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Abstract 

Small-molecule protonation can promote or discourage protein binding by altering hydrogen-bond, electrostatic, 
and van-der-Waals interactions. To improve virtual-screen pose and affinity predictions, researchers must account for 
all major small-molecule ionization states. But existing programs for calculating these states have notable limitations 
such as high cost, restrictive licenses, slow execution times, and poor modularity. Here, we present dimorphite-DL 
1.0, a fast, accurate, accessible, and modular open-source program for enumerating small-molecule ionization states. 
Dimorphite-DL uses a straightforward empirical algorithm that leverages substructure searching and draws on a 
database of experimentally characterized ionizable molecules. We have tested dimorphite-DL using several versions 
of Python and RDKit on all major operating systems. We release it under the terms of the Apache License, Version 2.0. 
A copy is available free of charge from http://durra​ntlab​.com/dimor​phite​-dl/.

Keywords:  Ionization, pH, Protonation, Modeling, Virtual screening, Drug discovery

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Structure-based virtual screening (VS) predicts the 
geometry of a small molecule bound to its receptor (i.e., 
the docked pose) and maps that geometry to a score that 
correlates with affinity. Ligand protonation can impact 
electrostatic, hydrogen-bond, and van-der-Waals inter-
actions between the ligand and receptor [1], potentially 
affecting both VS steps. Many ligands adopt multiple 
protonation states, or protomers. Protomers encompass 
ionization forms, which involve the gain or loss of a pro-
ton, and tautomeric forms, which involve the intramolec-
ular transfer of a proton from one ligand atom to another 
[1]. Transitions between protomers (e.g., via proton 
uptake or release [2]) often accompany binding [3]. As 
most small-molecule drugs are ionizable [4, 5], accurate 
VS must consider the protomer that best complements 
the binding pocket [6, 7].

Predicting acid ionization constants (pKa) is a criti-
cal first step. Empirical approaches such as linear free-
energy calculations [8], quantitative structure–property 
relationships, and database similarity searches perform 
this prediction quickly and so are well suited for process-
ing large compound libraries [5]. In contrast, quantum 
mechanical methods are slower and not necessarily more 
accurate [5].

After using predicted pKa values to identify all pos-
sible ionization forms, the next step is to discard those 
forms that are rare. Ligands interconvert between all ion-
ization states in solution, but the pH determines which 
state is favored. For example, at physiological pH (7.4), 
99.96% of 3-chloropropanoic acid (pKa = 4.0 [9]) exists 
in the deprotonated form, 3-chloropropanoate. It is rea-
sonable to ignore the rare protonated form when per-
forming a VS with limited computational resources. In 
contrast, 44.27% of 2,2,2 trifluoroethane 1 thiol (pKa = 7.3 
[10]) exists in the deprotonated form at physiological 
pH. Proper small-molecule preparation should consider 
both the deprotonated and protonated forms of this 
compound.

Open Access

Journal of Cheminformatics

*Correspondence:  durrantj@pitt.edu 
†Patrick J. Ropp and Jesse C. Kaminsky have contributed equally to this 
work
Department of Biological Sciences, University of Pittsburgh, 4249 Fifth 
Avenue, Pittsburgh, PA 15260, USA

http://durrantlab.com/dimorphite-dl/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-019-0336-9&domain=pdf


Page 2 of 8Ropp et al. J Cheminform           (2019) 11:14 

Enumerating major small-molecule ionization states 
can improve virtual-screen predictivity, but available pro-
grams for performing this task are generally too expen-
sive, have restrictive licenses, are too slow for use in 
high-throughput contexts, predict a single state rather 
than all major states, and/or cannot be easily incorpo-
rated into broader drug-discovery pipelines. There is a 
need for a fast, accurate, accessible, and modular open-
source alternative. We have developed a computer pro-
gram called dimorphite-DL to address this need. We have 
tested dimorphite-DL using several versions of Python 
(2.7.13, 3.6.3, 3.6.5, and 3.6.6) and RDKit (2016.09.2, 
2018.03.1, and 2018.03.4) on macOS High Sierra 10.13.4, 
Ubuntu 18.04.1 LTS, and Windows 10 Home 1709. We 
release it under the terms of the Apache License, Version 
2.0. A copy is available free of charge from http://durra​
ntlab​.com/dimor​phite​-dl/.

