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Abstract 

Most BioCreative tasks to date have focused on assessing the quality of text-mining annotations in terms of preci‑
sion and recall. Interoperability, speed, and stability are, however, other important factors to consider for practical 
applications of text mining. For about a decade, we have run named entity recognition (NER) web services, which are 
designed to be efficient, implemented using a multi-threaded queueing system to robustly handle many simultane‑
ous requests, and hosted at a supercomputer facility. To participate in this new task, we extended the existing NER 
tagging service with support for the BeCalm API. The tagger suffered no downtime during the challenge and, as in 
earlier tests, proved to be highly efficient, consistently processing requests of 5000 abstracts in less than half a minute. 
In fact, the majority of this time was spent not on the NER task but rather on retrieving the document texts from the 
challenge servers. The latter was found to be the main bottleneck even when hosting a copy of the tagging service 
on a Raspberry Pi 3, showing that local document storage or caching would be desirable features to include in future 
revisions of the API standard.
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Introduction
BioCreative and other shared tasks in the biomedical 
text-mining community have over the years played a key 
role in progressively improving text mining methods, in 
particular for named entity recognition (NER). Most Bio-
Creative tasks have focused purely on evaluating the pre-
cision and recall [1, 2], with the BioC interoperability task 
[3] and the interactive annotation task (IAT) [4] being 
notable exceptions. However, as illustrated by the lat-
ter two tasks, whereas precision and recall are obviously 
important factors, they are far from the only factors that 
matter when using text mining in practice. Interoperabil-
ity, speed, and stability are other very important factors; 
the new Technical Interoperability and Performance of 

annotation Servers (TIPS) task set out to evaluate just 
that.

Running fast and robust web services is not trivial. 
Many academic online tools will become unresponsive or 
even crash if subjected to many simultaneous requests, 
e.g. when using them on a practical course. Also, it is 
impossible to ensure near perfect uptime unless the ser-
vices are hosted professionally with reliable power and 
internet connection. Handling these issues requires a 
focus on the engineering aspects rather than only on the 
scientific quality of the tools.

We participated in the BioCreative V IAT [4] with 
the interactive annotation tool, EXTRACT, which helps 
curators find and extract standard-compliant terms for 
annotation of metagenomic records and other sam-
ples [5]. Behind its web-based user interface, the sys-
tem makes use of the same real-time tagger for NER as 
the augmented browsing tool Reflect [6]. The core NER 
engine was designed from the ground up with speed in 
mind and is capable of tagging thousands of PubMed 
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abstracts per second per CPU core [7]. This makes it ide-
ally suited for large-scale and real-time applications, such 
as the TIPS task.

Here, we present the entire system for the NER web 
service that underlies the EXTRACT [5] and Reflect 
tools [6] as well as our entry in the TIPS challenge. This 
includes not only the tagger software itself, which has 
been described in several earlier publications, but also 
the Mamba web server software that enables us to host 
multi-threaded web services with preloaded data (e.g. the 
tagger dictionary) and priority queues to efficiently han-
dle even high request rates. The system delivered a total 
turn-around time of about 1  s for small requests, and 
was able to process approximately 5000–10,000 abstracts 
per minutes for larger batch requests. Notably, the vast 
majority of this time was spent on retrieving the docu-
ment text rather than actual processing of it; to make the 
server faster, it would thus be necessary to locally store or 
cache the documents, which was explicitly not permitted 
in the TIPS task.

Methods
Dictionaries used for NER and normalization
The server uses a combination of previously published 
dictionaries to recognize six of the types of entities 
accepted by the BeCalm server and normalize them to 
identifiers from databases and ontologies. These are a 
subset of the entity types used in EXTRACT v2 [5].

For annotation of gene/protein names, the tagger uses a 
dictionary covering the 9.6 million protein-coding genes 
from 2031 organisms included in STRING v10.5 [8] 
as well as ncRNAs from the RAIN database [9]. Unlike 
many NER systems, the BeCalm API makes a distinction 
between genes and their protein products. Because the 
STRING database is locus-based, i.e. it does not distin-
guish between splice isoforms, and because ncRNAs are 
also included, we chose to use the type GENE for these 
annotations and to not support the PROTEIN annota-
tion type. All recognized names are disambiguated to 
their respective STRING or RAIN identifiers, which are 
derived from the Ensembl [10], RefSeq [11], and miRBase 
[12] databases.

Annotations of the type CHEMICAL are made using 
a dictionary comprised of small-molecule compounds 
from the PubChem database [13], which was developed 
and used for recognition of chemical names in STITCH 
v5 [14]. All annotations of chemicals are normalized to 
PubChem compound identifiers.

