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Abstract 

Background:  Gene and protein related objects are an important class of entities in biomedical research, whose iden-
tification and extraction from scientific articles is attracting increasing interest. In this work, we describe an approach 
to the BioCreative V.5 challenge regarding the recognition and classification of gene and protein related objects. For 
this purpose, we transform the task as posed by BioCreative V.5 into a sequence labeling problem. We present a series 
of sequence labeling systems that we used and adapted in our experiments for solving this task. Our experiments 
show how to optimize the hyperparameters of the classifiers involved. To this end, we utilize various algorithms for 
hyperparameter optimization. Finally, we present CRFVoter, a two-stage application of Conditional Random Field 
(CRF) that integrates the optimized sequence labelers from our study into one ensemble classifier.

Results:  We analyze the impact of hyperparameter optimization regarding named entity recognition in biomedi-
cal research and show that this optimization results in a performance increase of up to 60%. In our evaluation, our 
ensemble classifier based on multiple sequence labelers, called CRFVoter, outperforms each individual extractor’s 
performance. For the blinded test set provided by the BioCreative organizers, CRFVoter achieves an F-score of 75%, 
a recall of 71% and a precision of 80%. For the GPRO type 1 evaluation, CRFVoter achieves an F-Score of 73%, a 
recall of 70% and achieved the best precision (77%) among all task participants.

Conclusion:  CRFVoter is effective when multiple sequence labeling systems are to be used and performs better 
then the individual systems collected by it.

Keywords:  BioCreative V.5, Biomedical named entity recognition, GPRO, BioNLP, Named entity recognition, CRF, 
Machine learning
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Introduction
The research fields of biology, chemistry and biomedicine 
have attracted increasing interest due to their social and 
scientific importance and also because of the challenges 
arising from the intrinsic complexity of these domains. 
Like many other research areas, they are currently chang-
ing due to the rapid development of machine learning 
(ML) and artificial intelligence (AI). ML is used in many 
of these research areas. For instance, in the biomedical 
area it is used for biomedical signal processing (BSP) [1, 

2], biomedical imaging (BI) [3–5] and disease predic-
tion through patient profiling [6]. The former approaches 
work with structured data such as EEG data in the case 
of BSP. The last two approaches work with unstructured 
data such as MRI for BI and doctor-patient conversations 
in the case of disease classification and differential diag-
nosis [7–10]. The growth in the amount of publicly avail-
able data has led to enormous efforts to develop, analyze 
and apply new learning methods in the field of chemistry 
and biology. This concerns, for example, virtual screening 
[11] for drug design and drug discovery [12, 13]. In order 
to advance areas of biological, chemical and biomedical 
research, it is important to perform state-of-the-art algo-
rithms of data analysis. In carrying out scientific work, 
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most researchers rely on published information to keep 
abreast of the latest developments in these fields, to avoid 
repetition and determine the direction of current studies. 
Numerous new publications appear daily in biomedical 
journals, in the form of scientific articles, patent applica-
tions, reports from health authorities and other text col-
lections on the Internet, making it difficult to keep pace 
with the development of this discipline. Thus, there is an 
increasing interest in improving access to information 
on biological, chemical and biomedical data described 
in such texts and text repositories. To achieve this goal, 
a fundamental step is to automatically identify biological 
and chemical entities in these repositories. Based on this 
identification, interactions between drugs and proteins, 
for example, can be detected, side effects of chemical 
compounds and their associations to toxicological end-
points can be identified or information about metabolic 
reactions can be extracted [14].

For these reasons, initiatives and call for participation 
in corresponding competitions have been launched in 
recent years by professional communities that describe 
challenges in the identification of biochemical units. One 
of these initiatives is the BioCreative series which focuses 
on biomedical text mining. BioCreative is a “Challenge 
Evaluation”, in which the participants are given defined 
text mining or information extraction tasks in the field 
of biology. These tasks include Gene Mention detection 
(GM) [15, 16], Gene Normalization (GN) [15, 17, 18], 
Protein–Protein Interaction (PPI) [19], Chemical Com-
pound and Drug Name Recognition (CHEMDNER) [20] 
and Chemical Disease Relation Extraction (CDRE) [21, 
22] tasks.

