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Abstract 

Bond orders and formal charges are fundamental chemical descriptors. In cheminformatic applications it is neces-
sary to be able to assign these properties to a given molecular structure automatically, given minimal input infor-
mation. Here we describe a method for determining the bond order and formal charge assignments from only the 
atom types and connectivity. Our method utilises a graph theoretical description of electron positions. Each electron 
position assignment is scored according to lookup tables of atomic and bond dissociation energies derived from 
quantum chemical calculations. We tested three different optimisation methods—local optimisation, an A* pathfind-
ing method, and an FPT optimisation method utilising tree decompositions—for finding the best electron position 
assignment, from which the bond orders and formal charges are extracted. We show that our method can assign 
bond orders and formal charges at a high degree of accuracy across a wide range of molecules from two different 
databases, and that the FPT algorithm provides the best combination of speed and accuracy.
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Introduction
The ability to assign chemical characteristics such as 
bond orders and formal charges is crucial to many 
higher-order algorithms in computational chemistry 
and cheminformatics. The formal charge is the charge 
assigned to an atom in a molecule assuming that elec-
trons in all chemical bonds are shared equally between 
atoms, and the bond order of a bond is the number of 
chemical bonds between a pair of atoms. Both proper-
ties can be easily deduced from the Lewis structure of 
a molecule, which shows how the valence electrons are 
arranged amongst the atoms and bonds of the molecule.

The best way to determine the Lewis structure of 
a molecule is to calculate the actual electronic den-
sity distribution and then use the Natural Bond Orbital 
method  [1] to obtain bond orders and formal charges. 
However, this approach can be computationally expen-
sive, and with the advent of large databases of organic 
molecules, such as the Protein Data Bank (PDB) and 

Cambridge Structural Database (CSD), the need for fast 
automated schemes became pertinent. As such, over the 
last few decades, a number of such schemes have been 
developed. The COBRA program of Leach et al. [2] uses 
a backtracking search algorithm to automatically assign 
bond orders. IDATM from Meng and Lewis  [3] can be 
used to determine the connectivity and hybridisation 
state of atoms based on input three-dimensional (3D) 
coordinates. Baber and Hodgkin follow a similar scheme, 
but can also assign bond orders  [4]. Lang et  al. assign 
bond orders based on characteristic bond lengths, bond 
angles and torsion angles, [5] as do Hendlich et al., who 
also include small functional group identification to help 
avoid incorrect assignments due to erroneous or ambigu-
ous geometrical data [6]. All of these methods, however, 
require accurate 3D coordinate information. The meth-
ods of Froeyen and Herdewijn  [7] and Labute  [8] could 
theoretically be used on structures with only atom type 
and connectivity information, but they were developed 
primarily for use when 3D coordinate information, albeit 
for only the heavy atoms, is provided.

Wang et  al. developed a heuristic method to deter-
mine bond orders based on arbitrary penalty scores  [9]. 
The biochemical algorithms library (BALL) software 
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from Dehof et  al. is an extension of this work. Dehof 
et  al. used the same penalty scores as Wang et  al., and 
developed three exact solvers guaranteed to find a bond 
order assignment with minimum total penalty score, as 
well as allowing enumeration of all possible bond order 
assignments with minimum total penalty score [10]. Both 
of these methods only require element type and atom 
connectivity information when all hydrogen atoms are 
included. As formal charges and bond orders are some-
what co-dependent, the absence of formal charges in the 
input molecule could result in incorrect atom types being 
perceived, leading to incorrect bond order assignments. 
Theoretically, formal charges can be back calculated from 
bond order assignments (if they are correct), however 
there can be situations where ambiguous formal charge 
assignments are possible, and there is no guarantee that 
the calculated formal charges will match the required 
total molecular charge.

As part of a broader molecular dynamics automated 
parameterisation scheme, we have developed a new 
method for the simultaneous assignment of formal 
charges and bond orders. In order to allow both of these 
properties to be assigned in situations where the available 
coordinates are not energetically favourable, our method 
requires only chemically plausible atomic coordinates, 
along with element type, atom connectivity, and the total 
charge of the molecule. The combination of atom con-
nectivity and total molecular charge fixes the protonation 
state of the molecule. We take advantage of the fact that 
in essence, formal charges and bond orders are descrip-
tions of the positions of valence electrons within a mole-
cule. Minimising some function of the electron positions 
thus results in an optimal formal charge and bond order 
assignment. Given that electron positions are involved, 
the obvious choice of function is one derived from high-
level quantum chemical calculations.

We describe here the function that is minimised and 
three different optimisation methods: local optimisa-
tion, the A* pathfinding method, and an FPT optimisa-
tion method utilising tree decompositions. We first check 
the self-consistency of the algorithms, then compare the 
performance of the A* method in our software and in 
the BALL software of Dehof et al., and lastly compare to 
the bond order and formal charge assignments from two 
molecular databases in terms of both the speed and the 
accuracy with which these reference data are reproduced, 
as well as the level of theory required for the quantum 
chemical calculations such that the scoring function 
identifies the correct assignments. We find that the FPT 
algorithm provides the best balance between efficiency 
and accuracy. Using FPT, our method attains similar 
accuracy to that of Dehof et al., but without the need to 
provide the formal charge.