Implementation
A set of compounds with experimental pKa values
We assembled a set of 1938 small molecules with sin-
gle, diverse ionizable sites and mostly experimentally 
determined pKa values. To the extent possible, we lim-
ited our search to pKa values measured in neutral aque-
ous solutions near room temperature (e.g., between 
23 and 27  °C). Sources of experimental data included 
PubChem®, a chemical database provided by the NIH’s 
National Library of Medicine; iBonD 2.0, the Inter-
net Bond-Energy Databank provided by Tsinghua and 
Nankai Universities [11]; Reaxys, a chemical database 
provided by Elsevier Life Sciences IP Limited; and a pub-
lished work by Lee et al. [12] that describes monoprotic 
small molecules. We also separately considered a set of 
78 phosphates and phosphonates, which can lose up to 
two protons.

We performed limited data filtering to improve appli-
cability and accuracy. For example, we removed some 
molecules with multiple disconnected fragments (e.g., 
salts) and chiral centers. If a given molecule included 
multiple experimental pKa values that spanned a range 
greater than 1.0, we assumed experimental uncertainty 
and discarded the molecule. Otherwise, we averaged the 
available pKa values. Per previous studies [12], we gener-
ally only considered molecules with measured pKa values 
between − 1.74 (H3O+) and 15.7 (H2O). In total, 98.8% 
of the pKa values in our database met this criterion. To 
ensure proper coverage, we included nine sulfonates and 
sulfates with pKa values less than − 1.74. We also included 
fourteen molecules with pKa values greater than 15.7: 
four non-phenol alcohols, three amides, and seven mol-
ecules with protonated but uncharged aromatic nitrogen 
atoms. Finally, to ensure that nitro-group oxygen atoms 

are always deprotonated, we assigned a very negative, 
arbitrary pKa value (− 1000.0) to this group.

We grouped these compounds by ionizable moiety and 
constructed pKa histograms for each group. Although 
chemical features beyond the moiety itself (e.g., neigh-
boring electronegative groups) do impact pKa, our anal-
ysis provided a typical pKa range for each ionizable site. 
In some cases, visual inspection of the histograms led us 
to reconsider some moiety definitions. For example, the 
distribution of amide pKa values was initially bimodal. By 
separating amides from nitrogens bonded to electronega-
tive atoms, we divided this group into two chemically dis-
tinct populations.

Ultimately, we settled on 38 ionizable substructures. 
In some cases, a given moiety could belong to two such 
categories. For example, every amide contains an amine 
group. To uniquely assign each moiety to a given catego-
rization, we prioritized the substructures. Atoms belong-
ing to high-priority substructures that cover more atoms 
(e.g., amides) were not considered when subsequently 
searching for lower-priority substructures (e.g., amines).

For each set of compounds matching one of these 
substructures, we calculated the mean (µ) and standard 
deviation (σ) of the associated pKa values (Table 1). In the 
case of the phosphates and phosphonates, each moiety 
was associated with two separate pKa means and stand-
ard deviations (µ1 and σ1; and µ2 and σ2), one for each 
ionizable proton. A range of reasonable pKa values for 
each moiety, rangePKA, is given by [µ − nσ, µ + nσ], where 
n is a user-defined parameter we call the “pKa precision 
factor.”

Predicting ionization states
Dimorphite-DL 1.0 uses the µ and σ values associated 
with each ionizable moiety to predict small-molecule 
ionization states for a given pH range. It accepts the fol-
lowing user inputs:

1.	 A small-molecule library in SMILES format [13], 
with each compound SMILES on its own line. Alter-
natively, the user can provide a single SMILES as a 
command-line parameter.