The current BioCreative V.5 task consists of two off-
line tasks, namely Chemical Entity Mention in Patents 
(CEMP) and Gene and Protein Related Object Recogni-
tion (GPRO). CEMP requires the detection of chemical 
named entity mentions. The task requires detecting the 
start and end indices corresponding to chemical entities. 
The GPRO task requires identifying mentions of gene 
and protein related objects mentioned in patent titles and 
abstracts [23]. In this work, we focus on the second task, 
that is, the GPRO task. The GPRO task is an abstrac-
tion of the well-known Named Entity Recognition (NER) 
tasks, which can be reduced to a sequence labeling prob-
lem, where input sentences are represented as sequences 
of tokens. The task is then to tag genes and protein-
related mentions in these sequences of sentences. The 
present paper addresses this task and is an extension of 
previous work [24].

The paper is organized as follows: In "Methods" section 
we describe our methodical apparatus and resources. 
First, we describe the data used for this work. We then 
present state-of-the-art tools for NER and how we 

adapted them for applying them in the biological domain. 
We examine the impact of hyperparameter optimization 
and show that it brings a considerable boost in perfor-
mance. Next, we present a novel tool, called CRFVoter, 
for combining sequence labeling tools as used in our 
hyperparameter optimization. In "Results" section, we 
present and discuss our results and in "Conclusion " sec-
tion we conclude and shed light on further work.

Methods
Dataset
The organizers of BioCreative V.5 provided a corpus of 
30 000 patent abstracts (titles and abstracts in English) 
from patents published between 2005 and 2014, where 21 
000 of them are used as a training set and the remaining 
9 000 as a test set. The corpus is manually annotated for 
the GPRO tasks. Gene and protein related object anno-
tations were divided into type 1 and type 2. Type 1 are 
those GPRO mentions that can be normalized to database 
entries, like UniProt1, NCBI2, OMIM3, GeneCards4, Fly-
Base5, etc. Type 2 are those mentions that cannot be nor-
malized. Table  1 shows the number of instances of type 
1 and type 2 annotations in the GPRO Task. 5795 docu-
ments from the 21,000 documents of the training set con-
tained GPRO mentions. To reduce noise during training, 
only the annotated subset of 5795 documents were con-
sidered; from now on, the collection of the documents will 
be called filtered corpus. Then, by means of random sam-
pling, the filtered corpus was divided into three sets: 60 % 
of the document were sampled into the training set, 20 % 
into the development set and 20 % into the test set. The 
filtered corpus had been enriched with additional linguis-
tic features. To this end, multiple preprocessing steps were 

Table 1  Number of instances of type 1 and type 2 in GPRO 
task

Type 1 Number  Type 2 Number

ABBREVIATION 7516 ABBREVIATION 27

FAMILY 1 FAMILY 5029

FULL NAME 4815 FULL NAME 27

IDENTIFIER 1 MULTIPLE 178

NESTED 89 NO CLASS 45

SEQUENCE 23

Total count: 12,422 Total count 5329

1  http://www.unipr​ot.org/.
2  https​://www.ncbi.nlm.nih.gov/.
3  https​://www.omim.org/.
4  https​://www.genec​ards.org/.
5  http://flyba​se.org/.

http://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/
https://www.omim.org/
https://www.genecards.org/
http://flybase.org/
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applied on each of the three sets including sentence split-
ting, tokenization, lemmatization, part-of-speech tagging 
and fine-grained morphological tagging by means of the 
Stanford CoreNLP [25] and TextImager [26]. In addition, 
tokens were split on non-alphanumeric characters, as this 
variant brought a performance increase. Table 2 lists the 
number of documents, sentences and tokens of the fil-
tered corpus. Since the GPRO task can be reduced to a 
sequence labeling problem, the filtered corpus was con-
verted into a sequence structure. To this end, a sequence 
of documents each containing a sequence of sentences 
each containing a sequence of tokens was constructed. 
This results in a file in TSV format, where each word and 
its associated features are in one line separated by tabs. 
Sentences are separated by an empty line. For the labe-
ling of the GPRO mentions, the IOB tagging scheme [27] 
was used (I = inside of a entity, O = outside of a entity, 
B = beginning of a entity). This approach allows for the 
annotation of entities that span multiple tokens. Note that 
the beginning and end of each entity mention is marked. 
This allows models to not only learn tags themselves, but 
also the corresponding transition probability. Between 
all beginning and end tags, the inside parts, for example, 
should also be part of the manifestation of the entity. It is 
worth noticing that using the IOB scheme has also dis-
advantages. The smallest unit that can be annotated is a 
token. Consider, for example, the token “B-RafV600E”. 
Only “B-Raf” is annotated in the gold standard. This can-
not be represented using the IOB format. To solve this 
problem, a tokenizer has to be developed that covers 
exactly these special cases. The filtered corpus contains 
0,85% of these special cases. Since their recognition can-
not be trained, they have been removed from the training 
set. However, during evaluation, these cases were consid-
ered as errors. In all experiments described in the follow-
ing sections, we used the corpus as described so far. 

