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Abstract 

Drug discovery typically involves investigation of a set of compounds (e.g. drug screening hits) in terms of target, 
disease, and bioactivity. CSgator is a comprehensive analytic tool for set-wise interpretation of compounds. It has 
two unique analytic features of Compound Set Enrichment Analysis (CSEA) and Compound Cluster Analysis (CCA), which 
allows batch analysis of compound set in terms of (i) target, (ii) bioactivity, (iii) disease, and (iv) structure. CSEA and 
CCA present enriched profiles of targets and bioactivities in a compound set, which leads to novel insights on under-
lying drug mode-of-action, and potential targets. Notably, we propose a novel concept of ‘Hit Enriched Assays”, i.e. 
bioassays of which hits are enriched among a given set of compounds. As an example, we show its utility in revealing 
drug mode-of-action or identifying hidden targets for anti-lymphangiogenesis screening hits. CSgator is available at 
http://csgat​or.ewha.ac.kr, and most analytic results are downloadable.
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Introduction
During the early phase of drug discovery, it is common 
to identify multiple hit compounds by high-throughput 
screening (HTS) [1, 2]. It is critical to survey their known 
targets, activities, and disease indications to avoid poten-
tial toxicity or side-effects, to understand structure-activity 
relations (SAR), and to direct medicinal chemistry for lead 
generation. Active exploitation of polypharmacology (e.g. 
dual inhibitors) or drug combination has also been con-
sidered as a viable strategy to overcome drug resistance or 
tumor heterogeneity in cancer therapy [3]. Although sci-
entists have access to many chemogenomic databases, they 
are not comprehensive enough individually, nor suitable 
or convenient for batch analyses of a compound set [4–
8]. Recent explosion of bioassay datasets (e.g. PubChem 
and ChEMBL [9, 10]) made rich information available on 
diverse aspects of bioactivities, but such data have been 
used only limitedly in drug discovery. Several integrated 
compound-target DBs are available, but are limited in 
analytic functions [11, 12]. There were several works on 

predictive analyses based on bioactivity profiles or finger-
prints, most of which did not fully exploited bioactivity 
data available [13, 14], or were difficult to use for research-
ers without programming skills [15].

Here, we developed CSgator (Compound Set navigator), 
a web platform that provides a comprehensive interpreta-
tion of compound set. It is equipped with unique analytic 
features of Compound Set Enrichment Analysis (CSEA) and 
Compound Cluster Analysis (CCA). Particularly, we pro-
vide unique analytic functions such as HEA analysis (Hit 
Enrichment Analysis) that provide novel insights or clues 
on drug mode-of-action, or underlying targets of pheno-
typic screening hits (e.g. lymphangiogenesis) as described 
in the following sections with an example case.

Materials and methods
Standardization of compound IDs and gene names
In order to avoid redundancy, CSgator amassed a con-
solidated set of compounds from public chemical data-
base such as PubChem, ChEMBL, ChEBI, and DrugBank 
[5, 7, 10, 16]. We then merged different isotopic, (un)
charged, and (de)protonated forms of the same molecule 
into a single compound ID. For example, lovastatin, a 
HMG-CoA reductase inhibitor falls into 62 PubChem 
CIDs, all of which would show essentially the same or 
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highly similar biological activity. All the compounds 
were mapped to a unified compound ID based on IUPAC 
InChIKey (IUPAC International Chemical Identifier Key) 
using Open Babel v.2.3 [17] by converting SMILES or 
MOL format to InChIKey strings as well as by manual 
mapping of compound names where necessary. Gene IDs 
were standardized using the gene names given by Uni-
ProtKB and NCBI Gene [18, 19].

Collection of compound‑target interaction data
We collected compound-target interaction data from 
15 public databases: CTD, DCDB, DrugBank, MATA-
DOR, TTD, BindingDB, ChEMBL, KiDB, KEGG Drug, 
PharmGKB, IUPHAR, Binding MOAD, DGIdb, GLASS, 
STITCH [4, 6–8, 10, 20–29]. After ID standardization of 
compounds and genes, a total of > 3 mil. compound-tar-
get interactions are collected (Table 1).

Classification of targets and diseases
Compounds and targets were classified by four different 
annotations: (I) Protein family classes by ChEMBL ver-
sion 21, (II) Gene Ontology (GO) terms on Biological 
Process (BP) [30], (III) Disease Ontology (DO) terms that 
cross reference with MeSH (Medical Subject Headings), 
ICD (International Classification of Diseases), NCI’s the-
saurus, SNOMED (Systemized Nomenclature of Medi-
cine) and OMIM [31], and (IV) MeSH Disease term 
provided by NLM (U.S. National Library of Medicine) 
[32].