2.	 The pKa precision factor to use when estimating moi-
ety pKa ranges (n, 1.0 by default).

3.	 The minimum pH to consider (pHmin, 6.4 by default).
4.	 The maximum pH to consider (pHmax, 8.4 by default).

For each molecule, dimorphite-DL uses RDKit [14], 
an open-source cheminformatics library, to search for 
the 38 ionizable substructures described above (Table 1 
and Additional file  1: Table  S1). The same prioritiza-
tion scheme ensures that any given atom is assigned 
to at most only one category. The program outputs 

http://durrantlab.com/dimorphite-dl/
http://durrantlab.com/dimorphite-dl/
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Table 1  The 38 ionizable dimorphite-DL substructures in  order of  decreasing priority from  left to  right, 
with representative compounds

Exact substructure definitions are given in Additional file 1: Table S1. The pKa range is the average of all associated pKa values in the database, plus or minus the 
standard deviation
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protonated/deprotonated SMILES, as appropriate for the 
user-specified pH range.

Dimorphite-DL does not calculate pKa values explicitly. 
Rather, for each categorized moiety, it takes one of three 
actions (Fig.  1) based on a moiety-specific pKa range, 
rangePKA = [µ − nσ, µ + nσ], and a user-defined pH range, 
rangepH = [pHmin, pHmax]:

1.	 If µ + nσ < pHmin (i.e., the entirety of rangePKA is less 
than the entirety of rangepH), the moiety is deproto-
nated.

2.	 If pHmax < µ − nσ (i.e., the entirety of rangePKA is 
greater than the entirety of rangepH), the moiety is 
protonated.

3.	 If rangePKA and rangepH overlap, two distinct small-
molecule models are generated, with the moiety pro-
tonated and deprotonated, respectively.

Substructure identification using SMARTS
Dimorphite-DL uses SMARTS (SMILES arbitrary target 
specification [15]) to determine which atoms in a given 
molecule belong to one of the 38 ionizable substructures. 
SMARTS is a language for molecular subgraph isomor-
phism and pattern matching that is an extension of the 
popular SMILES format [13]. SMILES describes a mol-
ecule, but SMARTS describes a molecular pattern (e.g., 
a substructure). All SMILES strings are valid SMARTS 
strings, but SMARTS additionally allows for variable 
atom and bond specifications. A given SMARTS string 
can thus represent multiple related chemical structures.

SMARTS pattern recognition requires standardized 
input molecules. Dimorphite-DL attempts to standardize 

all input SMILES strings automatically. For example, 
N[N+]#N, N=[N+]=N, NN#N, and N=N=N are all rec-
ognized as azides. Both [N+]([O−])=O and N(=O)=O 
are recognized as nitro groups. And aromatic rings are 
recognized regardless of whether the input SMILES 
string describes aromatic bonds (e.g., both Oc1ccccc1 
and OC1=CC=CC=C1 are recognized as phenols).

The Additional file 1 includes the SMARTS representa-
tions of the 38 substructures, as well as the calculated µ 
and σ values (Additional file 1: Table S1). The Additional 
file  1 also describes how dimorphite-DL independently 
handles phosphate and phosphonate groups.

Results and discussion
Dimorphite-DL 1.0 is a fast, accessible, open-source 
Python program for predicting small-molecule ioniza-
tion states. As a simple illustration of the importance of 
accounting for alternate ionization states, consider the 
local anesthetic lidocaine. The pKa of lidocaine is 8.01 
[16], so both the charged protonated- and deprotonated-
amine forms are prevalent at physiological pH. Computa-
tional evidence suggests that both forms bind the sodium 
channel NavPas, preventing cell depolarization [17]. But 
the two protomers have different poses [17], and charged 
lidocaine binds with higher affinity [17]. It is thus criti-
cal to account for both ionization states. Dimorphite-DL 
applied to lidocaine successfully predicted both forms.