System description
In this section we describe CRFVoter. Our approach 
implements a two-stage application of Conditional Ran-
dom Fields (CRF) [28] using a conglomerate of sequence 
labelers for the detection of mentions of gene and protein 
related objects in biomedical patent abstracts. We trained 
and optimized five NER for tackling the GPRO task. We 
also optimized the hyperparameter settings of each of 
these NERs. Hyperparameter tuning is a challenging task 

in ML in the sense that the optimal set of hyperparameters 
depends on the model, the dataset and the domain [29] 
forming a huge interactive parameter space. In this con-
text, our experiments focused on optimizing the hyperpa-
rameters of each NER system independently. This led to 
a noticeable increase of F-score compared to the default 
settings. For each NER, we performed a hyperparameter 
optimization by means of the Tree-structured Parzen Esti-
mator (TPE) [30]. The NERs are more or less independent 
of each other in the sense that one can always find a sub-
set of test cases being processed correctly by one NER but 
not by any other one. Therefore, combining these NERs 
is a promising candidate for increasing precision and 
recall. We started with computing combinations of these 
NERs by means of a simple majority vote [31]. Majority 
voting means to select the target label that is assigned 
by the majority of classifiers. Our experiments show that 
a simple majority vote brings no gain in precision and 
recall compared to the best performing reference sys-
tems being examined in our study. Thus, we alternatively 
experimented with a two-stage model, called CRFVoter, 
which trains a CRF to learn the best combination of the 
underlying sequence labeling tools (i.e. our case these 
are the NERs). We show, that CRFVoter outperforms 
every reference systems being examined in our study. In 
the rest of this section, we present a survey of hyperpa-
rameter optimization algorithms and discuss why TPE is 
the best optimization algorithm for our studies. We pre-
sent a survey of NERs trained for the GPRO tasks and the 
parameter settings optimized by means of the TPE hyper-
parameter optimization algorithm. This includes the NER 
systems described in the following subsections. Finally we 
describe the ensemble classifiers based on majority voting 
and on our CRFVoter.

Hyperparameter optimization
In this section, we describe the concepts of hyperparame-
ter tuning. A ML model consists of various parameters that 
must be learned using the underlying training data. The 
main task of ML is to adapt a model to the given data. This 
process of fitting the model parameters to existing data 
is called model training. Hyperparameters are a class of 
parameters that cannot be learned directly from the train-
ing process. The hyperparameters are the variables that 
govern the training process itself. These parameters must 
be predefined; they define higher-level concepts about the 
model, such as complexity, convergence rate, penalty, and 
so on [30]. Hyperparameters are configuration variables 
of the training process that are normally kept constant. 
Hyperparameter optimization, also called hyperparam-
eter tuning, is used to find optimal hyperparameter con-
figurations for a ML algorithm on a given dataset. The goal 
is, to find optimized values for hyperparameters, which 

Table 2  The number of  documents, sentences and  tokens 
of the filtered corpus

# Documents 5795

# Sentences 19,673

# Tokens 633,928
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maximize the prediction accuracy of a model. Hyperpa-
rameter tuning works by performing several trials of the 
same training job. Each trial is a complete execution of the 
training process with values for pre-selected hyperparam-
eters that are within predefined limits. Hyperparameter 
tuning optimizes one or more target variable where this 
variable is also called performance metric or hyperparam-
eter metric [32]. In our case we have considered a single 
target variable, that is, the F-score, because this is usually 
or at least predominantly done in NER. The hyperparam-
eters are adjusted by running the entire training job, so 
that overall hyperparameter metric is improved. Since 
parameter spaces tend to include more and more dimen-
sions, it is usually not possible to search the entire space to 
find the optimal configuration. Therefore, approximation 
algorithms must be used to maximize the hyperparameter 
metric (locally or globally). In the next sections we intro-
duce a general notation and describe some hyperparam-
eter optimization algorithms.

