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Abstract 

The process of ligand binding to a biological target can be represented as the equilibrium between the relevant 
solvated and bound states of the ligand. This which is the basis of structure-based, rigorous methods such as the 
estimation of relative binding affinities by free energy perturbation (FEP). Despite the growing capacity of comput‑
ing power and the development of more accurate force fields, a high throughput application of FEP is currently 
hampered due to the need, in the current schemes, of an expert user definition of the “alchemical” transformations 
between molecules in the series explored. Here, we present QligFEP, a solution to this problem using an automated 
workflow for FEP calculations based on a dual topology approach. In this scheme, the starting poses of each of the 
two ligands, for which the relative affinity is to be calculated, are explicitly present in the MD simulations associated 
with the (dual topology) FEP transformation, making the perturbation pathway between the two ligands univocal. We 
show that this generalized method can be applied to accurately estimate solvation free energies for amino acid side‑
chain mimics, as well as the binding affinity shifts due to the chemical changes typical of lead optimization processes. 
This is illustrated in a number of protein systems extracted from other FEP studies in the literature: inhibitors of CDK2 
kinase and a series of A2A adenosine G protein-coupled receptor antagonists, where the results obtained with QligFEP 
are in excellent agreement with experimental data. In addition, our protocol allows for scaffold hopping perturba‑
tions to identify the binding affinities between different core scaffolds, which we illustrate with a series of Chk1 kinase 
inhibitors. QligFEP is implemented in the open-source MD package Q, and works with the most common family of 
force fields: OPLS, CHARMM and AMBER.
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Introduction
Calculating physicochemical properties of drug like mol-
ecules, such as the solvation free energies or the binding 
affinities for biological targets, has been a longstand-
ing challenge to computational chemists. The recent 
increase in computational power and the improvement 
of force fields to accurately represent the physical prop-
erties of drug-like molecules [1–6] have set the grounds 
for molecular dynamics (MD) based methods to be rou-
tinely used to address these issues. Particularly, the rigor-
ous free energy perturbation (FEP) methodology, despite 

being implemented in the framework of biochemical sim-
ulations decades ago [7], has recently gained recognition 
in the optimization of chemical modulators of biological 
targets, both in academia and pharmaceutical industry 
pipelines [8]. Besides the technical advances underlying 
the success of this approach, automatization tools are key 
to turn an otherwise time-consuming and error prone 
process into a systematically applicable tool [9, 10].

In contrast to plain, unbiased MD simulations, FEP 
simulations drive the conversion (or perturbation) of 
one molecule into another. If we think of two drug-like 
molecules for which the binding affinity for a given pro-
tein is compared, the FEP simulation will connect them 
through a series of unphysical intermediates [11]. If we 
translate this to the more typical exploration of a con-
generic series of ligands around a given lead molecule, 

Open Access

Journal of Cheminformatics

*Correspondence:  hugo.gutierrez@icm.uu.se 
1 Department of Cell and Molecular Biology, Uppsala University, 
Uppsala 75124, Sweden
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4951-9220
http://orcid.org/0000-0002-1775-586X
http://orcid.org/0000-0003-2091-0610
http://orcid.org/0000-0003-0459-3491
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-019-0348-5&domain=pdf


Page 2 of 16Jespers et al. J Cheminform           (2019) 11:26 

this can be seen as a system of nodes interconnected 
by edges, each of them representing a perturbation 
between the pair of molecules involved. If the collec-
tion of nodes is finite, e.g. in the case of amino acid 
mutations, one can define perturbation libraries for all 
possible permutations in the 20 × 20 matrix, and sys-
tematically apply this to evaluate ligand binding affinity 
for single-point protein mutants [12–14]. However, for 
drug like molecules the number of nodes considerable 
increases and the chemical space covered becomes sev-
eral orders of magnitude larger (in the order of 1033 for 
all molecules adhering to Lipinski’s rule of five [15, 16]), 
making it impossible to predesign perturbation libraries 
for ligands. This introduces a bottleneck in the applica-
tion of FEP simulations in real drug design projects, as 
the manual setup required is tedious, time consuming 
and prone to errors. This problem has been recognized 
by both the academia and industry and recently some 
protocols were proposed for a more efficient, automated 
setup of FEP simulations [9, 10, 17–19]. The underly-
ing algorithms in those implementations are based on 
the calculation of maximum common substructure 
(MCS) between molecule pairs, and perturbations are 
performed along the edges of those connected nodes 
that preserve maximum similarity. Additionally, the 
selection of nodes can a posteriori be refined by a cycle 
closure analysis, which allows assessing the statistical 
errors by considering a given node more than once [17].