Bioassay data from PubChem Bioassay and ChEMBL
Bioassay data include information for diverse aspects of 
compound bioactivities. We collected over 1.2  mil. bio-
assay dataset for > 2  mil. compounds from PubChem 
Bioassay and ChEMBL [9, 10]. Some of the bioassay 
dataset were not in a standardized format and required 
further processing such as ordering compounds by activ-
ity, assignment of hit/non-hit compounds, and target ID 
standardization for targeted bioassays. We assigned com-
pounds as hit by applying one of the three criteria. First, 
PubChem Bioassay and ChEMBL provide active/inac-
tive information for ~ 22% of the total assays (~ 270,000 
bioassays), and accordingly, we took the information 
to assign hit or non-hit compounds. For the remaining 
bioassays without active/inactive annotation, the cut-off 
of Z score ≥ 2 or the top 1% were applied as the second 
and the third criteria, and took the union of the result-
ing compound sets as hits. Because only a small fraction 
of the assays were annotated to a specific target, we also 
performed a manual curation to assign bioassays to a 
specific target whenever target information is available in 
the assay title or description. As a result, ~ 10.3% of the 
total assays were assigned to a specific target.

Generation of structural properties
We calculated structural and physicochemical properties 
of all the compounds, which can be exploited for char-
acterization or filtering of a compound set using Open 
Babel toolbox [17]. The physicochemical properties were 
calculated such as molecular weight, FP2 fingerprint, 
logP (Partition coefficient), topological polar surface 
area (TPSA), and hydrogen bond donor and acceptor. 
Additionally, we generate predictors for lead-likeness, 
i.e. Lipinski’s the rule, and QED (quantitative estimation 
of drug-likeness) by Gregory Gerebtzoff (Roche, Switer-
land) implemented in Silico-it package [33].

Utility and discussion
System overview
CSgator includes information on ~ 90 million compounds 
after merging redundant entries, > 6 million compound-
target relations from 15 public databases (Table  1), ~ 1.6 
million compound-disease associations, and > 230 mil-
lion bioactivity points collected from > 1.2 million bioassay 
data set. Whenever available, compounds and targets were 
annotated by protein family, functional annotation by Gene 
Ontology [30], and disease categories by Disease Ontology 
and MeSH [31, 32]. As described in the following sections, 
these annotations are crucial to interpret the character-
istics of input compound set, and provide novel clues on 
drug mode-of-action, and will be expanded as more infor-
mation accumulate. Data sources and current statistics are 
listed in Table 2. These data may be available elsewhere, but 

Table 1  Compound-target interaction data from 15 public 
databases

a  STITCH provides scores for protein–chemical interactions, we filtered that 
interactions on two conditions: experimental score ≥ 700 and database 
score ≥ 700

Source name # interactions

BindingDB 1,078,520

Binding MOAD 15,320

Comparative Toxicogenomics Database 77,327

ChEMBL v.21 512,341

DCDB 1902

DGIdb 16,852

DrugBank 12,501

IUPHAR 12,429

KEGG Drug 9787

KiDB 20,610

MATADOR 1163

PharmGKB 3606

Therapeutic Targets Database 45,901

GLASS 460,881

STITCH v.5a 788,024

Total 3,057,164
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CSgator is unique for its comprehensiveness, clean map-
ping between different resources, and full data accessibility. 

The analytic workflow of CSgator consists of three steps 
of (i) generation of input compound set, (ii) tabular list-
ing of annotations for the input compound set, and (iii) 
compound set analysis step as depicted in Fig.  1. First, 
input compound set can be generated in three different 
ways: (a) by Compound ID Search using SMILES, InChI, 
InChIKey, CAS Registry Number, and other IDs includ-
ing PubChem, ChEMBL, ChEBI,  and DrugBank, (b) by 
Compound Structure Search for compounds with spe-
cific scaffolds or by structural similarity, and (c) by Com-
pound Set Selection, where the precompiled compound 
set is selected. Precompiled compound sets were built 
in various ways, e.g. by target or target family, approval 
status by FDA and other countries, and disease indica-
tion. Notably, users can also freely generate a new com-
pound set by applying Set Operator to precompiled or 
input compound sets, and by filtering compounds based 
on physicochemical properties. Second, CSgator inter-
nally gathers all the annotations of input compounds that 
are grouped into four categories: (i) target, (ii) bioassay, 
(iii) disease, and (iv) structure. All the annotations are 
listed and downloadable in a tabular format. Third, user 
can investigate collective information of a compound 

set, which is not available in other related databases. The 
two unique analyses in CSgator are CSEA (Compound 
Set Enrichment Analysis) and CCA (Compound Cluster 
Analysis), which will be further explained in the following 
sections.