General notation Following the notation of [32, 33], 
a ML algorithm A is a mapping A : D → M where D 
is the dataset and M is the space of all models. A has n 
hyperparameters, denoted as θ1, . . . , θn and a configura-
tion space � = �1 × . . .×�n with θi ∈ �i, i = 1, . . . , n . 
The learning algorithm estimates a model M(θ) ∈ M that 
minimizes a loss function L , given a hyperparameter con-
figuration θ = �θ1, . . . , θn� on the training data D(train):

The goal of hyperparameter optimization is then to find 
the optimal configuration θ∗ using a validation set:

Grid Search Grid Search is a widely used hyperparameter 
optimization algorithm. It searches through a manually 
specified subset �U ⊂ � of the hyperparameter space. 
In a grid search, the set of trials is formed by assembling 
every possible configuration θ of values in �U , so the 
number of trials in a Grid Search is |�U | elements [34]. 
For each hyperparameter configuration θ ∈ �U a model 
M(θ) is estimated and tested against the validation set 
D(valid) . This makes Grid Search suffering from the curse 
of dimensionality [35] because the number of joint values 
in �U grows exponentially with the number of hyperpa-
rameters. Since Grid Search works on a grid, continuous 
parameters must be discretized. In our experiments we 
used Grid Search in cases in which |�| < 200 and where 
the parameter space did not contain continuous param-
eters—under these conditions, Grid Search will find the 
optimal configuration in foreseeable time.

(1)Aθ (D
(train)) := arg min

M(θ)∈M

L(M(θ),D(train))

(2)θ
∗ := arg min

θ∈�

L(Aθ (D
(train)),D(valid))

Random Search Random Search is an optimization algo-
rithm that searches a hyperparameter space � by select-
ing random hyperparameter configurations. Unlike Grid 
Search, no subset �U ⊂ � of the hyperparameter space 
must be defined. Instead, the parameters of a setting θ ∈ � 
are randomly selected. The advantage of this approach is 
that not only discrete parameters can be selected, but also 
continuous and mixed parameter spaces. Bergstra et  al. 
[34] found, that randomly chosen trials are more efficient 
for hyperparameter optimization then trials on a grid. They 
show empirically and theoretically that random searches 
are more effective for parameter optimization than grid 
searches when considering the same number of trials.

Bayesian Optimization Bayesian Optimization is a 
model-based optimization process for black box func-
tions. The Bayesian optimization searches for the maxi-
mum of an unknown target function. It employs the 
Bayesian technique of setting a prior over the objective 
function and combining it with evidence to get a pos-
terior function. Bayesian Optimization uses a Gauss-
ian process [36] to model the surrogate. It optimizes the 
expected probability that new trials will improve com-
pared to the best current observation. The Gaussian 
process is a distribution over functions, which involves 
adapting this distribution to the given data, so that func-
tions are generated that come close to the observed 
data. This distribution is further optimized by iteratively 
selecting the next point, which must take into account 
both exploration (sampling from areas of high uncer-
tainty) and exploitation (sampling areas likely to offer 
improvement over the current best observation) [37]. 
Applied to hyperparameter optimization, Bayesian opti-
mization builds a probabilistic model that assigns the 
hyperparameter values to the hyperparameter metric 
evaluated on the validation set. It has been shown that 
Bayesian optimization achieves better results in fewer tri-
als than Grid Search and Random Search [38].

Tree-structured Parzen Estimator The Tree-structured 
Parzen Estimator [30] is a sequential model-based optimi-
zation (SMBO) [39] approach. SMBO methods sequen-
tially construct models to approximate the performance 
of hyperparameters based on “historical” (that is, pre-
ceding) measurements. For each iteration, TPE collects 
new observation, where at the end the algorithm decides 
which set of parameters it should try next. The main idea 
is similar to Bayesian Optimization (see "Hyperparameter 
optimization" section). However, it fixes disadvantages of 
the Gaussian Process used by Bayesian Optimization. The 
TPE approach models P(x|y) and P(y) where x represents 
hyperparameters and y the associated hyperparameter 
metric. P(x|y) is modeled by transforming the generative 
process of hyperparameters, replacing the distributions of 
the configuration prior with non-parametric densities. For 
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the first few iterations TPE performs a Random Search. 
The next step is to divide the collected observations into 
two groups. The first group contains observations that 
yielded the best results after the evaluation and the sec-
ond group contains the remaining observations. The goal 
is to find a set of parameters that are more likely to be in 
the first group and less likely to be in the second group. 
In contrast to Bayesian Optimization, TPE no longer 
relies on the best observation. Instead, a distribution over 
the best observations is used. The next step of the TPE is 
to model the likelihood probabilities for each of the two 
groups. This is the next big difference to the Gaussian 
Process. Gaussian Process models posterior probability 
instead of likelihood probability. Candidates are sampled 
using the likelihood probability from the group containing 
best observations. From the sampled candidates TPE tries 
to find a candidate that is more likely in the first group 
l(x) and less likely in the second group g(x); this is done by 
means of the Expected Improvement (EI):

