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Abstract 

Efficient representations of drugs provide important support for healthcare analytics, such as drug–drug interac-
tion (DDI) prediction and drug–drug similarity (DDS) computation. However, incomplete annotated data and drug 
feature sparseness create substantial barriers for drug representation learning, making it difficult to accurately identify 
new drug properties prior to public release. To alleviate these deficiencies, we propose KMR, a knowledge-oriented 
feature-driven method which can learn drug related knowledge with an accurate representation. We conduct series 
of experiments on real-world medical datasets to demonstrate that KMR is capable of drug representation learn-
ing. KMR can support to discover meaningful DDI with an accuracy rate of 92.19%, demonstrating that techniques 
developed in KMR significantly improve the prediction quality for new drugs not seen at training. Experimental results 
also indicate that KMR can identify DDS with an accuracy rate of 88.7% by facilitating drug knowledge, outperforming 
existing state-of-the-art drug similarity measures.
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Introduction
Discovering proper representations of high dimen-
sional concepts has received much  attention lately 
due to its impressive performance in numerous natu-
ral language processing (NLP) tasks across multi-task 
learning [1], question answering [2], semantic textual 
similarity [3], sentiment analysis [4], and knowledge 
generative discovery [5]. Using various types of neu-
ral networks, high-dimensional data can be converted 
into continuous real-valued concept vectors that effec-
tively capture their latent semantics from the data [6]. 
Despite the success of current studies, efficient drug 
representations are an important but challenging task 
for four reasons:

(1)	 Impressive drug representation learning was 
achieved in domains where a complete diction-
ary or a knowledge base is available [7]. However, 
the number of drug is constantly growing but the 
medical dictionary or knowledge base updating 
procedure is slow. For new drugs, the lack of clini-
cal data and application data is almost inevitable. 
To overcome this limitation, it is common for us to 
rely on carefully designed feature representations. 
Nevertheless, the feature selection and processing 
remains a challenge in real-world applications.

(2)	 Drug-specific information, which plays a crucial 
role in learning drug representation and similarity 
or interaction metric, is yet to be well-researched. 
Drug concepts contain rich latent information that 
cannot be represented solely through pharmacology 
and drug catalog knowledge. For example, clopi-
dogrel is an alternative medicine of aspirin, they are 
obviously more related than the pair of clopidogrel 
and crestor which are in the same cardiovascular 
drug category. However, without the drug descrip-
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tion information, it is difficult to correctly identify 
the drug relation between them. Despite its useful-
ness, the application of drug description informa-
tion in drug presentation is still under-explored [8].

(3)	 The issues of complex and diverse terminology, rela-
tions, hierarchies and attributes in the medical field 
remain yet to be resolved. The existing computation 
measures of semantic similarity based on Knowledge 
base (KB) can be classified into path/depth-based simi-
larity measures and corpus-based methods. However, 
path-based and depth-based similarity measures cannot 
adequately handle the computation between two con-
cepts with the same path but different semantic similar-
ity in the KG taxonomy [9], while Corpus-based meth-
ods are substantially dependent on the training corpus 
and susceptible to data sparseness and data noise [10].

(4)	 The interactions between different drug features 
derived from various text and knowledge bases have 
received little attention in existing drug representa-
tion learning methods [11], which regard each feature 
as an independent item without any correlation to 
other features. This attribute independence assump-
tion does not always work in medical scenarios 
because drug features usually have strong correla-
tions with each other. For example, cannabis has vari-
ous physiological effects on the human body. When 
exceeding the psychotropic threshold, users may 
experience adverse side effects such as anxiety and 
panic attacks. Therefore, the assumption of feature 
independence may affect its representation learning.

To alleviate these limitations, we propose a knowl-
edge-oriented medicine representation learning method 
named KMR for drug–drug interaction prediction and 
similarity computation. In specific, we first learn the ini-
tial drug representation by processing the features with 
respect to pharmacology, drug class, and drug descrip-
tion information. Then, we develop an interactive learn-
ing schema within deep neural network to discover the 
interaction information among features. After learning 
the drug embeddings, we conduct experiments on a 
real-world dataset on the drug–drug interaction predic-
tion and similarity computation. Experimental results 
demonstrate that, our method can effectively perform 
joint representation learning and obtain more informa-
tive knowledge representation, which significantly out-
performs other baseline methods.

The main contributions of this paper can be summa-
rized as follows:

•	 We propose a novel knowledge-oriented medicine 
representation learning model, which leverages 

the pharmacological features, drug class features 
and drug textual description features within neural 
network architecture to alleviate the limitation of 
incomplete or inaccurate public data sources;

•	 We develop an interactive learning scheme to 
emphasize respectively those features with rich infor-
mation and exploit the interrelations among features 
based on the relevancy of various drug features;

•	 Experiments on real-world drug datasets demon-
strate that compared with existing methods, KMR 
can effectively learn the drug representation, discover 
accurate drug–drug interaction with less training 
data, and identify drug–drug similarity for the drug 
substitution.

Related work
Technically, the work in this paper relates to the repre-
sentation learning of words, knowledge bases and tex-
tual information. Practically, our work is mainly related 
to the representation learning of drug. Related works are 
reviewed as follows.

