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PRELIMINARY COMMUNICATION

Universal nanohydrophobicity predictions 
using virtual nanoparticle library
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Abstract 

To facilitate the development of new nanomaterials, especially nanomedicines, a novel computational approach was 
developed to precisely predict the hydrophobicity of gold nanoparticles (GNPs). The core of this study was to develop 
a large virtual gold nanoparticle (vGNP) library with computational nanostructure simulations. Based on the vGNP 
library, a nanohydrophobicity model was developed and then validated against externally synthesized and tested 
GNPs. This approach and resulted model is an efficient and effective universal tool to visualize and predict critical 
physicochemical properties of new nanomaterials before synthesis, guiding nanomaterial design.
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Advances in nanotechnology and material sciences in the 
past decade have led to the rapid development of engi-
neered nanomedicines in pharmaceutical sciences [1, 2]. 
The traditional development route of new nanomaterials 
solely depends on experimental testing, which is costly 
and time consuming. With rapidly rising experimental 
and labor costs, computational approaches have become 
promising low cost alternatives to study nanomateri-
als [3]. To date, computational modeling approaches 
are broadly applied to the research and development 
procedure of small molecules, but rarely for larger mol-
ecules like nanomaterials [4]. This is evidenced by the 
many available commercial software tools [5–7] capa-
ble of predicting physicochemical properties for new 
druggable small molecules but none are available for 
new nanomedicines. Compared to small molecules, the 
shape, size, composition and surface ligands of nanoma-
terials greatly increase nanostructure complexity. Due to 
this increased complexity, the biological activities and 
therapeutic effects of nanomaterials are more difficult 
to model than small molecules. As a key determinant of 

drug pharmacokinetics, hydrophobicity influences drug 
solubility, absorption, distribution, and target binding 
characteristics, which are eventually associated with the 
drug efficacy, potency and toxicity [8, 9]. Therefore, it is 
critical to evaluate the hydrophobicity of nanomedicines 
in the early stages of development, even before chemical 
synthesis.

In previous studies, researchers have been devoted 
to building quantitative structure activity relationship 
(QSAR) models for various bioactivities of different 
nanomaterials but have had limited applicability for 
new nanomaterial development [10–13]. Namely, two 
major issues limited the applicability of the resulted 
models: (1) the lack of enough high quality nano-
bioactivity data and (2) computational approaches to 
precisely quantify nanostructure diversity. Currently, 
the use of experimental values as descriptors [14, 15] 
prevents the predictions of new nanomaterials before 
chemical synthesis. On the other hand, computational 
calculation of descriptors allows for virtual nanopar-
ticle generation and nano-bioactivity prediction with 
no chemical synthesis required. Some researchers 
found that descriptors calculated solely from the sur-
face ligands of nanoparticles were useful in predict-
ing properties. Although this is useful in predicting 
certain properties of nanoparticles, the effects of the 
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nanoparticle size and surface ligands density, position, 
distribution, were not considered in these studies and 
likely also contribute to the nano-bioactivity. More 
recently, however, some researchers have utilized some 
of these properties in addition to the general descrip-
tor set from surface ligands, e.g., electronic properties, 
[16] ionic characteristics, [17] and others [18–20]. The 
major drawback of these available modeling studies is 
the lack of approaches to correctly quantify and repre-
sent nanostructure diversity during the modeling pro-
cedure. In our previous studies, we have shown that 
surface chemistry was the most critical factor in deter-
mining the bioactivities of gold nanoparticles (GNPs), 
including nanohydrophobicity [21]. Furthermore, cor-
rectly simulating surface chemistry can result in novel 
nanodescriptors which can be used to develop quan-
titative nanostructure–activity relationship (QNAR) 
models, showing superior advantages than tradi-
tional modeling studies [22]. Here, we report a novel 
approach to develop a virtual gold nanoparticle (vGNP) 
library with surface simulations precisely predicting 
nanohydrophobicity for new nanomaterials. Using this 
approach, a nanohydrophobicity model was developed 
based on surface chemistry simulation of a set of GNPs 
with various surface ligands. The model predictivity was 
further proved by experimentally synthesizing and test-
ing nine new GNPs, and comparing their experimental/
predicted logP values. The predicted nanohydrophobic-
ity showed high correlations with experimental results, 
indicating the applicability of using this universal pre-
dictive modeling approach to design and select new 
GNPs with desired hydrophobicity.