Compound Set Enrichment Analysis (CSEA)
Similarly to Gene Set Enrichment Analysis (GSEA [34]), 
Compound Set Enrichment Analysis (CSEA) refers to 
investigating enriched annotations for a compound set. 
Varin et al. [35] applied CSEA to identify active scaffolds 
enriched in primary screening data. We extend CSEA 
even further to annotations on target, disease, and bio-
assay hits. Particularly, we propose a novel concept of 
Hit Enriched Assays (HEAs) as bioassays of which hits 
are enriched among the compound set of interest. Since 
bioassays generally have intended targets and biological 
processes, HEAs can provide non-obvious links to the 
underlying targets and drug mode-of-actions enriched 
in the input compound set such as phenotypic screening 
hits. Similarly, it also shows enriched targets or diseases 
in a tree format, i.e. Target Enrichment Tree (TET), and 
Disease Enrichment Tree (DET). The degree of enrich-
ment, or Enrichment Score (ES) is calculated as log likeli-
hood ratio (LLR) for HEAs, and odds ratio for TET and 
DET.

ESHEA = LLR = log2

(

|Q ∩H |/|QC ∩H |

|Q|/|QC |

)

ESTET or DET = Odds Ratio = log2

(

|Q⊗H |/|QC ⊗H |

|Q⊗HC |/|QC ⊗HC |

)

|Q⊗H | : The number of interactions betweenQ (compound set) and H (target or disease),

Table 2  Data sources and statistics collected in CSgator

Number of entries Number 
of compounds

Sources Number of relations Standard ID

Compound database

Compound – 89,602,599 PubChem, ChEMBL, 
ChEBI, DrugBank

– InChIKey

Compound-target & disease & bioassay

Target 252,498 852,375 15 Public DBs 6,027,120 Entrez Gene ID & UniProtKB

Disease 5680 10,975 CTD 1,575,457 MeSH & OMIM

Bioassay 1,218,658 2,253,835 PubChem, ChEMBL 229,842,265 PubChem AID & ChEMBL

Classification

Protein family 575 833,590 ChEMBL 21 1,691,879 ChEMBL protein class

GO term 19,234 851,359 Gene Ontology 68,331,986 GO term

Disease ontology 1824 5429 Disease Ontology 46,053 DO term

MeSH disease 6351 6909 NIH 143,277 MeSH

Approval status 9 3765 DrugBank
ChEMBL
NCGC​

12,820 InChIKey
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where Q is the input or query compounds, and QC is the 
compounds that do not belong to Q. H is the compounds 
of interest, e.g. hit compounds for HEA, ligands for a 
target or target family for TET, and compounds related 
to a disease for DET analysis. In calculating ES for TET 
(or DET), we assume compounds not in the query QC do 
NOT interact with the target or target family (or disease) 
although more interactions may exist, but not  yet dis-
covered in any test. These missing information may skew 
the results of TET (or DET), which should be cautiously 
interpreted. Later, we show an example case of CSEA in 
interpreting anti-lymphangiogenesis screening hits in the 
‘Case Study’ section below.

Compound Cluster Analysis (CCA)
Structurally similar compounds tend to share the same 
or structurally similar targets [36]. With the purpose 
to investigate this aspect, CSgator first generates Com-
pound Clusters (CCs) of structurally similar subgroups 
by k-means clustering. It then shows Compound Cluster 
Network (CC-Network), showing connections among the 
compound clusters with target family or disease classes. 
Similarly to CSEA, the degree of enrichment for each 
CC is also calculated as odd ratio, where R represent the 
compounds of each cluster (CC), and RC is the all other 
compounds in the database. Therefore, CC-Network pro-
vides information on how a structurally similar cluster 
of compounds (CC) would be significantly associated to 
a specific target family or disease class compared to all 
other compounds as background.