Representation learning of words Learning pre-trained 
word embedding is a fundamental step in various NLP 
tasks. Word embedding is a distributed word represen-
tation which is typically induced using neural language 
models [12]. Several methods, e.g., Continuous bag-of-
words (CBOW) and Skip-Gram [13], have been proposed 
for word embedding training, and have shown their 
power in NLP tasks.

There are many methods for learning word represen-
tations based on term-document, word-context, and 
pair-pattern matrices. For example, Turney et  al. [14] 
presented a frequency-based method that follows the dis-
tribution hypothesis to conduct word representation via 
context learning. Mikolov et al. [15] learned high-quality 
distributed vector representations by predicting the word 
occurrences in a given context.

Representation learning of knowledge bases Represen-
tation learning of knowledge bases aims to embed both 
entities and relations into a low-dimensional space. 
Translation-based methods, including TransE [16], 
TransH [17], and TransR [18], have achieved the state-of-
the-art performance by converting entities and relation 
into vectors and regarding each relation as one transla-
tion from head entity to tail entity. On the other hand, 
many studies have tried to use network embedding meth-
ods, e.g., Path Ranking Algorithm (PRA) [19], DeepWalk 
[20], node2vec [21], to reason over entities and rela-
tionships in knowledge base. The network embedding 
methods achieve the state-of-the-art performance of 
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representation learning for knowledge bases, especially 
for those large-scale and sparse knowledge bases.

Representation learning of textual information Many 
studies have tried to automatically learn information 
from text using neural network models. For example, 
Socher et al. [22] introduced a recursive neural network 
(RNN) model to learn compositional vector representa-
tions for phrases and sentences of arbitrary syntactic type 
and length. Wang et al. [23] combined the convolutional 
neural networks (CNN) together with unsupervised fea-
ture learning to train highly-accurate text detector and 
character recognizer modules. Here attention mecha-
nism can show its power. Many researchers have been 
interested in attention mechanism in neural networks 
and apply it to many areas such as machine translation 
[24], memory addressing [25] and image captioning [26].

Instead of learning the representations of different 
information separately, we develop a knowledge-oriented 
interactive learning architecture, which exploits the 
interactive information from input texts and knowledge 
bases to supervise the representation learning of words, 
structural and textual knowledge.

Representation learning of drugs Recently, some nota-
ble efforts have been made to design databases for drug 
representation learning and discovery. One well known 
example is DrugBank [27], a comprehensive resource that 
combines detailed drug (i.e. chemical) data with compre-
hensive drug target (i.e. protein) information. In addi-
tion to the DrugBank, a number of databases have also 

released including Therapeutic Target Database (TTD),1 
Pharmacogenomics Knowledgebase (PharmGKB),2 and 
Kyoto Encyclopedia of Genes and Genomes (KEGG),3 
Chemical Entities of Biological Interest (ChEBI)4 and 
PubChem.5 The on-line pharmaceutical encyclopedias 
such as RxList6 tend to offer detailed clinical information 
about many drugs but they were not designed to contain 
structural, chemical or physico-chemical information.

Many studies have demonstrated that it is possible 
to learn efficient representations of medical concept 
by improving the performance of medical predictive 
or classification models [28]. For example, Minarro 
et al. [29] learned the representations of medical terms 
by applying the word2vec deep learning toolkit to 
medical corpora to test its potential for improving the 
accessibility of medical knowledge. De Vine et  al. [30] 
explored a variation of neural language models that can 
learn on concepts taken from structured ontologies 
and extracted from free text, for the task of measuring 
semantic similarity between medical concepts. Despite 
this progress, learning efficient representations of drug 

Fig. 1  KMR for drug representation learning and drug-drug interaction prediction. Red, green, blue and yellow matrices denote pharmacological 
feature representations, drug textual description feature representations, drug class feature representations, and final knowledge-oriented drug 
representations, separately

1  bidd.nus.edu.sg/group​/cjttd​/.
2  https​://www.pharm​gkb.org/.
3  https​://www.genom​e.jp/kegg/.
4  https​://www.ebi.ac.uk/chebi​/.
5  http://pubch​em.ncbi.nlm.nih.gov/.
6  https​://www.rxlis​t.com/.

http://bidd.nus.edu.sg/group/cjttd/
https://www.pharmgkb.org/
https://www.genome.jp/kegg/
https://www.ebi.ac.uk/chebi/
http://pubchem.ncbi.nlm.nih.gov/
https://www.rxlist.com/
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concepts, however, is still a relatively new territory and 
under-explored.

Methodology
We describe KMR in this section. Figure 1 illustrates the 
architecture of KMR.

Given a drug,

1.	 we employ neural network to learn the initial drug 
representation by simultaneously considering the 
features of the pharmacology, drug catalog, and drug 
description information.

2.	 Then an interactive learning scheme using attention 
mechanism is adopted to learn the interrelations 
among features.

3.	 Finally, there is a fully connected hidden layer to join 
all the features for the DDI binary classification or 
DDS computation.