The code described here is available on Github at https​
://githu​b.com/allis​on-group​/indig​o-bondo​rder. It is writ-
ten in C++, utilising the Boost graph library,  [11] and 
requires a C++-14 compliant compiler. For ease of use, 
Python bindings are provided for using  version 2.2.2 of 
the pybind11 library [12].

Methods
Our bond order and formal charge assignment scheme 
determines an optimal assignment of electron positions 
for a molecule by minimising a score that is a function of 
the electron assignment. We first describe how the chem-
ical features of the molecule are represented and the ini-
tialisation of the electron position assignments. We then 
outline the electron assignment scoring function, which 
depends upon scores associated with the formal charge 
state of each atom and the order of each bond. Lastly, we 
describe the three different methods used to optimise the 
electron position assignments, giving rise to the formal 
charge and bond order assignments for the molecule.

Initialisation
A query molecule can be submitted in any of the stand-
ard chemical formats able to be parsed by Open Babel, 
so long as the number and type of each atom, including 
hydrogen atoms, their connectivity, and the total molecu-
lar charge are provided explicitly. Some file formats allow 
for implicit hydrogen atoms through the use of atom typ-
ing. This information is encoded internally as a molecular 
graph, so that a graph theoretic approach can be used to 
optimise the electron position assignment.

The total number of electrons whose position must be 
optimised is calculated from the number of valence elec-
trons according to

where eT is the total number of electrons to place, qT is 
the total molecular charge, NA and NB are the numbers 
of atoms and bonds in the molecule, respectively, and νi 
is number of valence electrons of atom i, which is known 
from its elemental type. The −2NB component accounts 
for each bond in the molecule requiring two electrons in 
order to have a bond order of at least one.

The positions that electrons can occupy in a mole-
cule, encoded as a multiset of graph vertices and edges, 
P , are determined as follows. Each element has a target 
valency, set to eight for all elements other than hydro-
gen, for which it is two, and phosphorous and sulfur 
atoms involved in at least three bonds, for which it is set 
to ten and twelve respectively. In this way, we allow for 
hypervalent representations of functional groups such 

(1)eT = −qT − 2NB +

NA
∑

i=1

νi,

https://github.com/allison-group/indigo-bondorder
https://github.com/allison-group/indigo-bondorder


Page 3 of 12Welsh and Allison ﻿J Cheminform           (2019) 11:18 

as phosphates and sulfates, while representing all other 
groups, such as nitros, in charge separated form. The 
multiplicity of a given vertex v in P is given by v ∈mv P 
where

with τv being the target valency of the element associated 
with v and δ(v) the degree of v. The multiplicity of a given 
edge e = (u, v) in P is given by e ∈me P where

Electron assignment scoring
Let G = (V ,E) be a molecular graph. An electron assign-
ment is a map cp : V ∪ E → Z≥0 where cp[x] is the total 
number of electrons placed on member x ∈ V ∪ E . The 
score of the electron assignment is then given as the sum 
of scores for each vertex and edge.

These scores are stored in a lookup table, Ŵ , using bit 
shifting to generate a unique 32-bit unsigned integer 
key, kx . If a given key is not found in the lookup table, a 
default score of ∞ is given.

For a vertex v, the lookup table key depends on the ele-
ment of the corresponding atom and its formal charge, 
calculated as

where N(v) is the set of neighbouring vertices of v. The 
first seven bits of the key are set as per the binary value 
of the atomic number. The next four bits are set to the 
binary value of the magnitude of the calculated formal 
charge. Finally, the twelfth bit is set if the formal charge 
is negative, and left unset if it is positive. If the valence 
state of an atom exceeds its target valence, the score of 
that atom is set to ∞ , and no key is calculated.

For an edge e, the lookup table key depends on the ele-
ments of the two vertices the edge is between, and the 
number of electrons assigned to the edge, cp[e] . In the 
same manner as the vertex key, the first seven bits of the 
key are set to the binary value of the atomic number of 
one of the vertices. The next seven are set to the binary 
value of the other vertex. Finally, bits fifteen through 
eighteen inclusive are set as per the binary value of the 
number of electrons assigned to the edge. As each edge 
will always have at least two electrons assigned, there is 
no overlap between the set of possible keys for the verti-
ces and edges.

These simple methods for key determination were cho-
sen as the corresponding scores can be easily determined 

(2)mv = τv − 2δ(v)

(3)me = min (τu − 2δ(u), τv − 2δ(v)).

(4)S =
∑

x∈V∪E

Ŵ[kx]

(5)F(v) = νv − cp[v] −
∑

u∈N (v)

cp[(u, v)]

2

from quantum chemical calculations. We note that there 
is sufficient flexibility in using 32-bit unsigned integer 
keys for more complex key generation methods to be 
used, incorporating optimised key–score pairs.

At present, scores have only been calculated for the 
elements—hydrogen, carbon, nitrogen, oxygen, fluorine, 
phosphorus, sulfur, chlorine, and bromine—and bonds—
single, double, and triple—that most commonly occur in 
bio-organic molecules, but as these scores are derived 
from quantum chemical calculations, they can easily be 
supplemented as required.