Next, a decision needs to be made on how to repre-
sent the edges, i.e. the perturbation pathway connecting 
the two molecules. Two major approaches have been 
proposed, single or dual topology [20]. A single topol-
ogy consists of a one-to-one atom mapping between 
the two end point molecular systems. Here non-equiv-
alent atoms in either of the end-states are represented 
by dummy particles (without non-bonded interac-
tions) and only one set of coordinates need to be dealt 
with. This approach is particularly useful when changes 
between the molecules are small. However, breaking 
(or making) bonds becomes necessary when the bond 
topology changes more drastically (e.g. the opening of a 
ring structure in a molecule), which has been shown to 
significantly hamper convergence [21]. In such cases, a 
dual topology representation can be adopted. Here, the 
molecular entities from both nodes are simultaneously 
represented by their own set of Cartesian coordinates. 
In each end state of the simulation one of the molecules 
has its full interactions turned on, whereas the other is 
turned off (all dummy atoms). Since the total potential 
energy is a linear combination of the potential energy 
of each of the two states over the whole perturbation, 
the two molecules do not interact and the surrounding 
system sees a mixture of these two states [9, 22].

In this work, we describe an automated protocol to 
setup ligand perturbations utilizing a dual topology 
approach called QligFEP, which is implemented to inter-
act with the open-source MD package Q. This software 
is specifically tailored to perform different types of free 
energy simulations, such as linear interaction energy 
(LIE), empirical valence bond (EVB) and FEP [23, 24]. 
Simulations are run in an explicit spherical droplet of 
water around the area of interest, i.e. the binding site. For 
free energy calculations, this has various advantages as 
compared to the more commonly used periodic bound-
ary conditions (which are also implemented in Q), such 
as: (1) the absence of artificial periodicity in the finite 
system; (2) the possibility to calculate all interactions 
within the droplet accurately either directly or by utiliz-
ing multipole expansions for long-range interactions [23, 
25]; (3) Focusing on the binding site whilst ‘cutting out’ 
the envelope allows to perform many multiple independ-
ent simulations, thus increasing the precision of the cal-
culated free energies since the motions distal from the 
region of interest can be neglected. In fact, we have pre-
viously shown on the A2A adenosine G protein-coupled 
receptor (GPCR) that such an approach increases con-
vergence and accuracy compared to larger systems [13] 
as long as local structural fluctuations of the active site 
are sufficiently sampled [26, 27].

To illustrate the applicability of QligFEP and assess the 
validity of the most commonly used parameters, as well 
as advising on how to change those, we tested our work-
flow on various systems previously used to benchmark 
other FEP protocols. This includes calculations of solva-
tion free energies of side chain mimics [28], which rep-
resent a diverse chemical space in terms of size, polarity 
and atomic constitution. Thereafter, we apply this meth-
odology to calculate relative binding free energies of 16 
Cyclin-dependent kinase 2 (CDK2) ligands, and compare 
the performance of three different force field families 
(OPLS, CHARMM and AMBER) to previously published 
work [29]. Next, relative binding free energies of a series 
of antagonists for the adenosine A2A receptor are cal-
culated and compared to a recently published approach 
[30, 31]. Finally, we show how the QligFEP dual-topology 
scheme can be applied for ‘scaffold hopping’, in the case 
of modifications of five Chk1 ligands of different chem-
otypes [32]. Our code and benchmark sets are available 
through GitHub (https​://githu​b.com/quser​s/qligf​ep).

Materials and methods
Description of the workflow
QligFEP is an application programming interface (API) 
that aims to automate and generalize the tedious pro-
cess of setting up and analyzing the MD simulations for 
FEP calculations. Given a collection of molecules, for 

https://github.com/qusers/qligfep
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which we want to compare their relative binding affini-
ties, a preliminary step involves the definition of the 
pair(s) of ligands to be compared. In QligFEP this can be 
done either manually, or by generating the pair list with 
an external program, e.g. LoMap [10], as represented in 
the top layer in Fig. 1. A good initial guess (adopted along 
this manuscript) is to define a radial pathway connect-
ing all compounds to a central node (i.e. a single refer-
ence ligand). In cases where convergence is insufficient 
due to too big changes (assessed by a large SEM or even 
MD simulation crashes), one can add edges to nodes that 
involve smaller topological changes, as illustrated here in 
case of the A2AAR ligand binding calculations. The Qlig-
FEP workflow is then iteratively applied for each pair of 
molecules (A and B) in the pair list, and is composed of 
four modules (Fig.  1): (1) ligand parameterization, (2) 
complex preparation, (3) generation of the FEP and MD 
inputfiles and (4) an analysis tool.