From the sampled candidates, the parameter setting that 
has the highest Expected Improvement is selected for the 
next iteration. The optimization process ends after a pre-
defined number of iterations.

Sequence labeling systems
In this section we describe the sequence labeling sys-
tems used in our experiments. These are state-of-the-art 
systems based on different architectures, namely CRF 
and Neural Networks. We show that hyperoptimization 
brings a considerable increase in performance. Finally, 
we present two variants for ensemble classifiers, namely 
Majority Voter and the CRFVoter.

Stanford Named Entity Recognizer Stanford Named 
Entity Recognizer6 (StanfordNER) is a Java implementa-
tion of CRF based Named Entity Recognizer [40]. Finkel 
et al. [41] has participated in BioCreative to explore Stan-
fordNER’s limitations in the biological domain. They par-
ticipated in BioCreative I Task 1A [42] and achieved the 
best performance in the open task and the second best per-
formance in the closed task. For StanfordNER our experi-
ments are based on their results. The StanfordNER has 
since been further developed. New parameters have been 
added, which we have taken into account in our experi-
ments. Table 3 shows the corresponding hyperparameter 
space used in our experiments. Since the parameter space 
is so large that one cannot search it with a grid search, a 
hyperparameter optimization algorithm must be used. For 
our experiments we optimized the hyperparameters by 

(3)EI(x) =
l(x)

g(x)

means of TPE (see "Hyperparameter optimization" sec-
tion). During the optimization process we ran 200 trials to 
approximate the optimal parameter setting. The results of 
the trials are plotted in Fig.  1 in the scatter plot. The scat-
ter plot shows that the F-score converges towards 73%. On 
the right side of Table 1 one sees the graphical representa-
tion of the F-Score distribution using a boxplot. The sig-
nificance of a parameter study becomes immediately clear 
in this example. Depending on the parameter setting, the 
results vary by 23%. The best performing set of features 
forGPRO, marked with italic font, leads to an F-score of 
0,73. The worst setting results in an F-score of 0,50.

Table 3  Parameter space of  stanford named entity 
recognizer used in  our experiments. The column Possible 
values describe the range of the parameters. The parameter 
setting with the best value is highlighted in italic

Parameter Possible values

useClassFeature [true,false]

useWord [true,false]

useNGrams [true,false]

noMidNGrams [true,false]

normalizeTerms [true,false]

usePosition [true,false]

useNeighborNGrams [true,false]

useMoreNeighborNGrams [true,false]

usePrev [true,false]

useNext [true,false]

useTags [true,false]

useWordPairs [true,false]

useDisjunctive [true,false]

useSequences [true,false]

usePrevSequences [true,false]

useNextSequences [true,false]

useLongSequences [true,false]

useTaggySequences [true,false]

useSymWordPairs [true,false]

useSymTags [true,false]

useTypeSeqs [true,false]

useTypeSeqs2 [true,false]

useTypeySequences [true,false]

wordShape chris2useLC

maxLeft [1,2,3,4,5,6]

maxRight [1,2,3,4,5,6]

maxNGramLeng [1,2,3,4,5,6]

sloppyGazette [true,false]

useGazFeatures [true,false]

useWordTag [true,false]

useWideDisjunctive [true,false]

useLemmas [true,false]

usePrevNextLemmas [true,false]

6  http://nlp.stanf​ord.edu/softw​are/CRF-NER.shtml​.