Algorithm flowchart of the entire KMR model is shown 
in Fig. 2:

Datasets for medicine representation learning
Knowledge bases Drug side effect is collected from 
Side  effect  resource  (SIDER)7 which contains 62,269 
drug–side effect pairs and covers a total of 888 drugs and 
1450 distinct side effects. Drug action is learned from and 
National Drug File-Reference Terminology (NDF-RT),8 
which organizes the drug list into a formal representation 
for modeling drug characteristics including ingredients, 
mechanism of action, pharmacokinetics, and related 
diseases. The knowledge about the pharmaceutical 

Fig. 2  Algorithm flowchart of the entire KMR model

7  http://sidee​ffect​s.embl.de.
8  https​://www.nlm.nih.gov/resea​rch/umls/sourc​erele​asedo​cs/curre​nt/
NDFRT​/.

http://sideeffects.embl.de
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/
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formulation, physiological effects, drug targets and drug 
chemical structure are learned from DrugBank,9 which 
contains 11,680 drug entries including 2625 approved 
small molecule drugs, 1115 approved biotech (protein/
peptide) drugs, 128 nutraceuticals and over 5504 experi-
mental drugs. Drug class features can be extracted from 
ChemOnt10 which is a comprehensive and computable 
chemical taxonomy along with a fully annotated chemi-
cal ontology, allowing chemists and cheminformaticians 
to perform rapid and automated chemical classification.

Text corpus Given a drug, its textual description can 
be obtained from the “title” and “abstract”section of 
Pubmed,11 the “drug label  information” section of Dai-
lyMed,12 and the “description”, “indication”, “pharma-
codynamics”, “metabolism”, and “toxicity” section of 
DrugBank.13

Synthetic dataset The drug similarity is labelled by 
doctors ranging in [0, 1] from the perspective of clinical 
application. 0 indicates that there is no similarity between 
two antibiotics, while 1 implies that the two antibiotics 
are extremely similar. The adverse reactions, the patient’s 
past history and other factors are left out in this stage. 
To make drug pairs labeling more accurate, each pair is 
labeled by at least 3 doctors and the average is taken as 
the final result. The Pearson coefficient [36] between the 
scores issued by each doctor and the average score ranges 
from 82.7 to 86.4% while Spearman coefficient [37] 
ranges from 79.2 to 88.8%, both proving the reliability of 
doctors’ assessment.

Representation learning of pharmacological feature
The representation learning of pharmacological fea-
ture aims to learn low-dimensional vector embeddings 
from various databases using deep learning models. 

Considering the application of a single dataset may cause 
the incompleteness of drug attribute, we employ multiple 
datasets to provide sufficient informative knowledge for 
the drug representation learning. The adopted datasets, 
features and their dimensions are summarized in Table 1. 

Accordingly, we consider the following features 
simultaneously:

Side effect Side effects indicates the secondary and 
usually adverse effect that occur when treatment goes 
beyond the desired effect. For example, the occurrence of 
vomiting and hair loss is an example of side effects that 
occur in addition to the therapeutic effects required to 
cancer treating.

Given a drug d , its side effect embedding Sider(d) can 
be obtained by learning the side effect resource SIDER 
[31] using the IDF weighting method. The value of ele-
ment s of Sider(d) , denoted Sider(d)[s] , is IDF

(

s, Drugs
)

 
if it is one of the side effects of drug d , otherwise it is 0. 
IDF

(

s,Drugs
)

 can be calculated as:

where Drugs is the set of drugs, s stands for a side effect, 
DF

(

s,Drugs
)

 is the number of drugs with side effect s.
Drug action, pharmaceutical formulation, physiologi-

cal effects and drug targets Drugs are usually classified by 
their drug actions. For example, a vasodilator, prescribed 
to decrease the blood pressure, acts by dilating the blood 
vessels. Pharmaceutical formulation is the process in 
which different chemical substances, including the active 
drug, are combined to produce a final medicinal product. 
Physiological effects  are those reactions resulting from 
some imbalance caused by taking a drug to the overall 
human system, or some specific part of it. A drug target 
is anything within a living organism to which some other 
entity (like an endogenous ligand or a drug) is directed 
and/or binds, resulting in a change in its behavior or 
function. Drug targets are most commonly proteins such 
as enzymes, ion channels, and receptors. The vectors 
of the aforementioned drug features are learned via the 
same IDF-weighted mechanism as mentioned in the pre-
vious paragraph.

Take “neostigmine” as an example (see Fig.  3). The 
drug target can be represented as a vector matrix of 
584 × 326 dimensions, wherein the value of the 54th 

(1)
IDF

(

s,Drugs
)

= log
((∣

∣Drugs
∣

∣+ 1
)

/
(

DF
(

s,Drugs
)

+ 1
))

,

Table 1  Datasets and  features for  the  representation 
learning of pharmacological feature

Dataset Pharmacological feature Feature 
dimension

Sider Side effect 4876

NDF-RT (National Drug File-
Reference Terminology)

Drug action 626

Physiological effects 1866

DrugBank Pharmaceutical formulation 867

Drug targets 3880

Drug chemical structure 166

Fig. 3  A snapshot of multi-dimensional weighted feature vector of 
an antibiotic: nitrofurantoin

9  https​://www.drugb​ank.ca/.
10  http://class​yfire​.wisha​rtlab​.com/.
11  https​://www.ncbi.nlm.nih.gov/pubme​d/.
12  https​://daily​med.nlm.nih.gov/daily​med/drugI​nfo.cfm?setid​=7d195​
0b4-3237-4512-bab3-4c736​4bdd6​18.
13  https​://www.drugb​ank.ca/drugs​/DB003​16.

https://www.drugbank.ca/
http://classyfire.wishartlab.com/
https://www.ncbi.nlm.nih.gov/pubmed/
https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm%3fsetid%3d7d1950b4-3237-4512-bab3-4c7364bdd618
https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm%3fsetid%3d7d1950b4-3237-4512-bab3-4c7364bdd618
https://www.drugbank.ca/drugs/DB00316
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column is 5.2161745, and the other columns are all 0. For 
drug action, it can be represented as a vector matrix of 
the same dimensions, in which the values of column 152, 
column 157, column 187, column 222, column 251 and 
column 261 are 5.800606659291741, 5.395141551183577, 
4.884315927417586, 5.800606659291741, 
4.701994370623631, and 5.577463107977531 respec-
tively. The other columns are all 0.