ESCCA = OddRatio = log2

(

|R⊗H |/|RC ⊗H |

|R⊗HC |/|RC ⊗HC |

)

|R⊗H | : The number of interactions between R (compound cluster) and H (target or disease)

SET Operator

Compound Set Enrichment Analysis 
(CSEA)

CLASSIFICATION

Compound Cluster Analysis
(CCA)

NETWORK 

COMPOUND 
CLUSTER

Annotation of Diverse Profiles

STRUCTURETARGET DISEASEBIOASSAY

T
T

T
T

T

Input Compound SET

MODE OF ACTION

User SET Pre-defined SET

EXPAND

FILTER

a

b

c

Fig. 1  System overview of CSgator web platform. a Input Compound Set generated by user or selected among the predefined sets. It can be also 
created by applying various filters, and combining multiple sets using Set Operator such as union or intersection. b Comprehensive annotations 
of the input compound set are listed in four categories: target, bioactivity (bioassay), disease, and structure. c CSgator provides unique analyses. i.e. 
Compound Set Enrichment Analysis (CSEA) and Compound Cluster Analysis (CCA), of which details are described in the main text
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A case study on interpreting phenotypic screening hits
Here, we show the utility of the two main analytic func-
tions in CSgator using a  case study in interpreting 
phenotypic screening hits. We took the high-content 
phenotype-based assay data for screening inhibitors 
of lymphangiogenesis [37]. Schulz et  al. screened FDA 
approved 1280 drugs (Library of Pharmacologically 
Active Compounds or LOPAC library from Sigma), 
resulting in identifying 31 hits (hit rate of 2.4%). The 31 
hits were mapped to 40 unique compound IDs in CSga-
tor. But this screening dataset alone does not provide 
information on the underlying targets or drug mode-
of-action. With the 40 compounds as an input set, we 
performed CSEA  and CCA analyses implemented in 
CSgator as described in the following section.

CSEA (Compound Set Enrichment Analysis)
CSEA investigates enriched annotations in terms of tar-
get, disease, and bioactivities. In HEA analysis, CSgator 
listed 146 bioassays, where the 40 input compounds were 
significantly enriched as hits. We took the list of HEAs 
that have explicit information on their intended targets 
with high enrichment score (ES > 5) as listed in Table 3. 
The targets of the top ranked HEAs include many genes 
that were known to be involved in lymphangiogenesis. 
The top ranking HEA (ES = 9.75) screened for RGS4 
(Regulator of G-protein signaling 4) inhibitors. Indeed, 
RGS4 plays a key role in regulating tubulogenesis includ-
ing lymphangiogenesis by antagonizing MAPK and 

VEGF signaling [38, 39]. The third and fifth HEA tar-
geted mTOR (ES = 7.12), which generally known to 
control lymphangiogenesis [40, 41]. Thrombopoietin 
(TPO) is the regulator of thrombocyte production, and 
recent studies provide evidence for the critical role of the 
thrombocytes in lymphangiogenesis in human malignant 
tumors [42, 43]. A bioassay targeting TPO was ranked at 
the top 7th with ES = 6.21. Vascular endothelial growth 
factor D (VEGF-D) has been implicated in the key role 
of lymphangiogenesis. TNF-α induces AP-1 binding to 
the VEGF-D promoter, and increase VEGF-D expres-
sion through TNF-α/ERK1/2/AP-1 pathway, which pro-
motes lymphangiogenesis and lymphatic metastasis [44, 
45]. The 10th HEA (ES = 5.85) targeted AP1 signaling. 
In summary, five out of the top 10 HEAs provided direct 
links to the known genes associated to lymphangiogene-
sis. Accordingly, other targets of high ranking HEAs may 
be also involved in lymphangiogenesis, such as GMNN, 
ATAD5, ATXN2, and FEN1 (Table 3).

Similarly, we performed Target Enrichment Tree (TET) 
analysis to get useful clues to underlying targets of phe-
notypic screening assays. CSgator listed target protein 
families prioritized by enrichment score (Table  4). The 
top ranked target family was calcium-activated chlo-
ride channel family (ES = 5.90), of which key role was 
reported in lymph node remodeling by induction of lym-
phangiogenesis [46]. Among the 40 input compounds, 
only 2 compounds are known to interact with the targets 
of the family members in our dataset. It demonstrates the 

Table 3  HEAs (Hit Enriched Assays) from lymphangiogenesis hits

Rank Assay title Target
gene

Enrichment 
score 
of HEA

Number 
of hit/assayed 
compounds

FDR-
adjusted p 
value

PubChem AID
(year)

Reference

1 Inhibitors of regulator of G protein signaling (RGS) 4 RGS4 9.63 152/390,220 3.40E−16 504,845 (2011) [38, 39]

2 Validation screen for inhibitors of Lassa infection – 7.18 54/1279 3.04E−13 463,096 (2010)

3 High content imaging cell-Based qHTS for inhibitors 
of the mTORC1 signaling pathway in MEF (Tsc2-/-, 
p53-/-) cells

MTOR 7.12 23/1280 8.03E−09 2666 (2010) [40, 41]

4 Validation screen for small molecules that induce DNA 
re-replication in MCF 10A normal breast cells

GMNN 6.77 71/1280 4.61E−11 463,097 (2010)