Ligand parameterization
In the first module, the user provides PDB files of all 
small molecules that are going to be analyzed via FEP 
calculations. The coordinates of the molecules will be the 
input actually processed, i.e. this module does not enu-
merate protonation, enantiomeric and tautomeric states. 
The main aim of the module is thus to translate ligand 
3D coordinates into Q readable library and parameter 
files, currently available for three families of force fields: 
OPLS-AA/M [33], Amber ff14sb [34] and CHARMM36 
[3]. We provide a translation based on qtools [35] of the 
GAFF/AnteChamber [1, 36] parameters for AMBER. For 
CHARMM, the parameters are obtained and translated 
into Q format using CGenFF [37]. Our implementation 
of the OPLS force field for ligands includes the OPLS2005 
version generated via Schrodinger’s ffld_server [38]. Note 
that one needs to obtain the required licenses for these 
external programs separately (which in some cases are 
free for academics). As an open source solution, LigPar-
Gen [5] can be used to generate Q readable parameter 
and library files based on the OPLS force field [5] and we 
are currently working to include other alternatives for 
ligand parameterization in the near future related e.g. to 
the OpenForceField consortium [39].

Complex preparation
In the second module, the macromolecular target is 
prepared for MD simulations of the binding site under 
spherical boundary conditions (SBC), as discussed in 
the introduction. The input is a PDB file, with or with-
out hydrogens. In the former case the user should indi-
cate which program has been used to add hydrogens, 
to account for the specific atom naming. If the module 
should, on the other hand, protonate the protein, the 

protonation state of ionizable residues is inferred from 
the residue name (e.g. HID, HIE, HIP for histidine pro-
tonated in delta, epsilon or positively charged, etc.), in 
accordance with the reference Q library files for proteins. 
This module also accounts for the two main parameters 
related to the implementation of the spherical boundary 
conditions in Q [40]: (1) the center of the sphere, which 
is normally placed at the center of geometry of a refer-
ence ligand, can be defined in different ways i.e. Cartesian 
coordinates, protein residue or a ligand atom, and (2) the 
size of the sphere, which should have a radius big enough 
such that it encompasses all the residues within the bind-
ing site, including a solvation patch to ensure sufficient 
dielectrical screening (e.g. 10–15 Å from the most distal 
atom in the ligand to the sphere boundary) [40]. The sys-
tem is solvated with a pre-generated water grid in Q [23], 
and waters overlapping with either of the two ligands are 
automatically removed in the next stage. This module 
also accounts for the necessary neutralization of ioniza-
ble residues in the restrained area and outside the sphere 
dimensions [40].

Finally, this module also replicates the setup for the 
analogous calculations of the reference states for the FEP 
simulation, e.g. ligands in water for binding affinity calcu-
lations (or ligands in vacuum for the estimation of solva-
tion free energies, see below).

Generation of the FEP and MD inputfiles
The third step prepares input files for the FEP simula-
tions, according to a number of variables that should 
be carefully considered by the user. Given a pair of 
ligands A and B, their parameters (generated from step 
1) are merged with the corresponding general force field 
parameters in Q, while the corresponding library files are 
merged into a dual topology library file (Fig.  1). These 
files are used together with the corresponding coordi-
nates of the two ligands in the corresponding state, i.e. 
bound, solvated or vacuum, as indicated above, to build 
the topology file in each case. The subsequent FEP simu-
lation, for which details are given below, will be guided by 
a number of input parameters, which are also generated 
at this stage and will define the desired sampling scheme. 
The FEP transformation involves sampling of a series of 
intermediate states along a pathway between the poten-
tials, UA and UB, corresponding to each of the molecules. 
The probability density between the configurational dis-
tributions of the two states must overlap sufficiently. 
Therefore, the pathway is divided in a series of discrete 
steps following a linear combination of the potentials 
according to Ui = (1− �i)UA + �iUB , where the coupling 
parameter λt varies between 0 and 1, and an ensemble 
average is collected at each of these steps [41, 42]. It fol-
lows that the number of λ steps, their distribution along 
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Fig. 1  General workflow of the QligFEP API, which consists of three preparation steps and one analysis module. The user only needs to provide 
.pdb coordinate files for the first two steps, from where parameter and library files are generated to perform the FEP calculations. Currently, the 
CHARMM, AMBER and OPLS forcefields are supported
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the FEP pathway (e.g. linear or non-linear), the sampling 
time per λ step, as well as the starting point (e.g., λ = 0, 
0.5 or 1) and directionality of the simulations, are key 
parameters of the FEP simulation, which are defined in 
these modules. The simulations are setup as a number of 
replicate MD simulations (with different random initial 
velocities), and due to the convenience of using a distrib-
uted computing scheme (Fig. 1), we include the option to 
write out input files tailored for a specific (high perfor-
mance) computing cluster.