Drug chemical structure The chemical structure of a 
drug determines its physicochemical properties, further 
determines its ADME/Tox properties, and ultimately 
affects its pharmacological activity. We adopt PubChem 
Substructure Fingerprint14 that can generate a finger-
print, i.e., an ordered list of binary (1/0) bits, to learn 
the embeddings of drug chemical structure. Each bit 
represents a Boolean determination of the presence of 
PubChem features. For example, the bits (3, > = 32 H) and 
(11, > = 8 C) concerns the Hierarchic Element Counts, 
where “3” and “11” indicates the bit position, and “ > = 32 
H” and “ > = 8 C” stands for the bit substructure. These 
bits test for the presence or count of individual chemical 
atoms represented by their atomic symbol. The presence 
of, for example, a type of ring system, atom pairing, atom 
environment (nearest neighbors), etc., in a chemical 
structure is determined by the same format (binary data).

The initial embeddings of all aforementioned features 
are concatenated to form the feature embeddings of drug 
di . To reduce the vector dimension, we input the feature 

representation di to a Convolutional Neural Network 
(CNN). The fully connected layer of CNN model reduces 
the dimension of feature vectors from over 6000 dimen-
sions to 500 dimensions, thereby improving the compu-
tation of embeddings.

Representation learning of drug class feature
A  drug class  is a set of medications that have simi-
lar  chemical structures, the same  mechanism of 
action  (i.e., bind to the same  biological target), a 
related mode of action, and/or are used to treat the 
same disease [32]. To date, most attempts aimed 
at classifying and describing chemical compounds 
have been structure-based. This is largely because 
the bioactivity of a compound is influenced by its 
structure.

Given the drug class taxonomy (see Fig.  4) referred 
from dictionary ChemOnt [33], a CNN is designed to 
learn the drug class representation from drug taxonomy.

Input representation Different network embedding 
approaches, i.e., DeepWalk, node2vec, and LINE, are 
adopted to learn drug chemical taxonomy. Generally, 
a convolution layer can have  multiple input channels. 
The drug class embeddings D = {d1,d2, . . .dn} , where 
di ∈ R

k , k is dimension of embeddings, learned by differ-
ent network embedding approaches are input to different 
channels of the CNN, so as to make full use of all learned 
taxonomy information (see Fig. 5).

Convolution layer In the convolutional layer, the matrix 
of the drug class embeddings is convolved with filters of 

Fig. 4  Part of an illustration of the drug taxonomy as a tree

14  https​://pubch​em.ncbi.nlm.nih.gov/.

https://pubchem.ncbi.nlm.nih.gov/
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different sizes, generating a group of feature vectors. We 
first perform convolution operation over a sliding win-
dow then max-pooling to learn the stack vector of drug 
class embeddings Dn , where Dn ∈ R

n.
Fully connected layer Finally, the vector obtained in the 

max pooling layer is fed to the fully connected softmax 
layer. Neurons in a fully connected layer have connec-
tions to all activations in the previous layer. In this study, 
the outputs of the fully connected layer is the embed-
dings of drug class feature.

Representation learning of drug textual description 
feature
In this study, we incorporate dependency information 
into deep neural networks to extract entities and the 
relations between entities from drug textual descrip-
tion for the representation learning. For two medical 
entities (en1 and en2) and a set of sentences (noted 
as Sent) containing both of them, the probability of 
the relation r between them is measured. For exam-
ple, the sentence “ALFENTA can be administered in 
combination with other CNS depressants” indicates 
that ALFENTA and CNS depressants are positive cor-
relation. Conversely, the sentence “Patients should be 
closely monitored for such adverse effects especially 
when olanzapine is added to haloperidol therapy” 
points out that the “olanzapine” and “haloperidol” are 
negative correlation. In this section, two parts about 
our model will be introduced.

Input representation
Word embeddings To feed training data to the neu-
ral network, the sentences we use are transformed into 
matrices. For a given sentence, it is represented by the 
embeddings of the words it consists of. The words are 
represented by real-valued vectors by looking up the pre-
trained word embeddings.

Dependency embeddings The dependency feature used 
in the model are represented as vectors by looking up 
the corresponding embeddings. We choose the Stanford 

dependency parser15 to extract the dependency features. 
Dependency information can shorten the semantic dis-
tance between entities by organizing the whole sentence 
into a dependency tree [34]. Meanwhile, dependency fea-
tures provide syntatic and semantic-level information, 
which can help the deep neural networks to learn with 
less training data [35].