http://nlp.stanford.edu/software/CRF-NER.shtml


Page 6 of 11Hemati and Mehler ﻿J Cheminform           (2019) 11:21 

MarMoT MarMoT7 is a generic CRF framework [43]. 
It implements a higher order CRF with approximations 
such that it can deal with large output spaces. Addition-
ally it can be trained to fire on the predictions of lexical 
resources (so-called gazette files) and on word embeddings 
[43–47]. Table  4 shows the hyperparameter space used 
in our experiments for MarMoT. We ran 200 trials. The 
results of the iterations are shown in Fig. 2 using a scatter-
plot. One can see that the F-score converges towards 0,72. 
The right side of Fig.  2 shows the boxplot of the corre-
sponding F-Score distribution. The best performing set of 
features for GPRO produces an F-score of 0,72. The worst 
set results in an F-score of 0,59. Once more, this difference 
hints at the importance of hyperparameter optimization.

CRF++ CRF++8 is a customizable open source imple-
mentation of CRF [48]. In our experiments with CRF++ 

we used unigram and bigram features including the 
current, the previous and the next word. Table  5 shows 
the hyperparameter space used in our experiments for 
CRF++. The combination of parameters results in 20 
model files, which is small enough to search the entire 
parameter space with Grid Search. The results are shown 
in Fig.  3. The best performing set of parameters for 
GPRO generates an F-score of 0,69. The worst one results 
in an F-score of 0,04.

MITIE MITIE is an open source information extraction 
tool. MITIE can be trained using techniques like distribu-
tional word embeddings [44–47] and Structural Support Vec-
tor Machines [49]. Due to the lack of documentation, we did 
not optimize MITIE. The default configuration for named 
entity recognition produces an F-score of 0,65 for GPRO.

Glample NER Tagger Glample NER Tagger is a neural-
network-based named entity recognizer. It is based on 
Bidirectional LSTMs and CRFs [50]. Due to the long-
lasting training time, only the default parameter settings 
were considered. This resulted in an F-score of 0,74 for 
GPRO.

Majority Vote By means of majority voting, we com-
bined the best performing outputs of each of the NER 
systems considered so far. We selected the label that was 
most frequently output by the different NER systems. 
Majority voting reaches an F-score of 0,68 for GPRO, 
which is below the best performing system considered so 
far. Facing these results we can state that a simple major-
ity vote brings no gain in precision and recall. Therefore, 
we need an alternative considered next.
CRFVoter CRFVoter is a two-stage application of 

CRF using a conglomerate of sequence labelers. In the 
first step, each NER cm,m = 1..l, is optimized indepen-
dently on the training set, where the ith sequence ti of 
length n of the set of training examples is of the form

Fig. 1  The figure shows the results of optimizing StanfordNER by means of TPE. The scatter plot on the left side shows the results of each trial. The 
boxplot shows in which area the results are located and how they are distributed over this area. The difference between the best and the worst 
performing setting is 23%

Table 4  Parameter Space of  MarMoT Tagger used in  our 
experiments. The column Possible values describe 
the  range of  the  parameters. The parameter setting 
with the best value is highlighted in italic

Parameter Possible values

Num iterations [10,20]

Penalty [0,1,2]

Beam size [1,2,5]

Quadratic penalty [0,1,2]

Order [1,2,3,4]

Prob threshold [0.01,0.001]

Effective order [1,2,3]

Num chunks [2,5,10]

8  http://taku9​10.githu​b.io/crfpp​/.

7  http://ciste​rn.cis.lmu.de/marmo​t/.

http://taku910.github.io/crfpp/
http://cistern.cis.lmu.de/marmot/
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�xj , j = 1 . . . n, is a feature vector corresponding to an ele-
ment in the input sequence at position j—in our case 
this corresponds to a token. yj is the corresponding dis-
crete label of the element at position j—in our case this 
is the IOB2 formatted GPRO annotation label. The goal 
of a sequence labeling classifier c is to approximate the 
function f (j) = yj where yj is the true label to be assigned 
to the input stream at position j. Approximations of f 
are computed by hyperoptimizing each classifier c as 

(4)ti = �(�x1, y1), . . . , (�xn, yn)�

described above. After the training phase, a develop-
ment set, which is independent of the training and the 
test set, is tagged by means of each NER cm . The output 
label assigned by cm is then taken by CRFVoter as an 
individual feature input. In the second step, CRFVoter 
combines each NER cm into an ensemble classifier 
c = CRFVoter({c1, c2, . . . , cl}) . The sequence of training 
examples used to train CRFVoter is of the form

where fcm(�xj),m = 1 . . . l, j = 1 . . . n, is the output label 
of classifier cm computed for the input vector �xj at the jth 
position of the input sequence. That is, in stage one of 
CRFVoter, we calculate for each NER cm and each token 
at position j of the input stream a corresponding output 
label fcm(�xj) . In the second stage, these output labels are 
taken as features to feed our CRF operating on the same 
position j. In this way, we train CRFVoter based on a 

