.

•	 The word embeddings feature fetches the word 
embedding of an n-gram. Word embeddings add 
distributional knowledge for a given word. In our 
model, we used the pre-trained embeddings of [58], 
which target biomedical applications. For multi-
word terms, which have no embedding, we used to 
take the word embedding of the head token, using 
the last token as an approximation which typically 
conveys the main meaning. The current system, how-
ever, performs an individual look-up for every token 
in the term and averages their respective embeddings 
using the mean to produce a single vector. We found 
that this improved the F1-scores for NER and CR by 
0.3–0.4%, compared to using the word embedding of 
the head token.

Experiments have shown that word embeddings are the 
most salient feature. In fact, using only word embeddings 
and excluding all other features only produced a small 
drop of 1 to 2% in the F1-score on the CRAFT corpus. 
This suggests that the influence of the other features is 
not very pronounced and that they might be redundant 
in future work. The public OGER web service uses three 
features only (common dictionary, stop-words, word 
embeddings).
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Fig. 3  Percentage of terms occurring in Hunspell
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A third main difference is that the previous system [32] 
trained separate NNs for each entity type, where a single 
output neuron makes a basic accept/reject decision given 
some threshold value. Our new system, however, trains a 
joint model by constructing a softmax output layer that 
computes a probability distribution over all entity types, 
as shown in Fig. 4. This has the advantage that the prob-
abilities of different entity types become comparable and 
that only one model has to be loaded for predictions.

To give the NN filter capabilities, an additional out-
put neuron for the label “not an entity” was added. For 
training, we used the rest of the words from the CRAFT 
corpus that were not explicitly annotated as biomedical 
in order for the NN to learn how common words look 
like. Note that the NN only receives single words as input 
in the case of common words, while in the case of bio-
medical entities, it can receive multi-word examples. The 
downside of this strategy is that the NN does not learn to 
remove irrelevant multi-word matches produced by the 
up-stream annotator.

To allow for multiple classifications of the same 
n-gram, as is the case for some biomedical datasets (e.g. 
the CRAFT corpus), entity types with the second-highest 
probability are also considered by defining a maximum 
probability difference to the most probable entity type.

Server architecture
An overview of the server architecture is given in Fig. 5. 
Incoming requests are expected to either include a Pub-
Med or PMC ID (fetch command), or to contain an 
entire document in the request payload (upload com-
mand). In the case of a fetch request, the service fetches 

the referenced document using NCBI’s efetch API [59]. 
The client can specify a number of parameters through 
the URL and an optional query string, such as the docu-
ment input and output formats or the selection of termi-
nologies to use for annotation. Different terminologies 
are maintained in separate instances of the dictionary-
based annotation component as described above, called 
annotators. New annotators can be created by the cli-
ent through another request (dict command, not shown 
in the figure); the Bio Term Hub makes use of this fea-
tures to allow users to send newly compiled terminology 
resources to OGER. After annotation, the documents are 
passed to the postfilter for disambiguation and serialized 
into the requested output format, before being returned 
to the client.

Results and discussion
We assessed OGER++ with benchmarks for processing 
speed, an analysis of entity-type ambiguity, and an evalu-
ation of annotation quality, as is discussed in the follow-
ing sections.

Processing speed
The technical interoperability and performance of 
annotation servers (TIPS) task of the BioCreative  V.5 
challenge was a shared task designed to evaluate the 
efficiency and reliability of annotation servers in the 
biomedical domain. Among the participating systems, 
OGER was the fastest system (best results for average 
response time and mean time per document volume, 
team 122 in [60]). Additionally, we recently performed 
a series of benchmarks for measuring the processing 

Fig. 4  Architecture of the NN
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speed of OGER++. The results are summarized in 
Table  1. We analyzed two different document sizes 
(abstracts vs. full-text) and two different input formats 
(plain-text vs. NCBI XML). The same random sample 
of PubMed abstracts and PMC full-text documents was 
used for the different input formats.

The benchmarks were carried out using the pub-
lic OGER web API. This web service is hosted on a 
virtual machine with 16 shared CPU cores and 128  G 
exclusive RAM. Each document was processed with a 
separate HTTP request in a serial fashion (no paralleli-
zation). Due to the requests being sent from the same 
physical machine on which the OGER service is run, 
network latency is expected to have negligible effect 
on the measurements; therefore, these results are not 
comparable to the average response time measured in 
the TIPS task (1.1  s per abstract, i.e. 10 times slower), 
where three separate HTTP requests between distant 
servers were necessary for each document. However, 
the current figures include the overhead required by the 
HTTP protocol. During the time of the tests, the server 
did not have a heavy load; in busy times, the process-
ing times can be up to three times higher, even though 
OGER’s service machine is prioritized by default.