Dependency information is obtained from the hierar-
chical structure of the dependency tree, including rela-
tive dependency features and dependency tags: Relative 
dependency features show the relation between the cur-
rent word to the root of the tree or to the considered enti-
ties, and dependency tags imply the relationship between 
the current word and its parent node in the dependency 
tree.

Relative dependency features: Relative root feature 
implies the relation between current node and the root 
node. There are three types of relations here: the child 
node of the root, the root node itself, and others. Rela-
tive entity feature implies the relation between current 
node and entity1 and entity2. There are four types of rela-
tions: the child node of entity1/entity2, the parent node 
of entity1/entity2, entity node itself, and others.

Dependency tags: the tag of the current word to its par-
ent node on the dependency tree.

Figure 6 gives an example of a dependency tree struc-
ture. Due to the scale of the complete tree, only a part 
is shown here. Given a sentence “Amikacin works by 
binding to the bacterial 30S-subunit proteins and 16S 
rRNA,…(30 words omitted here)…, which is similar to 
other antibiotic derived from kanamycin. Kanamycin is 
a typical type of aminoglycosides…(15 words omitted 
here)…”, from the tree we can see that the word “derived” 
is the descendant node of entity1 (“amikacin”), and it is 
the ancestor node of entity2 (“aminoglycosides”). The dis-
tance between “amikacin” and “aminoglycosides” is thus 
shortened by a large margin compared to the original 
plain text.

Dependency features also need to be transformed into 
vectors to jointly use with word embeddings. Then the 

Fig. 5  Processing of representation learning of drug class feature

15  https​://nlp.stanf​ord.edu/softw​are/lex-parse​r.shtml​.

https://nlp.stanford.edu/software/lex-parser.shtml
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word embeddings vwi  and feature embeddings vdi  are con-
catenated to represent each word:

Bi‑LSTM and attention mechanisms
In this paper, we implement a Bi-directional LSTM net-
work (Bi-LSTM) with combined word-level and sen-
tence-level attention models. We employ Bi-LSTM model 
to capture the sequence information from both past and 
future contexts. We input the word vector sequence 
Wl =

[

word1, word2, . . .wordj
]

 and the inverse word vec-
tor sequence Wlreverse =

[

wordj, wordj−1, . . .word1
]

 into 
the forward layer and backward layer of Bi-LSTM respec-
tively. The output hwt at time step t , which combines the 
output of forward layer hft and backward layer hbt , can 
be calculated as:

In our model, sentence-level and word-level attention 
are complemented to de-emphasize the noisy samples 
and pay more attention to the useful information. Take 
sentence-level attention as an example. ai is the weight of 
a set of sentences containing a pair of entities, and it can 
be expressed as:

(2)wordi =
[

vwi , v
d
i

]

.

(3)hwt = hft + hbt .

(4)ai =
exp(ei)

∑

i exp
(

ej
) ,

where ei scores the relativity between the sentence and 
the predicted relation. Given a drug and its description, 
the outputs of the Bi-LSTM is the embeddings of drug 
textual description.

Joint learning method

Given a drug and its corresponding features, i.e., phar-
macological features, drug class features and drug tex-
tual description features, we apply attention mechanism 
to assign different weights according to the specific role 
each feature plays when interacting with other features. 
The representation of drug class feature vc are calculated 
as:

where Mw ∈ Rdlxm is a nonlinear mapping function, 
Wsw ∈ Rdlxdl and ww ∈ Rdl are projection parameters, 
αw ∈ Rm is the normalized attention. Other two types 
of features are processed by the same attention mecha-
nism. Then these three type of feature embeddings are 

(5)Mw = tanh (WswHw),

(6)αw = softmax
(

wT
wMw

)

,

(7)vc = Hwα
T
w ,

Fig. 6  Dependency tree of the sentence containing “amikacin” (en1) and “aminoglycosides” (en2). The sentence is organized into a dependency 
tree. The linear sentence structure is transformed into a dense tree structure and the long-distance relationship between two entities in a sentence 
can be better captured
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concatenated for the final knowledge-oriented drug 
representations.

For the DDI prediction task, there is a joint layer to 
join the final drug representations of drug 1 and drug 
2. The outputs of the convolutional layer and fully con-
nected layer then go through a softmax layer for binary 
classification:

where each dimension of y denotes the normalized prob-
ability of a certain relation, i.e., positive correlation or 
negative correlation, in accordance with the fully con-
nected layer, Wo ∈ R2xdl is the projection matrix, and 
bo ∈ R2 is the offset vector.

For the DDS computation task, after joining the final 
drug representations of drug 1 and drug 2 through joint 
layer, we adopt a random forest regression model, which 
is an effective ensemble learning algorithm for regres-
sion task, to predict the similarity of a drug pair. Com-
pared to other regression models, e.g., linear regression, 
logistic regression, etc., random forest is not very sen-
sitive to missing data, which alleviates the impact from 
the incompleteness of drug attributes. Moreover, rand-
omized sampling before bagging and the application of 
averaging can avoid overfitting and further improve the 
generalization ability.

Experiment settings
For the CNN model, the kernel and the depth are set to 5 
and 20 respectively. A Fully connected layer whose size is 
500 is added after the CNN layer.

In the bidirectional  long short-term memory (Bi-
LSTM) implementation, we employ dropout on the out-
put layer to prevent overfitting. We use ReLU activation 
function, take cross-entropy as loss function, and adopt 
AdaGrad as optimizer.