The dimorphite‑DL approach
Dimorphite-DL uses a substructure-based empirical 
algorithm to quickly prepare large compound libraries 
for virtual screening (VS). Importantly, it is not limited to 
identifying a single ionizable state per molecule. Rather, 

Fig. 1  A schematic representation of the dimorphite-DL approach. Each ionizable moiety is associated with a pKa range (rangePKA) defined by 
three parameters: µ, σ, and n. The user specifies a pH range (rangepH) and pKa precision factor (n; default: 1.0). The mean (µ) and standard deviation 
(σ) associated with each moiety are derived from the database of small molecules with experimentally characterized pKa values. If rangePKA is 
entirely less than rangepH, dimorphite-DL outputs a deprotonated molecule. If rangePKA is entirely greater than rangepH, dimorphite-DL outputs a 
protonated molecule. If rangePKA and rangepH overlap, dimorphite-DL outputs both deprotonated and protonated molecules
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it can generate multiple states as appropriate for a given 
pH range, thus increasing the chance of identifying the 
most binding-compatible state.

Because distant chemical groups can impact proton 
dissociation, the ideal program for enumerating ioniz-
able states would calculate pKa values in the context of 
the whole molecule. But creating such a program is chal-
lenging. Methods that consider whole-molecule contexts, 
such as quantum mechanical approaches, are too slow for 
high-throughput use. Surprisingly, their pKa calculations 
are not necessarily more accurate than those of simpler 
algorithms [5]. Empirical methods such as dimorphite-
DL are faster, but they draw on chemical databases 
that cannot account for all possible chemical contexts. 
Dimorphite-DL predicts ionization states by considering 
only at most a few atoms adjacent to each ionizable moi-
ety. In compounds with multiple ionizable sites, each site 
is considered independently. Our algorithm thus does 
not account for interactions between sites or other elec-
tronic effects.

To compensate for this limitation, we associate 38 ion-
izable moieties with pKa ranges rather than point values. 
We derive ranges from the experimental pKa values of 
1938 small molecules (see Materials and Methods). For 
each moiety, rangePKA = [µ − nσ, µ + nσ], where µ and σ 
are the mean and standard deviation of the associated 
experimental pKa values, respectively; and n is a user-
defined “pKa precision factor”. Protonation is assigned 
based on the overlap between rangePKA and the user-
specified pH range (Fig. 1).

Dimorphite‑DL accuracy: correct, excessive, and incorrect 
predictions
Defining terms will allow us to better describe the accu-
racy of Dimorphite-DL predictions. Consider a user-
defined pH range, rangepH = [pHmin, pHmax], and a 
compound with an experimentally determined pKa value. 
Further assume that the compound can lose at most one 
proton. Applying dimorphite-DL to this compound can 
have one of three outcomes:

1.	 Dimorphite-DL predicts the correct state

a.	 pKa < pHmin, and dimorphite-DL deprotonates the 
compound

b.	 pKa > pHmax, and dimorphite-DL protonates the 
compound

c.	 pHmin ≤ pKa ≤ pHmax, and dimorphite-DL gener-
ates both deprotonated and protonated forms

2.	 Dimorphite-DL predicts an excess state (i.e., two 
states when only one is appropriate)

a.	 pKa < pHmin or pKa > pHmax, but dimorphite-DL 
generates both deprotonated and protonated 
forms

3.	 Dimorphite-DL predicts the incorrect (or incom-
plete) state

a.	 pKa < pHmin, but dimorphite-DL protonates the 
compound

b.	 pKa > pHmax, but dimorphite-DL deprotonates the 
compound

c.	 pHmin ≤ pKa ≤ pHmax, and dimorphite-DL either 
deprotonates or protonates the compound (not 
both)

We distinguish between “excess-state” and “incor-
rect-state” outcomes because they differ in their con-
sequences. If dimorphite-DL predicts an excess state, it 
needlessly expands the compound library and increases 
the computational expense of subsequent VS. But if it 
predicts an incorrect or incomplete state, VS accuracy 
may suffer because a relevant state is never generated.