Most time is spent in disambiguation, i.e. the NN pre-
dicting probabilities for each annotation. This can be 
clearly seen by comparing to the last line in the table, 
where full-text documents were processed without dis-
ambiguation, which leads to 20 times faster processing on 
average. Document size affects processing time greatly, as 
abstracts are processed more than 10 times faster than 
full-text documents. This is best explained by the higher 
number of annotated terms in longer texts. The input for-
mat has only a marginal effect both on processing time 
and the number of annotations the absence of structural 
mark-up tends to accelerate processing and has an influ-
ence on term matching.

Entity‑type ambiguity
In order to estimate the degree of ambiguity in a multi-
type entity-recognition setting, we performed an experi-
ment using OGER without its disambiguation module. 
Using a large dictionary with 5.6 million names for a total 
2.9 million concepts of 11 different entity types, we auto-
matically annotated a random sample of 3  million Pub-
Med abstracts. Since disambiguation was disabled, each 
annotated mention was tagged with one or more entity 
types. We used these data to compute a confusion matrix 

Fig. 5  System architecture of the OGER++ server

Table 1  Average processing time analysis for different document formats and sizes

For kiB/s and ann/s, micro- and macro-average are given separately

Size Format Documents doc/s kiB/s ann/s kiB/s (macro) ann/s (macro) ann/doc

Abstracts txt 1000 9.73 8.27 462.96 11.75 239.70 47.56

Abstracts xml 1000 9.45 57.26 449.43 222.44 241.55 47.56

Full-text txt 529 0.89 16.97 866.89 18.95 621.95 979.09

Full-text xml 529 0.88 47.44 862.01 64.16 620.00 979.37

Full-text (no 
disambigua-
tion)

txt 529 17.82 341.64 28072.22 350.24 18569.08 1575.27
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of names that are shared among different entity types, 
measured by their occurrence in the scientific literature. 
When comparing dictionary entries in their exact spell-
ing, there is almost no overlap across entity types; how-
ever, the relaxed matching scheme used for annotation 
introduces a significant number of collisions, as can be 
seen in Fig. 6. Please note that the true type is unknown 
in this setting, and that a considerable fraction of annota-
tions is potentially spurious, i.e. words of common lan-
guage that are erroneously annotated as a biomedical 
entity. However, these figures give a realistic estimate of 
how hard the task of the disambiguation module is.

CRAFT evaluation
We performed an evaluation on 20 articles from the 
CRAFT corpus using the metrics precision, recall and 
F1-score. We evaluated the correctness of the system 
output at two different levels: entity type (NER evalua-
tion) and identifier (CR evaluation), as is described in the 
following sections.

NER evaluation
In the NER-level evaluation, we considered a prediction 
to be correct (true positive) if it matched the span (char-
acter offsets) and entity type of a ground-truth annota-
tion. We required the span to match exactly, i.e. no credit 
was given for predictions that partially overlapped with a 
true annotation. Table 2 shows micro-averaged precision, 
recall and F1-scores broken down by entity type for three 
different systems: the knowledge-based system (OG), the 
previous hybrid system (OG + Dist) and the new hybrid 
system (OG + Joint). Using the new NN architecture 
along with the new features yielded a 1% increase in the 
overall F1-score compared to the former hybrid system. 

Looking at specific entity types, the new hybrid system 
outperforms the other two systems in four out of the 
seven entity types. The new hybrid system achieves bet-
ter F1-scores due to more balanced precision (65%) and 
recall scores (79%), while the former hybrid system has 
high precision (88%), but a lower recall (58%).

CR evaluation
In the evaluation at the level of Concept Recognition, a 
prediction was seen as correct if a ground-truth annota-
tion existed at the same position with the same concept 
identifier. Again, we required the spans to be identical. 
Table 3 shows the performance of the knowledge-based 
system (OG), the previous hybrid system (OG + Dist) 
and the new hybrid system (OG + Joint) with respect to 
micro-averaged precision, recall and F1-scores in a strict 
evaluation scheme (no credit for partially overlapping 
spans). The overall F1-score of the new hybrid system 
(OG + Joint) improved by 7% compared to the previous 
hybrid system (OG + Dist). The difference is even more 
pronounced for the knowledge-based system (+  27%). 
The higher F1-score increased mostly due to a much 
better overall precision (+ 14%), while the overall recall 
score only improved by 1%. In total, the new hybrid sys-
tem outperforms the previous one in three and ties with 
four out of the seven entity types in terms of F1-scores.