For both CNN and Bi-LSTM model, the learning rate 
and the dropout rate are set to 0.003 and 0.5 respectively. 
We train our models in batches with a size of 40. All other 
parameters are randomly initialized from [− 0.1,0.1]. The 
maximum length of sentence is set to 100.

For the base models, we follow exactly the same param-
eter settings as those in their original papers.

Results and discussion
Evaluation tasks: drug–drug interaction (DDI)
Drug–drug interaction (DDI) classification for different 
labeled prevalence
DDIs occur when two or more drugs are taken in com-
bination and act on each other. To evaluate the proposed 
KMR method, we perform a retrospective evaluation 
using as the set of known DDIs pairs of interacting drugs 
presented in the 2017 version of DrugBank (V5.0.9). 

(8)y = softmax(Wopr + bo),

We adopt two baseline models for the experimental 
comparison:

•	 Variational autoencoder (VAE) An autoencoder is 
a type of artificial neural network used to learn effi-
cient data coding in an unsupervised manner. VAE 
has become more widely used to learn a represen-
tation for a set of data, typically for the purpose of 
dimensionality reduction [38].

•	 CNN model the difference between KMR and its 
base CNN model is that the latter does not perform 
dimensionality reduction when learning the repre-
sentation of pharmacological features.

These baselines are a version of our system that uses 
the same input drug data and utilize the same set of 
aforementioned features. We randomly selected a fixed 
percentage (5%, 15%, 25%, 50%, 75%, 85%, and 100%) of 
training dataset for training, and compute the accuracy 
of the trained model in the testing dataset correspond-
ingly. Regardless of the DDI prevalence used at training 
and validation, our approach significantly outperforms 
the baselines with respect to accuracy, recall, F1 score, 
and area under the precision-recall curve (AUPR) (see 
Fig. 7). For example, for a given 5% prevalence, our model 
achieves best accuracy (0.72 + 0.13) while CNN model 
cannot perform as well as our model (0.69 + 0.17).

In addition, as one may expect, training with higher 
prevalence actually improves the overall performance. 
For an assumed DDI prevalence at training ranging from 
25 to 50%, the KMR accuracy rises from 0.85 to 0.90 
when all features are used, while the accuracy improve-
ments of the baseline models are very limited, dem-
onstrating the ability of KMR to discover valid, but yet 
unknown drug–drug interactions in dataset even with 
limited labeled target data.

Drug–drug interaction (DDI) classification for newly 
developed drugs
We conduct a retrospective evaluation using the known 
DDIs and drug features in an earlier version of DrugBank 
(2016, V4.5) to predict the drug–drug interaction among 
newly developed drugs that presented in a more updated 
version of DrugBank (2017, V5.0.7). The performances 
of DDI prediction are measured by precision, recall, and 
F-score, receiver operating characteristic curve (ROC) 
and area under the precision-recall curve (AUPR), 
respectively.

For a given assumed DDI prevalence at training/valida-
tion and a DDI prevalence at testing, to get robust results 
and show the effectiveness of KMR model, six state-of-
the-art baselines are adopted for comparison:
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•	 SVM many state-of-the-art DDI extraction systems 
are based on support vector machines (SVM) with a 
large number of manually defined features [39].

•	 FBK-irst a multi-phase kernel based approach for 
drug–drug interaction detection and classification 
that exploits linguistic information [40].

•	 CNN a CNN model for DDI task consists of four lay-
ers: a look-up table layer, a convolutional layer, a max 
pooling layer, and a Softmax layer [41].

•	 Att-BLSTM an attention-based neural network 
model that uses RNN with LSTM units [42].

•	 Tiresias a large-scale similarity-based framework that 
uses utilizes two classes of features in a knowledge 
graph, i.e., local and global features, to predicts DDIs 
through link prediction [43].

•	 LP-AllSim an integrative label propagation frame-
work to predict DDIs based on clinical side effects 
[44].

To analyze the effectiveness of our model, we also 
report the ablation test in terms of discarding the phar-
macological feature (w/o pharmacology), drug class 

Fig. 7  Comparison of different metrics for drug–drug interaction (DDI) prediction: accuracy, precision, recall, f1, aupr and auroc respectively. Using 
the same features with unbalanced training/validation data, KMR significantly outperforms the baselines
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feature (w/o drug class) and drug textual description fea-
ture (w/o textual description), respectively.

With the same input (pharmacological feature, drug 
class feature, and drug textual description feature), dif-
ferent models with different representation learning 
and classification approaches yield different F-score and 
AUROC scores. There are multiple interesting obser-
vations from Table  2 as followings: (1) Compared with 
other state-of-the-art systems, our proposed KMR 
boosts the DDI prediction performance. It outperforms 
the current best system (CNN [41]) by 10% in F-score 
(see Table 2), mainly due to much higher precision. (2) 
Top performing systems in Table 2 (e.g., SVM [39], Tire-
sias [43],) are all performed based on various features 
such as features derived from medical resources. (3) 
Compared with the state-of-the-art SVM-based system, 
the advantage of our KMR lies in that it does not use any 
manually defined features generated by existing NLP 
toolkits. The features used in the KMR are automatically 
learned during training and may contain useful informa-
tion beyond the manually defined features. Moreover, 
they effectively avoid errors caused by existing NLP tool-
kits. (4) Generally, all adopted features (i.e., pharmaco-
logical feature, drug class feature and textual description 
feature) contribute, and it makes larger performance 
boosting to DDI prediction. KMR substantially and con-
sistently outperforms the ablation tests, demonstrating 
the necessity of simultaneous consideration of the pro-
posed features.