In a recent study, we developed a novel method to con-
struct vGNP libraries [22]. Using this approach, we con-
structed the vGNP library with a dataset of 41 GNPs, as 
shown in Fig.  1. Specifically, using the structural infor-
mation of surface ligands, ligand density of each GNP, 
and the GNP size, the virtual structure for each of the 
GNPs in the library was constructed as follows. First, 
the gold core was constructed based on the GNP size. 
Then, the surface ligands, with ligand density informa-
tion, were randomly attached to the gold core to simu-
late the experimental conditions. These 41 GNPs were 
synthesized and tested for their hydrophobicity. The high 
nanostructure diversity of these 41 GNPs, including vari-
ous surface ligands, different ligand densities per GNP 
and various GNP sizes, and high hydrophobicity diversity 
(experimental logP values range from − 3 to 3) make this 
dataset suitable for modeling purposes. This dataset was 
used as the modeling set to develop nanohydrophobicity 
models. The experimental approaches to synthesize this 
GNP library and test the logP values are described in our 
previous study [22]. All the experimental data used to 

construct the vGNP library, including the structure infor-
mation of surface ligands, are provided in Additional 
file 4: Table SI.

Besides providing a large nanohydrophobicity data-
set in this study, a new surface chemistry simulation 
approach was developed based on the constructed vGNP 
library to evaluate hydrophobicity of GNPs. The core 
of this technique was to evaluate the solvent accessible 
surface (SAS) of GNPs and to calculate the nanohydro-
phobicity accordingly. The SAS, also named the Con-
nolly Surface, [23] was identified for each GNP using a 
grid based method [24]. The cross section (grey area) of 
a vGNP surface ligand was constructed in a 2D grid as 
shown in Fig.  2a. The SAS was determined by rolling a 
solvent probe, simulated by the size of a water molecule 
of radius 1.4 Å, over the surface of the vGNP. Probes 
were placed on grid points surrounding the vGNP sur-
face ligand. A grid point was identified as a SAS point of 
this vGNP when the probe was within one grid unit dis-
tance to at least one vGNP atom, and does not overlap 
with any other vGNP atoms [24].

Once the SAS, with all identified grid points, was con-
structed for a vGNP, its hydrophobicity potential was eval-
uated by calculating the octanol–water partition coefficient 
from a distance-dependent weighting function of atomic 
contributions [25, 26]. The hydrophobic/hydrophilic poten-
tial of an identified SAS point was determined by nearby 
atoms and weighted by their distances to the SAS point. 
As shown in Fig. 2a, hydrophilic SAS points were colored 
with red while hydrophobic SAS points were colored with 
green. The hydrophilic/hydrophobic potential for each 
SAS was represented as the intensity of the corresponding 

Fig. 1 The constructed vGNP library
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color—red as hydrophilic and green as hydrophobic. As an 
example, the hydrophobic potentials of eight vGNPs can be 
visualized in Fig. 2b. This series of GNPs were constructed 
with two types of surface ligands with different hydro-
phobicities: one ligand was hydrophilic and the other was 
hydrophobic. The ratio of these two types of surface ligands 
among the eight GNPs was gradually changed to modulate 
the nanohydrophobicity from low to high. From Fig.  2b, 
this series of GNPs showed a clear trend of hydrophobic-
ity change with an increased ratio of hydrophilicity/hydro-
phobicity surface ligands. Thus, the surface colored vGNPs 
could be a representation of nanohydrophobicity of GNPs.

The nanohydrophobicity was then quantified using the 
colored vGNP. The nanohydrophobicity of a vGNP can be 
calculated as:

(1)logG/R = log

∑
Ihydrophobicity

∑
Ihydrophilicity

where G and R represent the hydrophobic potential 
(green) and hydrophilic potential (red) for each SAS 
point, and I is the intensity of hydrophobic/hydrophilic 
potential.

Then, with a linear regression analysis between logG/R 
and logP values of these 41 GNPs, the following equa-
tion was generated and can be used to calculate nanologP 
(i.e. logP values of GNPs) values for new GNPs from 
their logG/R results, which were obtained from vGNP 
simulations:

The calculated logP values of all the 41 nanoparticles 
(nanologP), obtained from the above equation, were 
compared to their experimental logP results (elogP), 
which were obtained by experimentally testing the parti-
tion coefficients in n-octanol and water solutions.