Error analysis
Most false positives (FPs) are introduced by the aggres-
sive matching algorithm of OGER. For example, the 
match ‘IOP) [1’ is returned for the string ‘elevated 
intraocular pressure (IOP) [1–5]’, as its collapsed form 
‘IOP1’ is present in the terminologies. Another example 
is ‘at 1’, which is extracted from the string ‘at 1 minute’ 

Fig. 6  Name overlap among different entity types. The figures in each row denote the percentage of names with this type that are also annotated 
with the type of the respective column. For example, of all mentions annotated as cell line, close to 39% also have a gene/protein annotation, while 
only 9% of the gene-annotated mentions also have an annotation as cell line



Page 8 of 10Furrer et al. J Cheminform            (2019) 11:7 

because the term ‘AT-1’ has the normalized form ‘at 1’. 
The postfilter fails to remove these two cases because the 
NN is largely trained on single words as input and only 
receives multi-word terms if it denotes a ground-truth 
entity. Thus, it never observes multi-word examples that 
are labeled as non-biomedical and learns that multi-word 
terms are always relevant. Another source of error are 
terms that are located within a word. For instance, the 
word ‘Thr164Ala’ contains the terms ‘Thr’ and ‘Ala-’ (nor-
malized as ‘Ala’). Some FPs are also common words such 
as ‘processes’ and ‘positions’ that also occur in terminolo-
gies and a small number are wrong re-classifications of 
the same span by the postfilter.

Most false negatives (FNs) are also caused by the 
knowledge-based system. While the postfilter can 
remove all types of FPs, it can only rectify FNs with the 
same span through re-classification, but not FNs with 
diverging spans, as these are pre-determined by the 
knowledge-based system. The vast majority of FNs are 
terms that are not listed verbatim in the terminologies:

•	 Morphological variations of the terms, e.g. ‘carbonic’ 
( → ‘carbon’), ‘mammalian’ ( → ‘Mammalia’)

•	 Abbreviations, e.g. ‘bp’ ( → ‘base pair’), ‘Chr’ ( → 
‘chromosome’)

•	 Synonyms, e.g. ‘blood flow’ ( → ‘blood circulation’), 
‘chow’ ( → ‘food’)

•	 Ellipses, e.g. ‘A to G’ ( → ‘A to G transition’), ‘altera-
tion’ ( → ‘sequence alteration’)

•	 Hyponyms, e.g. ‘depression’ ( → ‘negative regulation 
of biological process’), ‘passes’ ( → ‘establishment of 
localization’).

Terms linked via the hyponym-hyperonym relation make 
up the largest group of these FNs and are pervasive for 
biological processes and molecular functions, whose 
recall is accordingly very low.

Conclusions
We have presented a fast, efficient, reliable entity NER-
CR system for biomedical scientific literature. Competi-
tive performance has been demonstrated by participation 
in a shared task and separate evaluations presented in 
this paper.

Besides fixing some of the remaining problems revealed 
by the error analysis presented in this paper, we are also 

Table 2  Evaluation at the level of NER

Entity type Precision Recall F1

OG OG + Dist OG + Joint OG OG + Dist OG + Joint OG OG + Dist OG + Joint

All 0.44 0.88 0.800 0.62 0.58 0.645 0.51 0.70 0.714

Chemicals 0.44 0.89 0.870 0.73 0.68 0.726 0.55 0.77 0.792

Cells 0.88 0.88 0.738 0.77 0.67 0.748 0.80 0.76 0.743

BPMFs 0.39 0.78 0.628 0.25 0.22 0.349 0.30 0.35 0.449

Cellular components 0.51 0.91 0.867 0.60 0.56 0.658 0.55 0.70 0.748

Organisms 0.29 0.98 0.977 0.92 0.91 0.920 0.44 0.94 0.948

Proteins 0.49 0.86 0.778 0.84 0.75 0.812 0.62 0.80 0.795

Sequences 0.46 0.89 0.833 0.67 0.64 0.670 0.54 0.75 0.743

Table 3  Evaluation at the level of concept recognition

Entity type Precision Recall F1

OG OG + Dist OG + Joint OG OG + Dist OG + Joint OG OG + Dist OG + Joint

All 0.32 0.51 0.650 0.52 0.49 0.503 0.40 0.50 0.567

Chemicals 0.28 0.59 0.601 0.61 0.57 0.568 0.39 0.58 0.584

Cells 0.88 0.87 0.878 0.72 0.66 0.713 0.79 0.75 0.787

BPMFs 0.35 0.72 0.634 0.19 0.17 0.178 0.25 0.27 0.278

Cellular components 0.49 0.87 0.930 0.59 0.56 0.581 0.54 0.68 0.716

Organisms 0.16 0.49 0.486 0.71 0.70 0.709 0.26 0.58 0.577

Proteins 0.45 0.84 0.788 0.83 0.74 0.799 0.59 0.79 0.794

Sequences 0.27 0.59 0.561 0.53 0.51 0.516 0.36 0.54 0.537
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currently extending our experiments to multiple cor-
pora, with different annotation strategies, with the goal 
of achieving competitive performance on several of them 
using a common architecture. We are also experiment-
ing with more complex neural networks for the filtering 
stage, in particular recurrent NNs.
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