Formal charge score
In a crude sense, atoms with formal charges can be 
described as ions with a charge equal to the formal 
charge. Therefore, formal charge scores were determined 
from quantum chemical calculations of atomic/ionic 
energies. For each element, scores for all possible formal 
charge states were calculated. For example, carbon can 
have formal charge states ranging from + 4 (all valence 
electrons removed) to − 4 (electrons added until valence 
shell is an octet), thus we consider C4+ , C3+ , C2+ , C+ , C0 , 
C− , C2− , C3− and C4− . While in normal molecules, it is 
highly unlikely that the majority of these formal charges 
are viable, they are included for completeness and to help 
guide the optimisation methods away from unrealistic 
electron assignments.

The atomic energy depends on the spin state of 
the atom or ion. Looking at carbon again, there are 
four valence electrons in an electron configuration of 
1s22s22p2 . The lowest energy spin state is the triplet state, 
with the two electrons in the 2p shell unpaired in degen-
erate orbitals. Both singlet and quintet states are con-
ceivable, but they are higher energy states. We therefore 
consider only the lowest energy spin state for a given for-
mal charge of each element. The scores were then deter-
mined as being the difference between the lowest energy 
spin state, and a reference energy of the neutral atom in 
either the singlet or doublet state, depending on its num-
ber of electrons. All calculations of atomic/ionic energies 
were calculated with the CR-CCL method,  [13, 14] uti-
lising the def2-SVPD and def2-TZVPPD basis sets  [15]. 
Calculations were performed using the GAMESS-US 
version 18AUG 2016(R1) software  [16, 17]. The scores 
are given in Additional file 1: Tables S1 and S2.

Bond order score
Bond dissociation energies are a natural basis for the 
bond order scores. The bond dissociation energy is 
defined as the change in enthalpy when a bond is homo-
lytically cleaved. For example, the bond dissociation 
energy of the C−O bond in methanol is given by the 
enthalpy change associated with the reaction
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The bond dissociation energy is computed by calculat-
ing the energy difference between a molecule containing 
the bond of interest and the two fragments produced by 
homolytic cleavage of the bond. We create the simplest 
possible molecule containing each bond type as deter-
mined by a stick drawing. This is just the two atoms 
involved, with hydrogen atoms added to fill the valence 
positions of non-hydrogen atoms. For example, to deter-
mine the score to use for a C≡C bond, the bond disso-
ciation energy of ethyne is calculated. The score for each 
bond is determined as being the difference between 
the bond dissociation energy and the bond dissociation 
energy of the highest order bond considered between the 
two elements involved.

The structure of each molecule and the fragments pro-
duced by homolytic cleavage are geometry-optimised at 
the MP2  [18] level of theory, followed by a single point 
energy calculation with the CR-CCL method, [13, 14] uti-
lising the def2-SVPD and def2-TZVPPD basis sets  [15]. 
Where appropriate, calculations were performed both 
with and without accounting for the basis set superpo-
sition error [19]. Calculations were performed using the 
GAMESS-US version 18AUG 2016(R1) software [16, 17]. 
The scores are given in Additional file 1: Tables S3–S6.

Formal charge and bond order determination
Once an optimised electron assignment has been cal-
culated, determining the formal charge on each of the 
atoms and the bond order of all of the bonds is simple. 
For each atom, its formal charge is calculated as shown in 
Eq. (5). For each edge, e, the bond order is calculated as

Optimisation methods
Finding the formal charge and bond order of a molecule 
requires minimising the value of S given in Eq. (4). Three 
different optimisation techniques for finding the low-
est scoring electron assignment were tested: a steepest 
descent local optimisation method (“Local optimisation” 
section), an A* pathfinding based method (“A*” section) 
and an FPT optimisation method utilising tree decompo-
sitions (“Fixed parameter tractable (FPT)” section).

Local optimisation
Local optimisation acts similarly to a steepest decent 
gradient optimisation method. It is a greedy method 
that searches for an optimal electron assignment by 
finding the lowest scoring neighbour of a given electron 

H3C−OH
[�H ]
−→H3C

. +HO..

(6)O(e) =
cp[e]

2
.

assignment and iteratively applying this neighbour search 
until there are no lower scoring neighbours. Computa-
tionally, it is a relatively cheap optimisation method, and 
will always converge, but not necessarily to the global 
minimum.

Setup An initial electron assignment is generated as 
follows. For each possible electron assignment posi-
tion p ∈ P , a score is calculated and then an electron is 
assigned to the position which has the lowest score. This 
is iteratively applied, assigning a single electron at a time, 
until eT electrons have been assigned, giving the initial 
electron assignment.

Neighbour searching Local optimisation determines the 
score change that would result when going from one elec-
tron assignment to each neighbouring electron assignment, 
which are determined as follows. The multiset of possible 
positions for electrons to be assigned, P , is converted to a set 
P, i.e. duplicate members are removed. Every member p ∈ P 
is checked to determine if it contains electrons in the cur-
rent electron assignment, i.e. cp[p] �= 0 , meaning that it can 
be used as an electron source. If it can, all other members 
q ∈ P \ p are checked to determine if they can hold another 
electron, i.e. mult(P , q)− cp[q] > 0 , meaning that q can act 
as a target electron position. A neighbour of the current elec-
tron assignment is produced by moving an electron from a 
source position to a target position. Thus, all the neighbours 
of an electron assignment are given by the set of electron 
assignments produced from all possible source–target pairs. 
If multiple electron assignments with the same score exist, 
the neighbour searching can search the neighbours of all of 
the assignments, instead of just one of the assignments.