(5)
ti = �(fc1(�x1), fc2(�x1), . . . , fcl (�x1)), y1), . . . ,

((fc1(�xn), fc2(�xn), . . . , fcl (xn)), yn�

Fig. 2  The scatter plot on the left side of the figure shows the results of the optimization process of MarMoT. The boxplot shows in which area the 
results are located and how they are distributed over this area. Between the best and the worst setting are 11%

Table 5  Parameter Space of  CRF++ used in  our 
experiments. The column Possible Values describe the  range 
of the parameters. The parameter setting with the best value 
is highlighted in italic

Parameter Possible values

c [0.6, 1, 1.6, 3, 5, 7, 15, 50, 100, 1000]

a [CRF-L1, CRF-L2]

Fig. 3  This figure shows the results of using CRF++ in conjunction with Grid Search. Due to the low dimensionality of the underlying parameter 
space, a Grid Search was used. The scatterplot on the left side shows the results of the optimization process for each trial. On the right side, one sees 
in which area the results are located and how they are distributed
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sequence of the latter feature sets, which is exemplified in 
Fig. 4. Let x be the sequence of observed words in ti and 
y be the sequence of states that correspond to the labels 
assigned in ti . Linear-chain CRFs define the conditional 
probability of a state sequence to be [28]:

Zx is the normalization factor that makes the probabil-
ity of all state sequences sum to one; fm(yj−1, yj , x, j) is 
a feature function, and �m is a learned weight associated 
with feature fm . Feature functions measure the aspect 
of a state transition, yj−1, yj → yt , and the entire obser-
vation sequence, x, centered at the current time step, 
j. Consider, for example, Fig.  4. One feature function 
might have value 1 in cases where yj−1 denotes the state 
B-FULLNAME, yj the state I-FULLNAME, and X4 being 
the feature vector at position j. Large positive values for 
�m indicate a preference for such an event, whereas large 
negative values make the event unlikely. During tagging, 
CRFVoter takes again the output of each NER as input 
features and labels the sequence by means of the 2nd 
level CRF.

Our experiments show that CRFVoter brings 2% gain 
in F1-measure compared to the best performing reference 
systems being examined in our study. When operating on 

(6)P(y|x) =
1

Zx
exp





n
�

j=1

l
�

m=1

�mfm(yj−1, yj , x, j)





the blinded test set for GPRO provided by the BioCreative 
team, CRFVoter reaches an F-score of 0,75 for the evalua-
tion of type 1 and of type 2.

Results
This section presents the results of our experiments for 
the GPRO task. For the evaluation of the GPRO Task 
the BioCreative Team has specified standard evaluation 
statistics, namely precision (P), recall (R) and F1-score 
(F) [51]. Three main result types were examined. False 
Negatives (FN), that is, results corresponding to incor-
rect negative predictions. FN are cases that were part 
of the gold standard but overlooked by our systems. 
False Positives (FP) are results of false positive predic-
tions, that is, cases predicted by our system but not so 
marked in the gold standard. The third type of result 
is True Positives (TP), i.e. results consisting of anno-
tations predicted by our system and belonging to the 
gold standard as such. Recall is the fraction of correctly 
labeled positive results and all positive cases:

Precision is the fraction of all correctly labeled positive 
results and all labeled results:

(7)R =
TP

TP + FN

(8)P =
TP

TP + FP

Fig. 4  Architecture of CRFVoter exemplified by means of a single sentence
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F1-score is the harmonic mean of precision and recall:

In "System description" section, the results of the hyper-
parameter optimization are visualized. For each sequence 
labeling tool, the hyperparameters were optimized using 
TPE or, if possible, using Grid Search. The results of the 
trials are plotted in scatterplots and the distribution of 
the results are visualized in the respective boxplots. The 
boxplots show the big spread of the outcomes of the tri-
als during the respective optimization processes. For 
example, in the optimization process of CRF++, the dif-
ference between the worst to the best performer is 60%. 
The results show the need for ML algorithms to perform 
hyperparameter optimization.