The tagger makes annotations of the type ORGAN-
ISM using an updated version of the dictionary of the 
SPECIES/ORGANISMS tagger [7]. The dictionary was 
constructed based on NCBI Taxonomy [10], and all anno-
tations are thus normalized to NCBI taxon identifiers.

To perform annotations of the types SUBCELLULAR_
STRU​CTU​RE, TISSUE_AND_ORGAN, and DISEASE the 
tagger uses the dictionaries created as part of the COM-
PARTMENTS [15], TISSUES [16, 17], and DISEASES 
[18] database, respectively. These were constructed from 
Gene Ontology [19], Brenda Tissue Ontology [20], and 
Disease Ontology [21], identifiers from which are used 
for normalization of the annotations.

The version of the complete dictionary used by Tagger 
for the TIPS task has been deposited on FigShare (https​
://doi.org/10.6084/m9.figsh​are.45782​92). The reduced 
dictionary used by PiTagger has also been deposited on 
Figshare (https​://doi.org/10.6084/m9.figsh​are.46351​75). 
The latest version of the dictionary, which is used by the 
production server, is available at http://downl​oad.jense​
nlab.org/tagge​r_dicti​onary​.tar.gz.

Named entity recognition software
The core of the NER system is a highly optimized dic-
tionary-based tagger engine, implemented in C++. It 
is able to perform flexible matching of a dictionary with 
millions of names against thousands of abstracts per sec-
ond per CPU core [7]. The tagger is furthermore inher-
ently thread safe, for which reason a single instance of the 
tagger can easily handle many parallel requests. These 
properties make it an excellent starting point for build-
ing a real-time service that can handle large requests as 
required for TIPS task.

Although the TIPS task does not assess the quality of 
the annotations, it is worth noting that the speed of the 
tagger was not achieved by sacrificing quality. The qual-
ity of the tagging results for organism names was previ-
ously evaluated on gold-standard corpora and found to 
be comparable to the best methods with precision and 
recall of ~ 83% and ~ 73%, respectively [7, 22]. The NER 
quality has not been benchmarked directly for chemicals, 
genes, tissues, and diseases; however, these NER compo-
nents have shown to give good results when used as the 
basis for association extraction [8, 9, 13, 15–18].

The tagger software is open source and available at 
https​://bitbu​cket.org/larsj​uhlje​nsen/tagge​r/. It can be 
used either as a command-line tool or as a Python mod-
ule. It is also distributed as a Docker container at https​://
hub.docke​r.com/r/larsj​uhlje​nsen/tagge​r/.

Mamba web service framework
To be able to robustly host web services, we developed 
an in-house Python framework, Mamba, which can 
simultaneously run several compute-intensive requests 
in parallel while remaining highly responsive to small 
requests. The framework has a modular structure that 
enables us to use it both for the tagger, which is the 
focus of this paper, and for serving precomputed results 
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from relational database through REST APIs and inter-
active web interfaces. The REST API code accesses a 
single instance of the tagger engine through its Python 
module, which preloads the complete dictionary into 
RAM when the Mamba server is started.

Mamba is a stand-alone multithreaded Python web-
server created specifically to expose computationally 
heavy and/or heavily requested services as web services. 
Mamba was designed to solve two main objectives 
native to websites exposing a computational pipeline. 
Firstly, Mamba protects against clients overloading the 
backend system by controlling computational resources 
in terms number of simultaneous requests and mem-
ory usage, which is all specified in a standard configu-
ration file format. Secondly, Mamba is designed to be 
as simple as possible to set up and run while allowing 
fine-grained resource control and providing a plugin-
framework for project-specific code, such as the tagger. 
Plugins implement their specialized functionality as a 
Python API class per request type.

Mamba uses task queues combined with a configur-
able number of worker-threads handling the queued 
tasks. The length of the queue combined with the num-
ber of worker threads provide the first level of resource 
control, which prevents that too many tasks are exe-
cuted at the same time, which could cause the service 
to crash, or that the queue becomes excessively long, 
which could make the service unavailable for extended 
periods of time. In addition to that, Mamba comes with 
configurable per user and overall resource restrictions, 
which limit the maximum number of simultaneous 
requests and the memory usage used per IP address. 
When these limits are reached, requests will be rejected 
using the appropriate HTTP status code.

Each Mamba server will require task specific parsing 
and processing of input data, and Mamba provides a 
task-based API for this that is centered around a sin-
gle virtual Mamba request class. The configuration file 
specifies where Mamba should look for project-specific 
Request classes, which will be loaded as Python code 
files when starting the server, also allowing data such as 
the dictionary to be preloaded. The API allows tasks to 
jump between task queues, which represents different 
stages of the task. For example, we use separate queues 
for the tagger to do the initial parsing of the request, 
to download the document text from the document 
server, and to perform the actual named entity recog-
nition. This enables us to specify that many document 
download tasks can take place in parallel (which is not 
a CPU intensive), but that only a few actual NER tag-
ging tasks can run in parallel (the CPU intensive part 
of a request). When configured appropriately, this 
makes the Mamba server very responsive to all users 

as it is constantly aware of preventing system from 
overloading.