Score minimisation Determining an optimal elec-
tron assignment using the local optimisation method is 
straightforward. The score of each neighbour assignment 
is determined. If at least one of the neighbour(s) has a 
lower score, the neighbour search is repeated using the 
lowest scoring neighbour(s) as the initial electron assign-
ments. This iterative update of the electron assignment 
proceeds until there are no neighbours with a lower 
score, in which case the optimisation process has con-
verged to a local minimum.

A*
An A* approach was one of the three optimisation 
methods utilised by Dehof et  al. for bond order assign-
ment  [10]. Such an approach is taken here for compari-
son purposes.

A* is a path-finding algorithm for determining a mini-
mum cost path between a start, s, and end, t, location [20]. 
It employs a search heuristic as a means to guide the path 
finding process towards more promising paths. The list of 
vertices to search from is stored in a priority queue, meaning 
the most promising vertices are searched first. The priority is 
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determined by assigning a cost, f (r) = g(r)+ h(r) , where 
g(r) is the real cost of the path s . . . r and h(r) is an heuristic 
estimate of the cost of the path r . . . t , to each visited vertex 
r. If the cost of a vertex r exceeds some upper limit value, 
that vertex will not be added to the priority queue. Here, 
this upper limit is calculated as the score of the initial local 
optimisation electron assignment (see “Local optimisation” 
section) plus one. Obviously, the nature of the heuristic func-
tion will influence the efficiency of the search algorithm. To 
be guaranteed to obtain a minimum cost path, the heuristic 
must be admissible, meaning ‘optimistic’. That is, the true 
cost of the path r . . . t cannot be lower than h(r).

Let P ⊂ P be the set of unique possible positions to 
assign electrons. The score minimisation problem given the 
molecular graph G = (V ,E) can be formulated into a |P|-
level tree T, i.e. the path from the root vertex to a leaf will 
be of length |P|. Each level of the tree represents a possible 
position for electrons to be assigned. A vertex at level k has 
m+ 1 neighbours, where m = mult(P ,w) and w ∈ P is the 
position associated with level k + 1 , to allow for all possible 
electron counts placed in w, from 0 to m.

To formulate the scoring functions g(r) and h(r), some 
additional definitions must be made. A partial electron 
assignment, R(r), is denoted as the set of pairs (j, n) where 
j is a member of the path s . . . r and n ∈ {0, . . . , mult(P , j)} 
is the number of electrons assigned there. R(r) also con-
tains pairs (x, 0) for all elements x ∈ V ∪ E \ P.

Q(r) is the set of calculable members x ∈ V ∪ E at ver-
tex r. x is deemed calculable at vertex r ∈ T  if the following 
conditions are met:

(1)	 x /∈ P \ Ri , where Ri is the set of first members of 
R(r);

(2)	 If x ∈ V  , condition 1 holds for all neighbours of x;
(3)	 If x ∈ E , the pair x = y, z ⊆ Q(r).

As condition 3 is a requirement for determining the calcu-
lability of bonds, the calculability of all atoms is determined 
first.

Cost Functions Each vertex that is visited through the A* 
search is assigned a cost, f (r) = g(r)+ h(r) . The exact 
cost of the path s . . . r , g(r), is defined as

where Ŵ[kx] is the score of member x ∈ V ∪ E with par-
tial electron assignment R(r), as defined in “Electron 
assignment scoring” section. If the number of electrons 
assigned in R(r) is greater than eT , g(r) = ∞.

The heuristic cost of the path r . . . t , h(r) is defined as

(7)g(r) =
∑

x∈Q(r)

Ŵ[kx]

(8)
h(r) =

∑

x∈Q(r)∁

min
{

a ∈ B(x) : Ŵ[kx,a]
}

where Q(r)∁ is the complement of Q(r).
If x ∈ E , such that x = {y, z} then B(x) is the set of 

possible numbers of electrons to assign to x and kx,a 
determines the key for x given R(r) with an additional a 
electrons assigned to x. B(x) is given by

where V(y) is the valence of y in the partial electron 
assignment R(r).

If x ∈ V  , then B(x) is the set of formal charge values x 
can attain given R(r), and kx,a determines the key for x 
assuming it has a formal charge of a. In this case, B(x) is 
given by

where F(x) is the formal charge of x given R(r) calculated 
as per Eq. (5).

Fixed parameter tractable (FPT)
In a similar vein to Dehof et  al.  [10], we also imple-
ment an FPT based approach. Given a molecular graph 
G = (V ,E) , which is a tree, the electron assignment 
problem can be easily solved using dynamic program-
ming, i.e. recursively splitting the problem into smaller 
sub problems and solving the sub problems. Not all 
molecular graphs are trees, but their generally sparse 
nature means that they are ‘tree-like’.

Given a graph G = (V ,E) , the tree-decomposition of 
G, (T ,V) , where T is a tree and V = (Vt)t∈T  is a fam-
ily of vertex bags Vt ⊆ V  indexed by the nodes t of T. 
(T ,V) satisfies the following three conditions:

	(i)	 V =
⋃

t∈T Vt;
	(ii)	 for every edge e ∈ E where e = {u, v} there exists a 

t ∈ T  such that e ⊆ Vt;
	(iii)	Vt1 ∩ Vt3 ⊆ Vt2 whenever t1, t2, t3 ∈ T  satisfy 

t2 ∈ t1Tt3.