The step by step instruction of vGNP generations 
and log G/R calculations were described in the Addi-
tional file  3 (vGNP logP Supplementary demo file) and 
all source code files were also shared as Python files (see 
details in the Additional files 1, 2, and 3).

In some previous studies, logP of nanomaterials were 
calculated based only on surface ligand structures [15, 18, 
19, 21, 27]. For comparison purposes, logP values of these 
41 GNPs were calculated using four calculators, XlogP3, 
[28] AlogPS 2.1, [29] ClogP calculated in ChemDraw 17.0 
[30] and the logP model in MOE 2016 [31]. These four 
logP calculators were built by either chemical atom/frag-
ment contribution methods (XlogP3, ClogP and logP in 
MOE) or QSAR modeling (AlogPS). These calculators 
are commonly used to calculate the surface ligand logP 
and are based on various linear and non-linear modeling 
approaches. For example, XlogP3, AlogPS 2.1, ClogP and 
logP in MOE were based on a nearest neighbor approach 
combined with linear additive model [28], associated 
neural networks [29], fragmental additive approach [30] 
and atom additive approach [31], respectively. When 
modeling mixtures, the  weighted average according to 
the component fractions was used for calculating the 
chemical descriptors [32]. Similarly, in this study, for 
a GNP with two different surface ligands, its logP value 
was calculated by averaging two ligand logP values 
weighted by the number of the two types of ligands. As 
shown in Fig.  3 and Additional file  4: Table SI, the best 
obtained logP results from commercial software, XlogP3, 
which  yielded a low correlation with elogP with a coef-
ficient of determination  (R2) = 0.577, and large prediction 
errors as Mean Absolute Error (MAE) = 2.633 and root 
mean square error (RMSE) = 3.00 [33, 34]. These results 
were much worse than that of nanologP developed in 

(2)nanologP = 0.7334 ∗ logG/R− 2.4306

Fig. 2 Illustration of nanologP evaluations. a The SAS surface 
identified by rolling the solvent probe on the vGNP surface, and 
hydrophobicity potentials represented as colors. b A series of vGNPs 
with various calculated nanologP values



Page 4 of 5Wang et al. J Cheminform            (2019) 11:6 

this study  (R2 = 0.884, MAE = 0.719 and RMSE = 0.81). 
A five-fold cross-validation was performed for nanologP 
and the results are similar  (R2 = 0.832, MAE = 0.75 and 
RMSE = 1.28). The summary table of training and valida-
tion sets and the orginal GNP library file for calculation 
can be viewed in Additional files 4 and 5.

To further validate the performance of the proposed 
nanologP method, we synthesized nine new GNPs with 
different surface ligands compared to the modeling set 
and experimentally obtained their elogP values. The 
calculated nanologP values show high predictivity for 
this external set with R2

ext = 0.762,  MAEext = 1.182 and 
 RMSEext = 1.24, similar to the modeling set result. In 
comparison, the best calculated logP values from com-
mercial software (XlogP3) show much worse predic-
tion accuracy with R2

ext = 0.534,  MAEext = 3.097 and 
 RMSEext = 3.49.

In this study, an applicable nanohydrophobicity com-
putational method was developed. The results showed 
that precisely simulated nanostructures using the vGNP 
library technique was the key to the accurate calculation 
of physicochemical properties of GNPs, such as hydro-
phobicity. There is potential to adapt the approach for 
other nanoparticles (e.g., carbon nanotubes and silver 
nanoparticles). The logG/R can be calculated by simu-
lating the new type of nanoparticles with the designated 
core and shape, and the same hydrophobicity/hydrophi-
licity evaluation strategy. This is an ongoing work when 
more experimental data becomes available in the future. 
Furthermore, this approach can also be applied to the 
modeling and evaluation of other critical properties or 
bioactivities (e.g., interaction potentials with the environ-
ment, permeability through cell membranes, etc.).

Additional files

Additional file 1. Python codes for the calculation of nanologP.

Additional file 2. Python codes for the calculation of nanologP.

Additional file 3. A demo for calculation of nanologP.

Additional file 4. Summary table of the GNP library in the training and 
validation sets.

Additional file 5. The original GNP library input file for the demo.
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