5 High content imaging cell-based qHTS for inhibitors 
of the mTORC1 signaling pathway in MEF cells

MTOR 6.35 52/1280 1.85E−10 2667 (2010) [40, 41]

6 Validation screen for small molecules that inhibit 
ELG1-dependent DNA repair in human embryonic 
kidney (HEK293T) cells expressing luciferase-tagged 
ELG1

ATAD5 6.22 79/1280 3.78E−10 493,107 (2011)

7 qHTS assay for identification of small molecule 
antagonists for thrombopoietin (TPO) signaling 
pathway

THPO 6.21 122/1277 1.11E−08 918 (2010) [42, 43]

8 qHTS for inhibitors of ATXN expression: validation ATXN2 5.94 73/1280 2.67E−07 588,378 (2011)

9 qHTS assay for the inhibitors of human flap endonu-
clease 1 (FEN1)

FEN1 5.87 1368/391,275 2.04E−07 588,795 (2011)

10 AP1 signaling pathway AP1 5.85 55/10,692 4.90E−5 357 (2006) [44, 45]
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current lack of enough compound-target data even after 
the integration of 15 publicly available datasets. There-
fore, the utility of TET or DET analysis may be limited 
at the moment compared to HEA analysis. In spite of 
this limitation, it showed significant enrichment (FDR-
adjusted p value = 0.00431). We were able to identify 
other target families potentially associated to lymphangi-
ogenesis. The families related to cytochrome P450 were 
found frequently within the top 10 ranks (five out of the 

ten families). It may be associated that oxygen released by 
oxidoreduction in lymph tissue causes expansion of lym-
phatic vessels [47]. If we use a larger input set and col-
lect more compound-target dataset, TET analysis may 
become more useful with better statistical power.

CCA (Compound Cluster Analysis)
Certain properties of a compound set may be evident 
only in structurally similar subgroups. CCA allows 

Table 4  Target enrichment tree results from lymphangiogenesis hits

Rank Target family Target Q⊗ H Enrichment score FDR adjusted p value

1 CA ACT CL (calcium-activated chloride channel) ANO1 2 5.90 4.31E−03

3 CYP_3A2 (cytochrome P450 3A2) Cyp3a2 (Tax ID: 
10116)

2 5.30 8.34E−03

4 SLC47 (SLC47 family of multidrug and toxin extrusion 
transporters)

SLC47A1 2 4.48 2.21E−02

5 Structural (structural protein) COL1A2 38 4.07 6.33E−31

6 Ca ATPase (calcium ATPase) ATP2A2 2 3.97 3.81E−02

7 CYP_2E1 (cytochrome P450 2E1) CYP2E1 5 3.74 4.36E−04

8 CYP_2E (cytochrome P450 family 2E) CYP2E1 5 3.74 4.57E−04

9 GLY (glycine receptor) GLRA1 3 3.74 1.02E−02

10 CYP_1B1 (cytochrome P450 1B1) CYP1B1 3 3.70 1.03E−02

11 CYP_1B (cytochrome P450 family 1B) CYP1B1 3 3.70 1.06E−02

Fig. 2  CCA result for the anti-lymphangiogenetic screening hits. CC #1–#3 are the structurally similar clusters of the input compounds generated 
by k-means clustering (k = 3), which are linked to the relevant DO (Disease Ontology) terms
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identification of enriched features in structurally simi-
lar clusters of compounds. In CSgator, we obtained 
three compound clusters (CC #1–#3) in the 40 input 
compounds by setting the number of clusters, k = 3. 
Then, a network of CCs and disease classes is generated 
(Fig.  2). This network showed the distribution of their 
original indications, and several notable connections 
were observed. CC #2 was linked to several diseases 
including viral infectious disease. There are several 
studies that herpes virus-triggered immune response 
drives lymphangiogenesis [39, 48, 49]. Both CC #2 and 
#3 were strongly connected to cancer, which may be 
expected because inhibition of lymphangiogenesis has 
emerged as a promising strategy for cancer therapy [47, 
50].

Conclusions
CSgator is a highly comprehensive and integrated 
analytic system for compound set analysis in terms 
of targets, bioactivity profiles, structural properties, 
and disease indications. Such information is crucial to 
interpret a set of compounds such as high-throughput 
screening hits, avoid potential side effects or toxicity, 
and investigate polypharmacology profiles for drug dis-
covery and development. It provides unique functions 
such as CSEA and CCA, which are not available in 
other similar tools and databases. It showed that CSga-
tor can give novel clues on drug mode-of-action and 
the underlying targets for phenotypic screening hits, 
as shown in the example case of interpreting the anti-
lymphangiogenesis screening hits.
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