The width of (T ,V) is the number max
{

|Vt | − 1 : t ∈ T
}

 . 
This width gives the fixed parameter. Figure  1b shows 
a tree-decomposition of the graph in Fig.  1a. It has a 
width of two.

In order to simplify the algorithm, the concept of a nice 
tree-decomposition is used. A tree-decomposition (T ,V) 
is called nice if it satisfies the following conditions:

(1)	 T is rooted at a leaf node r and Vr = ∅;
(2)	 For every leaf l ∈ T  , Vl = ∅;
(3)	 Every node t ∈ T  has at most two children;
(4)	 If t ∈ T  has two children, c and d, then 

Vt = Vc = Vd and t is known as a join node;

(9)
B(x) =

{

b ∈
{

0, . . . , mult(P , x)
}

: V (y)+ b ≤ τy ∧ V (z)+ b ≤ τz
}

(10)B(x) =
{

F(x)+ b ∈ {0, . . . , τx − V (x)}
}
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(5)	 If t ∈ T  has one child, c, then one of the following 
conditions is true:

(a)	 Vt ⊂ Vc and |Vt | = |Vc| − 1 and t is known as a 
forget node with forgotten vertex vtf :=Vc \ Vt.

(b)	 Vt ⊃ Vc and |Vt | = |Vc| + 1 and t is known 
as an introduce node with introduced vertex 
vti :=Vt \ Vc.

Forget and introduce nodes are defined in relation to the 
path from a leaf node to the root node. Figure 1c shows a 

a

b c
Fig. 1  A graph a G = (V , E) with V = {A,B,C,D,E,F,G,H} and E = {(A,B),(A,C),(A,E),(B,D),(B,H),(C,D),(C,F),(D,G)} , a tree-decomposition b (T ,V) of G and c 
a nice tree-decomposition. The nodes of the nice tree-decomposition are coloured red for the root node, green for leaf nodes, white for introduce 
nodes, blue for forget nodes and orange for join nodes



Page 7 of 12Welsh and Allison ﻿J Cheminform           (2019) 11:18 

nice tree decomposition produced from the tree decom-
position in Fig. 1b.

The electron assignment optimisation process requires 
scores to be determined for both atoms and bonds. As a 
nice tree-decomposition introduces and forgets vertices, 
the edges of G must be treated as vertices. To do this, the 
edges are explicitly added into the bags of the tree-decom-
position of G, at the expense of a larger width. An edge is 
introduced at the same time the first of its vertices is intro-
duced, and forgotten once the second vertex is forgotten.

Algorithm A tree-decomposition of a molecular graph 
is obtained using the GreedyFillIn upper-bound heuristic 
described by Bodlaender and Koster, [21] and converted 
to a nice tree decomposition. Optimisation of electron 
assignment then proceeds as follows. Let t ∈ T  be a node 
of the nice tree-decomposition of a graph. Then Xt is 
the set of forgotten vertices vsf ∈ Vs associated with the 
forget nodes of the subtree Ts induced on T below (and 
including) the node t. The total number of electrons to 
assign eT and the multiset P of positions at which the 
electrons can be assigned are determined as per “Ini-
tialisation” section. Each node t is given a score table St 
indexed by the ordered pair (l, k) ∈ Lt × Kt where

with St [l, k] being the minimum score of forgotten verti-
ces Xt with l ∈ Lt forgotten electrons and the additional 
constraint of further partial electron distribution k ∈ Kt . 
Beginning from the leaves of the nice tree-decomposi-
tion, and scoring only when all children of a node have 
been scored, the algorithm distinguishes the kind of each 
node and determines the score matrix as follows:

Leaf node Leaf nodes are empty sets, so the score table 
of a leaf node is also empty.

Introduce nodes Let t ∈ T  be the introduce node with 
child c, and xt = Xt \ Xc . Then

Forget nodes Let t ∈ T  be the forget node with child c, 
and xt = Xc \ Xt . Then

(11)Lt = {nmin, . . . , nmax},

(12)nmin = max{0, eT − |P| + |P ∩ Xt |},

(13)nmax = min{eT , |P ∩ Xt |},

(14)Kt = X1 × · · · × Xj ,

(15)Xj = {(j, k) : j ∈ Vt , 0 ≤ k ≤ mult(P , j)},

(16)St [l, k] =

{

Sc[l, k \ xt ] if k \ xt �= ∅,
∞ otherwise.

(17)
St [l, k] = min

n ∈ {0, . . . , mult(P , xt)}
p ∈ Lc : p+ n = l

{

E(xt , k ∪ Xt , n)+ Sc[p, k ∪ xt ]
}

where E(xt , k ∪ Xt , n) is the score of xt with n electrons 
positioned and the partial electron distribution k ∪ Xt.