To further improve the response time, stability, and 
handling of multiple requests, even in the thousands, the 
main input mechanism is controlled by a single POSIX 
select statement. Mamba listens to a single port through 
a select statement that runs as single main thread; this 
sets it apart from most other Python-based web-service 
frameworks, which handle each input as new thread. The 
select statement collects data for all incoming requests 
as they are received over the network and adds a new 
task to the parse queue only once a full request has been 
received. From thereon the processing is handled by the 
thread pools described above, until all processing has 
been done and the result is ready to be sent back to the 
client. Mamba then uses the same efficient select state-
ment that receives the incoming data to send the result 
back as an HTTP response to the client. Mamba auto-
matically cleans up incomplete requests caused by com-
munication errors, restarts worker threads if they crash, 
and catches any exceptions produced by Mamba or its 
plugins, returning the appropriate HTTP status code.

Implementing the BeCalm API itself simply involved 
adding a request class the Mamba tagger module. Dif-
ferent parts of the BeCalm API run in different queues 
to ensure that e.g. getStatus requests and the initial pars-
ing of getAnnotations requests are executed immediately, 
that many document downloads can run in parallel, and 
that not too many of the actual CPU-intensive NER tasks 
are running at the same time. The queues used for this 
are not exclusive to BeCalm API, but are shared with the 
other tagger APIs and the EXTRACT tool [4].

Hardware and hosting
The main tagger runs on a single server with one Intel 
Xeon E5-2620 2.4 GHz CPU and 256 GB of RAM. This 
server also runs many other resources and databases 
related to text mining, including EXTRACT [5], SPE-
CIES/ORGANISMS [7], COMPARTMENTS [15], TIS-
SUES [16, 17], and DISEASES [18]. This server—from 
hereon referred to as Tagger—is hosted at the high-
performance computing facility Computerome (https​://
compu​terom​e.dtu.dk) that provides it with a highly reli-
able gigabit internet connection.

To test the influence of the performance of actual doc-
ument tagging vs. overhead associated with fetching of 
document texts, we ran a second instance of the tagger 
software on a Raspberry Pi 3 with a 1.2 GHz quad-core 
ARM Cortex-A53 and 1 GB of RAM. Due to the limited 
memory, this instance runs with a reduced dictionary; 
however, it should be noted that tagging speed is largely 
independent of dictionary size because the tagging algo-
rithm is based on hash lookups [7]. This instance was 
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hosted over my home internet connection (60  Mbit/s 
download, 25  Mbit/s upload) and is in the following 
referred to as PiTagger.

Results and discussion
Rapid annotation of biomedical entities
To test the speed of Tagger and PiTagger when accessed 
through the BeCalm API, we submitted private requests 
for tagging of 1, 10, 100, 1000, and 5000 abstracts from 
the abstract and patent servers via the BeCalm web 
interface. All settings except from the number of docu-
ments to tag were left at their default values. Each of the 
five sizes of tagging requests was repeated five times at 
four different timepoints, giving a total of 20 observa-
tions of the total time required for tagging for each size 
of request from each document source on each of the two 
tagger servers. These results are summarized as means 
and standard deviations in Table 1; the detailed data with 
each individual observation are available in Additional 
file 1: Tables S1 and S2.

Neither Tagger nor PiTagger suffered any errors or 
slowdowns during these tests, despite the Tagger server 
hosting multiple other resources and the PiTagger run-
ning on minimal hardware. This shows that the software 
is not only fast but also stable. This is unsurprising since 
all parts except the BeCalm API-specific code have been 
used in a production setting for several years.

In summary, the Tagger speed tests showed that 
there is a constant overhead of about 1  s on all tagging 
requests, which dominates the picture up to tagging of 
about 100 patent abstracts. For larger requests, the ser-
vice takes ~ 5 and ~ 10 s more per 1000 patent abstracts 
and PubMed abstracts, respectively. This difference is 
presumably explained by PubMed abstracts being, on 
average, about twice as long as patent abstracts. Notably, 
the vast majority of the time is spent on fetching the doc-
ument texts, with only about ~ 20% of time being spent 
on actual processing. Although explicitly not permitted 
in the TIPS task, local storage or caching of documents 

on the annotation server would thus be an attractive 
future feature.