Table 6 shows the comparison of annotators trained for 
the GPRO task. The results listed are those obtained after 
the hyperparameter optimization described in "Hyper-
parameter optimization" section, which were trained, 
optimized and tested on the corpus described in "Data-
set" section. Each sequence labeling system classifies a 
different subset correctly. Table  7 shows the pairwise 
differences between the sequence labeling systems. The 
combination of the sequence labeling systems to a Major-
ity Voter did not bring any performance increase and is 
even 5% below the best performer among the sequence 
labeling systems. In contrast, the CRFVoter increases 
the performance and is the best performer in our experi-
ments. The performance values for the official BioCrea-
tive test set were created by training each model on the 
entire filtered corpus (see Section "Dataset" section) and 
then evaluated on the official test set provided by BioCre-
ative. For the blinded test set provided by the BioCreative 
organizers for GPRO, CRFVoter achieves an F-score of 
75%, Recall of 71% and Precision of 80%. For the GPRO 
type 1 evaluation, CRFVoter achieves an F-Score of 
73%, Recall of 70% and obtained the best precision (77%) 
achieved among all task participants.

(9)F1 = 2 ∗
P ∗ R

P + R

Table  6 indicates that Glample and CRFVoter might 
be statistically tied. To investigate the significance of 
the improvements we used McNemars chi-square test 
[52] for labeling disagreements between Glample and 
CRFVoter with α = 0.05 . For both methods, we treated 
the predicted IOB-Tags for the test set that agreed with 
the gold annotations as positive, otherwise negative. For 
the McNemar test we only count the spans correspond-
ing to biomedical named entities. We found that the 
comparison between Glample and CRFVoter is signifi-
cant ( ρ < 0.05 ) in terms of the test of [52].

Conclusion
In this work, we compared a set of sequence labeling 
systems. We trained and optimized every sequence 
labeling system for the GPRO task by means of several 
hyperparameter optimization algorithms and especially 
using the TPE. We showed that optimizing hyperpa-
rameter can be crucial. One sequence labeling system 
in our experiments gained an improvement of more 
then 60%. We showed that a naive majority vote does 
not bring any improvement. For this reason, we intro-
duced and evaluated the so-called CRFVoter, a two-
stage CRF tool for combining underlying sequence 
modeling tools (as given by the NER of our comparative 
study). CRFVoter gained 2% improvement compared 
to the best performing reference systems being exam-
ined in our study. Thus, CRFVoter may be further-
developed by feeding it with the output of additional 
sequence labeling systems. A central theoretical out-
look at this stage is to think about recursively organ-
izing voters of the sort of CRFVoter beyond the first 
level by allowing different classifiers to contribute at 
different of these levels. In the past, such a procedure 
of recursive learning had been implemented by exam-
ple of so-called semantic spaces [53]—see [54] for such 
an approach. The theoretical background is to let the 
system systematically abstract the results of elementary 
learners: As with convolutional neuronal networks, 
this can help to find more and more abstract, but also 
increasingly characteristic representations of the input 
data. In any event, our results and those of the other 

Table 6  Comparison of  annotators trained an  tested 
on the filtered corpus described in "Dataset" section

System P R F

Stanford NER 0,77 0,69 0,73

MarMoT 0,76 0,69 0,72

CRF++ 0,75 0,64 0,69

MITIE 0,74 0,58 0,65

Glample 0,78 0,72 0,74

Majority vote 0,64 0,72 0,68

CRFVoter 0,75 0,77 0,76

Table 7  Differences of  labeled output between  each pair 
of NER system

Stanford MarMoT CRF++ MITIE Glample

Stanford 0 2.29 % 2.12 % 2.44 % 2.50 %

MarMoT 0 2.56 % 2.61 % 2.43 %

CRF++ 0 2.91 % 2.47 %

MITIE 0 2.51 %

Glample 0



Page 10 of 11Hemati and Mehler ﻿J Cheminform           (2019) 11:21 

participants of BioCreative V.5 Task show that the task 
of recognition of genes and protein-related objects has 
not yet been sufficiently solved. For better recognition, 
a larger corpus should be generated so that the nowa-
days popular Deep Learning algorithms can work on 
this data. A kind of human-in-the-loop architecture for 
automatic annotation and intellectual rework would 
also be helpful at this point in order to successively 
increase and improve the amount of data.
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