Join nodes Let t ∈ T  be the parent of c and d with 
Vt = Vi for i ∈ c, d . Then

Root node Each nice tree decomposition has only one 
root node r ∈ T  which is formally a forget node. How-
ever the score table of the root node is unpopulated as 
Kr = ∅ . Rather than fill a score table, the minimised 
electron assignment score is determined. Let c be the 
child of r with xr = Xc . Then the minimum score is 
given by

Practical optimisation
There are a number of techniques which can be used to 
optimise the electron assignment algorithms described 
above. As opposed to implementation optimisation 
techniques which do not affect the outcome of the 
algorithms, only the computational cost of performing 
them, these are considered practical optimisations as 
they could influence the results obtained, but generally 
would not be expected to do so.

Electron pairs A simple means to optimise the algo-
rithms is to utilise electron pairs instead of single 
electrons. Generally, one would expect electrons to 
be found in pairs anyway: two electrons per bond 
order and lone pairs of electrons on atoms. By explic-
itly assigning pairs, the search space can be massively 
reduced, leading to an increase in performance. This 
optimisation is recommended, is the default setting, 
and is used for all results presented here.

Pre-placing electrons In the majority of molecules, 
there are a number of elements to which a minimum 
number, larger than zero, of electrons are expected 
to be assigned. For example, the halogens would be 
expected to have three lone pairs of electrons assigned 
when they are bonded to only one other atom. By plac-
ing an expected minimum number of electrons on 
various atoms of the molecule before undertaking the 
optimisation, the search space of the algorithms is 
reduced, and so the optimisation cost is reduced.

(18)St [l, k] = min
(p,q)∈Lc×Ld :p+q=l

{

Sc[p, k] + Sd[q, k]
}

(19)

Smin = min
n ∈ {0, . . . , mult(P , xr)}
p ∈ Lc : p+ n = eT

{

S(xr ,Xr , n)+ Sr[p, xr]
}
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Reference formal charge and bond order assignments
Validation of the accuracy of our method requires refer-
ence data, i.e. a set of molecules for which both formal 
charge and bond order properties are already known. 
The reference data must also represent aromatic bonds 
in kekulised form, i.e. alternating single and double 
bonds, and hydrogen atoms must be explicitly present 
or able to be added automatically. Two molecular data-
bases that fit these requirements were chosen as refer-
ence data sets: the MMFF94 validation suite  [22] and 
the KEGG Drug Database  [23]. These databases were 
previously used to validate the bond order assignment 
methods developed by Dehof et al. [10].

All molecules in each reference data set were parsed 
to extract the element and connectivity information 
required for our internal graph theoretic representation 
(see “Initailisation” section). In cases where one struc-
ture file contained multiple molecules, the molecules 
were treated separately. Molecules were discarded if they 
contained dangling bonds due to being monomer units, 
if they contained three or fewer non hydrogen atoms, if 
they contained elements not included in the score tables, 
if they contained an odd number of valence electrons, or 
if they were identical to a previously parsed molecule.

The MMFF94 validation suite contains 761 structures 
for small molecules and ions, 698 of which are derived 
from the CSD. The native CSD structures were manu-
ally modified by the authors, by assigning bond orders 
and formal charges and, where appropriate, adding miss-
ing hydrogen atoms to complete the valence [22]. Formal 
charges and bond orders are available in either hyper-
valent or dative representation, with the hypervalent 
representation used here. After filtering using the rules 
described above, 691 unique molecules were identified. 
Canonical SMILES strings for these structures are given 
in Additional file 1: Table S7.

The KEGG Drug Database contains a large number of 
drug like molecules  [23]. Its structure files contain only 
2D coordinate information, meaning that they are a per-
fect test set for connectivity-only bond order and formal 
charge assignment. Hydrogen atoms are not explicitly 
present in the structure files. Rather, they are implic-
itly given through providing types to the heavy atoms. 
Accordingly, explicit hydrogen atoms were added to the 
molecules using this atom type information  [24]. After 
filtering using the rules described above, 5676 unique 
molecules were identified. Canonical SMILES strings for 
these molecules are given in Additional file 1: Table S8.

Results and discussion
We first discuss the consistency of the three optimisation 
algorithms described above by comparing the optimised 
electron assignment scores that they provide. Then we 

discuss the accuracy of the FPT algorithm in regards to 
its ability to reproduce the formal charge and bond order 
assignments provided by the two reference databases.

Algorithm consistency
For the consistency tests described here, the scores used 
were derived from calculations performed using the 
def2-SVPD basis set, without accounting for the basis 
set superposition error. This set of scores was chosen as 
for self-consistency tests it does not matter whether the 
optimised score corresponds to the true formal charge 
and bond order state, rather only that the algorithms are 
correctly determining the lowest-scoring state. Electron 
pairs were utilised for maximum performance. Electrons 
were not pre-placed.

As expected, we find that the A* and FPT algorithms 
have 100% agreement in regards to the optimised score, 
with both molecular databases. This is reassuring as it 
indicates correct implementation of the two algorithms. 
In relation to these, the local optimisation algorithm per-
forms remarkably well. For the MMFF94 database, there 
is 81% agreement with the A* and FPT algorithms, and 
for the KEGG drug database, there is 91% agreement 
with the A* and FPT algorithms. Such high percentage 
accuracies indicate that using the highly efficient local 
optimisation algorithm could potentially be acceptable 
in extremely high throughput applications where overall 
speed is more important than accuracy.

Algorithm efficiency
We next consider the efficiency of each algorithm, 
defined as the average time required to find the lowest 
score for a single molecule. The distributions of calcula-
tion times for each algorithm and each dataset are shown 
in Fig. 2.