To further test and illustrate that retrieval of document 
texts is the main bottleneck, we set up a second copy of 
the tagger code, PiTagger, to run on a Raspberry Pi 3 with 
a reduced dictionary. However, as the tagging speed is 
largely independent of dictionary size, the performance 
numbers can nonetheless be directly compared. For small 
requests, the total time is indistinguishable between Tag-
ger and PiTagger, and even for large requests PiTagger 
takes only about 50% longer than Tagger (Table 1). This 
is the case despite the service running only one thread 
per request, thus utilizes only a quarter of the compute 
power of a Raspberry Pi 3 in these tests. The PiTagger did 
not participate in the full official TIPS evaluation.

The total tagging time for the official TIPS requests 
was in the beginning consistently longer than for the pri-
vate requests reported in Table 1, which were submitted 
during the same weeks. Monitoring the tagging services 
during TIPS requests revealed that actual document pro-
cessing was as fast as always. In light of the results above, 
we assume that this slowdown was due to the fetching 
of documents taking longer in the official tests, when all 
participants simultaneously sent requests to the central 
document servers, thus making them even more of a bot-
tleneck. It is thus also no surprise that the fast servers all 
performed equally well, since they all spent far more time 
on downloading the text documents and uploading the 
annotations than on processing them.

Extending the BeCalm API
The BeCalm API in its current form has certain design 
constraints that limit the flexibility and thereby useful-
ness of the annotation servers. Firstly, document text is 
not submitted as part of the request, but must instead 
be fetched from designated sources based on the sub-
mitted document identifiers. Secondly, the results can-
not be returned directly to the end user, but must be 
returned to the central BeCalm server. Through creative 

Table 1  Performance of the taggers

For small requests the total turnaround time is ~ 1 s. Larger requests take an extra 5–10 s per 1000 abstracts to be processed on Tagger. Notably, most of this time is 
spent on retrieving the document texts from document identifiers, whereas the actual NER step takes only about 20% of the total time. This is reflected in the fact that 
the PiTagger, which runs on a Raspberry Pi 3, takes only about 50% longer to process large requests

# Documents Tagger: total time (s) PiTagger: total time (s)

Abstract server Patent server Abstract server Patent server

1 0.87 ± 0.32 0.84 ± 0.32 0.75 ± 0.34 0.84 ± 0.24

10 0.98 ± 0.30 0.83 ± 0.26 1.10 ± 0.28 0.87 ± 0.37

100 1.89 ± 0.29 1.48 ± 0.27 2.34 ± 0.33 1.52 ± 0.34

1000 11.31 ± 0.68 6.02 ± 0.37 15.23 ± 0.48 8.89 ± 0.48

5000 52.18 ± 2.76 26.67 ± 1.16 72.73 ± 1.81 40.83 ± 1.01
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use of the custom_parameters part of the request, our 
implementation circumvents both of these constraints.

Instead of hardwiring the annotation server to 
use only the abstract and patent servers provided by 
BeCalm, the relationships between source and server 
URL are specified within a servers subsection of cus-
tom_parameters. This enables end users to obtain the 
tagging results for any desired documents, provided 
they make the documents available through an API 
compatible with the one used by the BeCalm document 
servers.

Similarly, the annotation server is not hardwired to 
return the annotation results to the BeCalm server. 
Instead, the saveAnnotations request will be made to the 
URL specified in as apiurl in the custom_parameters sec-
tion. This allows end users to set up their own server to 
receive the results directly, if they so wish.

Conclusions
Turning scientific software into a stable and fast web ser-
vice can be a challenging engineering task. First, the soft-
ware has to be sufficiently fast, which will often require 
optimization of the implementation. Second, it has to 
be made robust enough to handle many simultaneous 
requests without overloading the server. Third, it has to 
be hosted in a manner that ensures the server is available 
at all times.

In case of the Tagger NER software, the implementa-
tion itself was already highly optimized, since it was 
designed to be used on very large text corpora. The 
issues related to robustness of the web service were dealt 
with by the Mamba web service framework, which uses 
queues with associated thread pools to efficiently process 
multiple requests in parallel, while protecting the server 
against being overloaded if a user floods it with requests. 
Finally, we hosted the web service at a supercomputing 
facility to ensure high availability. The result was a server 
which indeed was among the fastest and suffered no 
downtime during the challenge.

However, even if a web service is both stable and fast, 
processing large amounts of text through web services 
can be inefficient. This is because transferring the input 
text and the output data to and from the web service can 
easily take much longer than the actual computations. 
When processing large text corpora, a better solution 
is thus usually to run the software locally. To make this 
as easy as possible, we make the Tagger software avail-
able as as a Docker container (https​://hub.docke​r.com/r/
larsj​uhlje​nsen/tagge​r/) and provide a download file with 
the dictionary used by the web service (http://downl​oad.
jense​nlab.org/tagge​r_dicti​onary​.tar.gz).

Additional file

Additional file 1. Supplementary tables with detailed performance evalu‑
ation data.
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