The influence of the pKa precision factor on accuracy
Recall that each moiety has an associated rangePKA 
([µ − nσ, µ + nσ]) determined in part by the user-spec-
ified pKa precision factor, n. To assess the influence of 
this factor on accuracy, we evaluated the compounds in 
our database using different values of n (Table 2), always 
over the default rangepH = [6.4, 8.4]. As n increases, more 
compounds are assigned excess states, reducing the num-
ber of entirely correct and entirely incorrect assignments 
(Table  2, Additional file  1: Tables S2, S3, and S4). We 
select n = 1.0 as our default, as it strikes a good balance 
between the three outcomes.

Users can specify other values of n according to their 
needs. Tuning the pKa precision factor is particularly 

Table 2  Dimorphite-DL accuracy

The percentage of molecules that are correctly/excessively/incorrectly 
protonated at different pKa precision factors (n), at physiological pH (6.4–8.4). To 
generate these statistics, we considered all 1938 compounds in our primary set, 
as well as the 78 additional phosphate and phosphonate compounds described 
in the Additional file 1

pKa precision factor, n 
(standard deviation)

Correct (%) Excess (%) Incorrect (%)

0.0 70.9 23.9 5.2

0.5 69.1 26.5 4.4

1.0 58.8 40.2 0.9

1.5 51.2 48.8 0.0

2.0 50.7 49.3 0.0

2.5 23.9 76.1 0.0

3.0 22.1 77.9 0.0
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useful when one needs to limit the size of the com-
pound library. To illustrate, consider a given library com-
pound with i distinct ionizable moieties. Dimorphite-DL 
will process each moiety separately. If no moiety has a 
rangePKA that overlaps with rangepH, dimorphite-DL will 
produce only one protomer. If every rangePKA overlaps 
with rangepH, dimorphite-DL will produce 2i distinct 
protomers.

Selecting lower values of n protects against combina-
torial explosions, as rangePKA and rangepH are less likely 
to overlap. Narrowing the difference between pHmin and 
pHmax can further reduce overlap. These measures limit 
the size of the resulting compound library, reducing the 
computational cost of any subsequent VS. But restrictive 
parameters may force dimorphite-DL to ignore binding-
relevant states, reducing VS accuracy. Table  2, Addi-
tional file 1: Tables S2, S3, and S4 will help the user find 
a good balance between accuracy, generalizability, and 
performance.

Accuracy per ionizable moiety
Next, we evaluated how accurately dimorphite-DL pre-
dicts the ionization states of individual moieties (Table 3). 
To simplify analysis, we considered only n = 1.0 and 
physiological pH (rangepH = [6.4, 8.4]). Here, we focus on 
the amine (1°, 2°, and 3°), carboxylic acid, phenol, benzoic 
acid, and sulfonamide moieties because they are drug like 
and are well represented in our 1938-member compound 
set (21%, 20%, 10%, 7%, and 2%, respectively). A similar 
analysis of the remaining moieties can be found in the 
Additional file 1: Tables S2, S3, and S4.

We evaluated each moiety using threefold cross valida-
tion. For each fold, we divided all the relevant molecules 
from our compound set into a training set (two thirds of 
all samples) and a testing set (the remaining one third of 
all samples). We calculated the pKa mean (µ) and stand-
ard deviation (σ) of the compounds in the training set 
and defined rangePKA to be [µ − 1.0σ, µ + 1.0σ]. To evalu-
ate accuracy, we calculated the percentage of testing-set 

compounds with correct, excess, and incorrect predicted 
states. This cross-validation approach was used only 
to evaluate our model. The published program uses 
rangePKA values derived from all molecules.

Comparing dimorphite‑DL to similar commercial programs
Several other programs can predict small-molecule ioni-
zation states. A complete review of these programs is 
beyond the scope of this work. We direct interested read-
ers to refs. [5, 18–20]. But we do wish to mention a few 
advantages that dimorphite-DL has over other packages.