Model analysis
For the three types of features proposed, when per-
forming experiments on one type of feature separately, 
we will assume that the representation learning of the 
other two features are unchanged. Through the joint 
learning method described above, we obtain the feature 

vectors and apply them to the DDI prediction task, so 
as to verify the performance of feature embeddings.

A.	Dimensionality reduction in representation learning 
of pharmacological feature

We conducted an experiment to verify whether the 
drug dimensionality reduction method used in phar-
macological feature representation learning can 
improve the accuracy of DDI prediction. We choose 
several common dimensionality reduction methods as 
baselines:

•	 concatenation is to concatenate all pharmacological 
feature vectors, whose dimension is 5852.

Table 2  DDI Retrospective evaluation: training in an earlier version of DrugBank and testing in a more updated version 
of DrugBank. KMR correctly predicts up to 92.19% of the DDIs found after 2016

Results in italics identify the best values for the testing

Accuracy Precision Recall F-score AUROC AUPR

FBK-irst 0.6533 0.6437 0.6867 0.6645 0.6807 0.7479

SVM 0.7867 0.7622 0.8333 0.7962 0.8844 0.8694

CNN 0.81 0.8039 0.82 0.8118 0.8892 0.8897

Att-BLSTM 0.7750 0.7749 0.7750 0.7750 0.8455 0.8486

Tiresias 0.80 0.7885 0.82 0.8039 0.8869 0.8861

LP-AllSim 0.77 0.7547 0.8 0.7767 0.8544 0.8600

KMR (our model) 0.9219 0.9191 0.9191 0.9191 0.9512 0.9568

w/o pharmacology 0.8571 0.8570 0.8571 0.8571 0.8571 0.8571

w/o drug class 0.8854 0.8854 0.8855 0.8854 0.8854 0.9391

w/o textual description 0.9033 0.9032 0.9033 0.9033 0.9373 0.9432

Fig. 8  DDI prediction with different input (i.e., pharmacological 
feature vectors generated by different dimensionality reduction 
methods)
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•	 trans_mat is to multiply the pharmacological feature 
vectors by the mapping matrix, the resulting dimen-
sion is 100*6.

•	 fully_conn refers to the dimensionality reduction 
performed by a fully connected neural network. The 
vector dimension is reduced to 500.

•	 our model The pharmacological feature is processed 
by the convolutional neural network to obtain a vec-
tor with a dimension of 500.

We verify the effectiveness of different dimensional-
ity reduction methods by using their generated vectors 
in DDI prediction task. The accuracy is adopted as the 
evaluation metric. Figure 8 shows the performance evalu-
ation for DDI prediction, whose input vectors are gener-
ated by different dimensionality reduction methods. Our 
model significantly outperforms all the baselines. We can 
also observe that concatenation is an easy and effective 
operation, which is robust and achieves a good perfor-
mance on the DDI prediction task. Due to the poor clas-
sification effect (accuracy fluctuates around 0.50), the 
curve of trans_mat does not appear in the figure.

B.	 Performance of the representation learning of drug 
class feature

Table 3 reports the experimental results of DDI predic-
tion with different drug class feature input generated 
by different network embedding methods. There are 
multiple interesting observations as follows: (1) The 
current translation-based methods, including TransE 
and PTransE, are the translation from head entity to 
tail entity. These methods are thus difficult to reason-
ing over paths between two entities. (2) Neural network 
models that performs multi-step relation inference in 
an embedding neural space, such as deepwalk, LINE, 
and node2vec, can well learn and present the drug tax-
onomy. (4) Our model inputs the drug class embeddings 
learned by deepwalk, LINE, and node2vec, respectively, 
to different channels of the CNN. We can observe that 

our method outperforms other methods. This improve-
ment is benefit from the full use of all learned taxonomy 
information.

C.	Performance of the representation learning of drug 
textual description feature

To demonstrate the effectiveness of textual descrip-
tion feature embeddings, we compare different textual 
embedding methods. The selected base models include:

(1)	 CNN a convolutional neural network to extract lex-
ical and sentence level features [45].

(2)	 PCNN reducing the impact of noise and wrong 
label problems by employing Piecewise Max Pool-
ing in convolutional neural network [46].

(3)	 BGRU​ a Bidirectional GRU network with attention 
mechanism (BGRU-Att).16 Both (1)(2) are imple-
mented with the sentence-level attention (-Att) to 
interpret the performance of our model.

Held-out evaluation is conducted and the results are 
shown in Fig. 9. In general, our model achieves the best 
performance. Dependency embedding improves the 
performance of our model. This is within our expecta-
tion since dependency information shortens the abstract 
distance (hops) in the dependency tree between source 
and target entities, as well as introduces structural and 
syntactic information to enrich overall sentence repre-
sentation. The dependency embedding can reduce the 

Table 3  Drug class feature embeddings learned 
by different network embedding methods

Results in italics identify the best values for the testing

Model Accuracy

TransE 78.5

PTransE 78.9

DeepWalk 80.8

LINE 80.7

Node2vec 80.7

Our model 92.1

Fig. 9  Accuracy of CNN, PCNN and our model in the DDI prediction 
task

16  https​://githu​b.com/thunl​p/Tenso​rFlow​-NRE.

https://github.com/thunlp/TensorFlow-NRE
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semantic ambiguity thus alleviate the difficulty of relation 
extraction from cross-sentence long-text.