From the distributions, we can tell that the local opti-
misation algorithm is the most efficient with a maximum 
90-th percentile execution time of only 0.015 s, followed 
by the FPT algorithm with a maximum 90-th percentile 
execution time of 0.656 s and finally the A* algorithm 
with a maximum 90-th percentile execution time of 212 s 
when molecules that failed to complete optimisation due 
to a 1024 MB memory limit imposed on the A* search 
queue are excluded. All algorithms show exponential 
decay in the execution time, showing that in the majority 
of cases, one would expect any of the algorithms to give 
a result in a reasonable time period. This is further rein-
forced by the low median execution times.

Local optimisation, Fig.  2a and b, was the stand-out 
efficiency algorithm, though both databases had a sin-
gle outlier molecule which took longer than 200 sec-
onds to optimise. In these two cases, the initial electron 
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assignment required a large number of neighbour search 
steps before a distribution with non-infinite score was 
discovered, which could then be minimised. Due to the 
extremely long computational time required for these 
two molecules, an upper limit on the execution time of 5 
s was implemented for the local optimisation algorithm.

The A* algorithm, Fig.  2c and d, is the least efficient 
of the three algorithms. A desirable A* search would 
be narrow throughout the search tree. The breadth of 

the search is primarily controlled by the heuristic func-
tion, where a better heuristic would result in a narrower 
search. However, even with a near-optimal heuristic, 
there can be cases where the leaves of the search tree 
have final scores with fractions of a percent difference 
between them. In these cases, the path through the 
search tree becomes broad, and so the overall algorithm 
efficiency decreases. Due to this, a memory limit of 1024 
MB was imposed on the A* algorithm. This limit means 

Fig. 2  Histograms of algorithm execution time for the three optimisation algorithms and two data sets. For all plots, the horizontal axis shows 
the execution time of the algorithm in seconds and the vertical axis shows the base-ten logarithm of the count for each bin. Fifty bins of even 
width were used. Mean ( µ ) and median ( η ) values for the distributions in blue are provided. a, b Show the time distributions for the MMFF94 and 
KEGG databases when optimised with the Local Optimisation algorithm. In both cases, a single outlier with an execution time in excess of 200 s is 
excluded from the plots. c, d Show the time distributions for the MMFF94 and KEGG databases when optimised with the A* algorithm. The orange 
bins indicate molecules that failed to complete optimisation due to a 1024 MB memory limit imposed on the A* search queue. e, f Show the time 
distributions for the MMFF94 and KEGG databases when optimised with the FPT algorithm
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that when the memory allocated for the queue exceeds 
the given amount, the algorithm halts without return-
ing a solution. Molecules which triggered this limit are 
shown in the orange distributions in Fig. 2c and d, where 
the execution time is the time taken before the limit was 
triggered. We note that there are molecules which did 
not trigger the memory limit but took longer to com-
plete than the triggering time of any triggered molecules. 
This can be attributed to larger molecules requiring deep 
searches that are not necessarily as broad as other smaller 
molecules, so they can complete without triggering the 
memory limit.

Finally, the FPT algorithm, Fig.  2e and f is a highly 
efficient algorithm that is also guaranteed to locate the 
global minimum score value. Though the vast major-
ity of molecules take less than a second to determine an 
optimal score using the FPT algorithm, there are a small 
number of molecules which take in excess of ten seconds 
to complete. The execution times of these molecules are 
so long as their tree-decomposition contains wide join 
nodes that have a large number of potentially forgotton 
electrons. These large join nodes come about primar-
ily due to areas within the molecule which can contain a 
broad range of electron counts, especially when the width 
of the tree-decomposition is high, such as highly conju-
gated aromatic systems or high electron density areas like 
sulfate or phosphate groups.

Comparison to reference assignments
The true measure of the accuracy of each algorithm is its 
ability to reproduce the formal charges and bond orders 
of the molecules in the reference data sets. Here we only 
consider the FPT algorithm as “Algorithm consistency” 
section showed that it is far more efficient than the A* 
algorithm whilst still providing a global minimum score.

Additionally, we compare our results to the A* method 
described by Dehof et  al.  [10] as implemented in 
BALL [25]. The A* method is utilised as the FPT method 
is not accessible through the provided Python bindings.

We note that the score of two resonance structures 
will be identical, whereas the formal charges and bond 
orders will not, even though each resonance state is a 
valid, and minimum score, formal charge and bond order 
assignment. As the reference data only contains formal 
charge and bond order assignments for a single reso-
nance structure, the FPT algorithm was modified to be 
capable of producing all possible resonance structures 
for a given molecule. However, due to the combinatorial 
explosion possible when there are multiple, disjoint reso-
nance substructures within a molecule, and the result-
ing increase in intermediate computational load such an 
explosion would have on the algorithm, an upper limit to 

the number of resonance structures obtained of 32 was 
implemented.

For the comparisons to the reference data sets, a cal-
culated formal charge and bond order assignment, from 
either the FPT algorithm described here or the A* algo-
rithm described by Dehof et al., is deemed correct if one 
of the up to 32 assignments returned by the algorithm 
exactly matches that of the reference data. In some cases, 
there will be more than 32 potential resonance struc-
tures. If the reference assignment is not matched within 
these first 32 results returned, that molecule is regarded 
as failing for the algorithm, regardless of whether or not 
the returned assignments are correct resonance struc-
tures for the reference assignment. The results of these 
comparisons are given in Table 1.