Dimorphite-DL is free and open source. Similar com-
mercial programs can be expensive (e.g., Schrödinger’s 
Epik [1, 4] and Jaguar; BIOVIA’s Pipeline Pilot; etc.). Not 
all academic researchers can afford the subscription fees, 
and labs that focus primarily on experimental work can-
not justify so large a computational investment.

Some programs (e.g., software by ChemAxon and 
OpenEye) have “free” academic licenses with concern-
ing commercialization and intellectual-property (IP) 
restrictions. For example, OpenEye’s free license requires 
researchers to give up any IP rights and to promptly 
release their work to the public domain. Eligibility is also 
regularly reevaluated, and access may be unexpectedly 
and suddenly withdrawn. Many researchers are reluctant 
to incorporate commercial tools into existing pipelines, 
as they limit dissemination.

Dimorphite-DL is well suited for preparing large com-
pound libraries for use in VS. Unlike some other pro-
grams (e.g., ChemAxon’s Marvin [5]), dimorphite-DL can 
process small molecules in batch. Its empirical approach 
also prepares large libraries quickly. The expensive 
quantum mechanical calculations used by some other 
programs (e.g., Schrödinger’s Jaguar) cannot be eas-
ily applied at scale. ARChem’s SPARC program, though 
capable of batch processing, also reportedly suffers from 
long runtimes [5].

Comparing dimorphite‑DL to Open Babel
The popular cheminformatics program Open Babel [21] 
is arguably most similar to dimorphite-DL in terms of its 
license and features. Like dimorphite-DL, Open Babel 
allows users to ionize small-molecule models as appro-
priate for a given pH. For each input molecule, Open 
Babel produces a single output molecule. In contrast, 
dimorphite-DL can produce multiple outputs, each with 
different ionization states. Open Babel and dimorphite-
DL are also similar in that both are released under open-
source licenses. But Open Babel is licensed under the 
GNU General Public License, a so-called viral license. 
Many who wish to incorporate an ionization module into 
their existing software will find this license unacceptable. 

Table 3  Dimorphite-DL accuracy at physiological pH (6.4–
8.4) for five common moieties

Mean ± standard-deviation percentages were calculated using three-fold cross 
validation. The pKa precision factor (n) is 1.0. Additional file 1: Tables S2, S3, and 
S4 report similar accuracy measures for additional moieties, rangepH, and n

Correct (%) Excess (%) Incorrect (%)

Amine (1°, 2°, and 3°) 26.9 ± 3.0 73.1 ± 3.0 0.0 ± 0.0

Carboxylic acid 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Phenol 33.7 ± 3.8 66.3 ± 3.8 0.0 ± 0.0

Benzoic acid 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Sulfonamide 37.1 ± 11.6 62.9 ± 11.6 0.0 ± 0.0
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In contrast, dimorphite-DL is released under the more 
permissive Apache License, Version 2.0.

Open Babel ionizes small molecules per a rule-based 
approach similar to that of dimorphite-DL. Excluding its 
substructure rules specific to amino acids, Open Babel 
considers 14 generally applicable ionizable substructures. 
In contrast, dimorphite-DL considers 38 such substruc-
tures. There is a one-to-one mapping between many 
Open-Babel and dimorphite-DL substructure rules. Both 
programs recognize the same amines, hydroxamic acids, 
phosphate diesters, phosphonate esters, sulfinic acids, 
guanidines/amidines, and azides. In other cases, a sin-
gle Open-Babel substructure maps to multiple dimor-
phite-DL substructures. For example, unlike Open Babel, 
dimorphite-DL distinguishes between carboxylates and 
phenyl carboxylates; phosphates and phosphonates; sul-
fates and sulfonates; and vinyl alcohols with and without 
conjugated ketones. Open Babel and dimorphite-DL also 
handle aromatic nitrogen atoms differently. Whereas 
Open Babel considers imidazoles and tetrazoles spe-
cifically, dimorphite-DL takes a more generalizable 
approach. When predicting ionization, dimorphite-DL 
considers only whether an uncharged aromatic nitrogen 
atom is protonated (e.g., 1H-pyrrole) or unprotonated 
(e.g., pyridine).