Evaluation tasks: drug–drug similarity (DDS)
Drug–drug similarity (DDS) performance
Semantic similarity metrics in medicine has attracted 
substantial attention in recent years and its most prom-
ising application scenario is therapeutic substitution, 
also known as therapeutic interchange and drug sub-
stitution. Therapeutic substitution is the practice of 
replacing a patient’s prescription with chemically dif-
ferent drugs that are expected to have the same clinical 
effect [47].

To study drug substitution, we employ KMR to predict 
the similarity scores between cefoperazone and other 
antibiotics. Referring to [48], two antibiotics whose simi-
larity scores over 0.85 can be replaced with each other 
under normal circumstances.

For the antibiotic cefoperazone, Fig.  10 presents anti-
biotics that are similar to it whose similarity score is 
over 0.85 and indicates the cases where they can replace 
each other. Take cefoperazone and ceftriaxone as an 
example. Ceftriaxone can replace cefoperazone in most 
cases except disease caused by a few bacteria such as 

Pseudomonas aeruginosa etc. In the absence of sus-
ceptibility testing, our method can help doctors to find 
the most appropriate drug substitution to treat most of 
Gram-negative bacteria infections, such as respiratory 
infection, pneumonia, and biliary infection.

Comparison with State‑of‑the‑art similarity metrics
The experimental results on Drugbank are summarized 
in Table  4. Four state-of-the-art baselines are adopted 
for comparison: (1) The structure based measure GADES 
[10]; (2) The information content based measure Res [49]; 

Fig. 10  An example of drug similarity result provided by KMR

Table 4  DDS result on Drugbank (with ablation study)

Results in italics identify the best values for the testing

Pearson Spearman

Res: Resnik et al. 2005 0.511 0.523

Hybrids: Hliaoutakis 2005 0.557 0.578

GADES: Traverso et al. 2016 0.652 0.602

Wpath: Zhu et al. 2017 0.750 0.703

KMR (our model) 0.887 0.829

W/o pharmacology 0.759 0.750

W/o drug class 0.778 0.711

W/o textual description 0.751 0.789
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(3) The Wpath method [50] considers both path informa-
tion and information content; (4) The Hybrids method 
[51] which is based on Wpath takes medical properties 
into account to calculate the drug similarity. Pearson cor-
relation coefficient and Spearman rank correlation coef-
ficient are adopted to evaluate the correlation between 
doctors’ assessment and experiment results.

We observe that KMR substantially and consistently 
outperforms the existing methods by a noticeable mar-
gin with respect to different correlations. For instance, 
on Drugbank, KMR improves by 13% on Spearman 
over these baselines. Experiment results reveal that on 
the analytics and assessments of KB semantic/structure 
information, domain specific features are important and 
need to be considered simultaneously.

In order to analyze the effectiveness of the different fea-
tures of KMR, we also report the ablation test in terms 
of discarding the pharmacological feature (w/o phar-
macology), drug class feature (w/o drug class) and drug 
textual description feature (w/o textual description), 
respectively. Generally, all factors contribute in similar-
ity measure, and it makes larger performance boosting to 
measure medical semantic similarity. Even the basic sys-
tem with pharmacological feature achieves competitive 
results with these strong baselines, which demonstrates 
the effectiveness of incorporating medical knowledge 
into measuring semantic similarity. It is proven that KB 
can introduce structural (drug class feature) and textual 
knowledge (drug textual description feature) to enrich 
overall knowledge representations, while medical knowl-
edge can further enhance the knowledge representational 
learning of a specific domain.

Conclusion
In this paper, we propose a knowledge-oriented method 
to capture the medical information, taxonomy informa-
tion and semantic information of drugs, so as to explore 
the interaction and similarity between two drugs of 
interest.

In summary, our method is able to (1) learn medicine 
representation learning by capturing the medical infor-
mation, taxonomy information and semantic informa-
tion of drugs. (2) evaluate drug–drug interaction and 
drug–drug similarity. The KMR takes in various sources 
of drug-related data and knowledge as inputs, and pro-
vides DDI predictions as outputs. KMR is proved to be 
capable of dealing with drugs without any known inter-
acting drugs. Experimental results on public dataset 
demonstrate that techniques developed in KMR signifi-
cantly improve the prediction quality for new drugs not 
seen at training. The proposed method is reproducible 
and applicable to the drug representation learning and 
DDI computation. (3) process incomplete or inaccurate 

public data sources. We conduct experiments to show 
that a dataset with incomplete knowledge and structure 
sparseness can benefit from not only the application of 
various features but also the interactions between dif-
ferent features.

In the future, we will further utilize the attention 
scheme to effectively assemble the attentive informa-
tion from different representational perspectives, so 
as to improve overall representational learning. In 
addition, we will perform an additional statistical sig-
nificance analysis to rigorously demonstrate whether 
KMR’s improvement over other methods is statistically 
significant or not.
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