Scores for our FPT algorithm were derived from quan-
tum chemical calculations using the def2-SVPD or def2-
TZVPPD basis set, with or without correction for basis 
set superposition error. All four sources of scores per-
formed identically and as such, the cheapest level of the-
ory is recommended, and used for the results presented 
here. Additionally, the scores associated with a C0 atom 
and a C− atom were swapped so as to make a neutral car-
bon always be more favourable than a charged carbon. 
This increased the overall accuracy from 95.63 to 97.63%.

These results show that our method has better accu-
racy than that of Dehof et al. across both databases. Our 
accuracy is similar accuracy to that of other state of the 
art bond order assignment methodologies, [26–29] while 
additionally assigning formal charges. We note that 
because Dehof et al.’s method is not designed for deter-
mining formal charges as well as bond orders, the accu-
racy values that we report for their algorithm should 
be taken as an upper limit of accuracy, as only correct 
assignment of bond orders are checked. Any check of for-
mal charge correctness, for example through back calcu-
lation from the bond orders, will not be able to exceed 
these accuracy levels, as the bond order checking is a 
subset of the combined bond order and formal charge 
checking.

Table 1  Percentage of  optimised electron assignment 
scores for  which the  corresponding formal charge 
and bond order state matches the reference state

Counts are given in brackets. The BALL column gives the accuracy results 
obtained when only checking if the bond orders obtained match the reference 
data

Database FPT algorithm BALL

MMFF94 (691) 93.49% (646) 84.80% (586)

KEGG (5676) 98.13% (5570) 93.59% (5312)

Overall (6367) 97.63% (6216) 92.63% (5898)



Page 11 of 12Welsh and Allison ﻿J Cheminform           (2019) 11:18 

The method presented by Dehof et  al. makes use of 
arbitrary, but empirically optimised, penalty scores for 
their bond order assignment, whereas the method pre-
sented here utilises scores derived directly from high-
level quantum chemical calculations, other than the 
single swap of the C0 and C− scores. This direct deriva-
tion makes our scoring function easily extensible to other 
atom and bond types. Empirical optimisation of the 
scores used here could increase the accuracy of our algo-
rithm, but at the expense of ease of extensibility.

The 151 molecules for which the FPT algorithm failed 
to generate a correct assignment include two major 
groups of chemically similar molecules. The first group 
consists of 103 molecules containing at least one nitro-
gen atom assigned a formal charge of − 1 in the refer-
ence data. Overall, 106 such molecules are found in the 
reference data, showing that only three were correctly 
assigned by our algorithm. The formal charges and bond 
orders of nearly all of these molecules were not correctly 
assigned, indicating that the relative scores for neutral 
and negatively-charged nitrogen atoms, combined with 
the scores for single and double bonds involving nitro-
gen, are unable to produce correct assignments. These 
nitrogen atoms are generally located in groups such 
azides or diazos. These groups are generally presented as 
containing nitrogen atoms with positive and a negative 
charge adjacent to one another, whereas our algorithm 
assigns them both neutral charges. Additionally, they are 
joined by a double bond in the reference data but by a 
single bond in our results. This illustrates how our scor-
ing system leads to a preference for fewer formal charges.

The second group comprise molecules where some of 
our underlying assumptions do not hold. For example, 
for protonated acetone, the MMFF94 database assigns 
the oxygen atom a formal charge of + 1 and places a dou-
ble bond between the oxygen and central carbon atom, 
whereas our algorithm assigns a formal charge of + 1 
to the central carbon atom and assumes that an oxygen 
atom bonded to two other atoms will have two lone pairs 
of electrons. Along with the backbone sigma bond elec-
tron pairs, this means that there are no missing electron 
pairs to assign, thus leading to the positive formal charge 
on the central carbon and concomitant single rather than 
double bond.

Conclusion
We have developed a method for determining optimal 
bond order and formal charge assignments utilising elec-
tron assignment scores derived from atom/ion and bond 
dissociation energies calculated with high-level quantum 
chemical methods, and tested their performance using 
three different optimisation methods—local optimisa-
tion, an A* pathfinding algorithm, and an FPT algorithm.

While the FPT algorithm is less efficient than local opti-
misation, its greater accuracy was considered the more 
important feature. We found no difference in the accu-
racy of the FPT algorithm when the electron assignment 
scores were derived from calculations at difference quan-
tum chemical levels of theory, indicating that extension of 
the scoring function to additional element and bond types 
need only consider performing quantum chemical calcula-
tions at the lowest level of theory used here.

In comparison with the state of the art method of Dehof 
et al., the FPT algorithm developed here performs remark-
ably well, attaining relatively similar accuracy levels. We 
also show that the scores provided here can be easily opti-
mised in order to increase the accuracy, though doing so 
will remove the extensibility of scores derived from quan-
tum chemical calculations. Our method is well suited to 
use in computational chemistry and cheminformatic appli-
cations where the user supplies only minimal information, 
as it requires only atom types and connectivity.

Additional file

Additional file 1. Calculated atom and bond score tables, and canonical 
SMILES strings of the test molecules.
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