Dimorphite-DL also better accounts for phosphate and 
phosphonate groups. These groups can exist in three ion-
ization states (doubly deprotonated, singly deprotonated, 
and fully protonated). Dimorphite-DL can generate all 
three forms, but Open Babel generates only one of two 
(doubly deprotonated or fully protonated). Dimorphite-
DL also generates both protonated and deprotonated 
azides (pKa = 4.65 [22]); in contrast, Open Babel always 
protonates azides.

Limitations
As mentioned above, Dimorphite-DL uses an empiri-
cal approach with the advantages of speed and reason-
able accuracy, but it does assign ionization states without 
regard for the larger intramolecular context. To under-
stand why intramolecular effects are at times impor-
tant, consider phenol (pKa of 9.99 at 25° in water [23]). 
Adding hydrocarbon substituents to the phenyl ring 
increases the hydroxyl pKa (e.g., m-cresol, 4-(tert-butyl)
phenol, and 2,6-di-tert-butyl-4-methyl-phenol have pKa 
values of 10.09 [24], 10.32 [25], and 12.55 [26], respec-
tively). In contrast, halide substituents tend to decrease 
the hydroxyl pKa (e.g., 2,3,4,5,6-pentachlorophenol, 
2,4,6-trichlorophenol, 2,4-dichlorophenol, and 4-chloro-
phenol have pKa values of 4.79 [27], 6.15 [28], 7.85 [29], 
and 9.59 [25], respectively). Dimorphite-DL considers 
only the phenol substructure when predicting ionization 
states. It knows only that phenols in all their forms tend 

to have hydroxyl pKa values that center around 7.07, with 
a standard deviation of 3.28 (Table 1).

The same limitation applies to additional moieties that 
are themselves ionizable. For example, when a second 
ionizable hydroxyl group is added to a phenol aromatic 
ring, the pKa is slightly reduced (e.g., pyrocatechol, res-
orcinol, and hydroquinone have pKa values of 9.25 [30], 
9.44 [31], and 9.85 [32], respectively). Ionizable carboxy-
late groups also impact the pKa (e.g., 4-hydroxybenzoic 
acid and salicylic acid have hydroxyl pKa values of 9.23 
[33] and 13.3 [34], respectively), as do ionizable sul-
fonate groups (e.g., 4-hydroxybenzenesulfonic acid and 
3-hydroxybenzenesulfonic acid have hydroxyl pKa values 
of 8.7 and 9.07 [35], respectively).

Applying dimorphite-DL to salicylic acid (i.e., 
2-hydroxybenzoic acid) at physiological pH (pH 6.4–8.4, 
default settings) illustrates the occasional pitfalls of our 
limited-substructure approach. Dimorphite-DL correctly 
recognized that protonated carboxyl groups are rare at 
this pH. But it incorrectly predicted that the hydroxyl 
group exists in both protonated and unprotonated forms. 
In reality, the pKa of the salicylic acid hydroxyl group is 
unusually high (13.3 [34]), such that only the protonated 
hydroxyl is truly prevalent. While salicylic acid presents 
an admittedly extraordinary use case, we neverthe-
less welcome future high-throughput methods that take 
a more whole-molecule approach to ionization-state 
prediction.

We note also that dimorphite-DL computes ionization 
states, but not prototropic tautomerization states [36]. 
To clarify, ionization involves the gain or loss of a pro-
ton. Prototropic tautomerization involves intramolecular 
proton transfer from one atom to another. Existing open-
source tools (e.g., MolVS [37]) are available for modeling 
prototropic tautomerization. Using dimorphite-DL with 
these other programs will allow researchers to fully enu-
merate all protonation (i.e., ionization and tautomeric) 
states.

These limitations aside, we expect that dimorphite-DL 
will be a useful tool for researchers engaged in structure-
based VS. This free and open-source program for pre-
dicting small-molecule ionization states will improve VS 
accuracy, helping to identify novel bioactive molecules.
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