Analyzing the simulations
The last module in QligFEP performs all required analy-
sis to report free energies and the associated statistical 
parameters. This includes up to three different methods 
to calculate relative free energies: (1) Zwanzig’s exponen-
tial formula [43], (2) overlap sampling (OS) [44] and (3) 
Bennet’s acceptance ratio (BAR) [45], the latter method 
being the one reported throughout this manuscript. 
Standard errors of the mean (SEM) are estimated from 
the individual replicate simulations, The module pro-
vides a linear-regression statistical analysis (i.e. for ret-
rospective analysis when experimental affinity values are 
available) including the Pearson R2 with associated 95% 
confidence intervals (CI, p = 0.05, based on the applica-
tion of Fisher’s z transformation for application to small 
datasets [46]), and the mean absolute error (MAE), cal-
culated using scikit-learn [47]. Further details as to the 
specifications of the command line input can be found in 
the manual, which includes several tutorials.

System preparation
Prior to entering the workflow, protein and ligand coor-
dinates must be generated and/or retrieved from the cor-
responding databases. We herein describe the details of 
this procedure for the dataset treated in this manuscript.

Ligand coordinates were generated in a reasonable 
3D conformation with the appropriate tools in Maestro 
[48]. The starting point differed between the different test 
cases, i.e., drawing from scratch (the side-chain mimics), 
modifying the crystal coordinates of the reference ligand 
(scaffold hopping) or the docked poses kindly provided 
by Wang et al. (CDK2 inhibitors) [49], or those obtained 
by manual docking (A2AAR antagonists). Each molecule 
was subsequently treated as the input for the correspond-
ing parameterization tools, managed by the “Ligand 
preparation” module as described above.

All protein structures were pre-processed using Protein 
Preperation Wizard in Maestro [50]. In the case of the 
A2AAR, the receptor was embedded in a lipid bilayer and 
shortly equilibrated using the protocols in the GPCR-
ModSim web server (http://www.gpcr-modsi​m.org) 
as described elsewhere [13, 51–53]. Selected water 

molecules in the binding site (from the crystal structures 
of CDK2 and Chk1, or from the or the MD equilibra-
tion in the case of A2AAR) were initially retained, and 
the complex given as input for the “Complex prepara-
tion” module. In each case, the center of the sphere was 
automatically generated from the center of geometry 
of the two ligands involved in the perturbation, and the 
sphere radius was initially set to 25 Å, which is a good 
guess in most cases considering the typical size of drug-
like molecules [40]. However, in the case of CDK2 inhibi-
tors the radius was optimized to 22 Å as a combination of 
two factors: the relatively small size of the ligands in the 
dataset, and the fact that this smaller radius allowed to 
exclude from the simulated sphere a highly charged clus-
ter of residues formed by Arg50, Arg126, Arg150 and a 
phosphorylated Thr160, which would otherwise not have 
enough solvation patch as they would lie on the sphere 
boundary [40].

MD/FEP simulations
The software package Q [23] was used for the MD sam-
pling under SBC with the following settings: atoms lying 
outside the simulation sphere were tightly constrained to 
their initial coordinates (200 kcal/mol/Å2 force constant) 
and excluded from the calculation of the non-bonded 
interactions. In the boundary of the sphere, solvent 
atoms subject to polarization and radial restrains using 
the surface constrained all-atom solvent (SCAAS) [23, 
54] model to mimic the properties of bulk water at the 
sphere surface. Long range electrostatics interactions 
beyond a 10 Å cut off were treated with the local reaction 
field method [55], except for the atoms undergoing the 
FEP transformation where no cutoff was applied. Solvent 
bonds and angles were constrained using the SHAKE 
algorithm [56].

The system was then subjected to 10 parallel MD rep-
licate simulations, which only differed in their initially 
assigned random (Maxwell-Boltzman) velocities. Each 
simulation includes an equilibration scheme as follows, 
which is the default in QligFEP: (1) an initial phase of 
31 ps where the simulation sphere is heated from 0.1 to 
298  K and a positional restraint of 25  kcal/mol/Å2 ini-
tially imposed on all solute heavy atoms slowly released; 
(2) a 100  ps unbiased and unrestrained equilibration. 
The subsequent production phase followed, where the 
sampling along a λ transformation pathway (defining 
the FEP transformation) was performed with the follow-
ing parameters in the different datasets (unless indicated 
the contrary): the transformation was divided into 51 λ 
steps, evenly distributed (i.e. linear sampling), the corre-
sponding MD sampling for each λ step being 10 ps using 
a 1 fs time step. Thus, each FEP transformation involved 
a total simulation time of 10 × (131  ps + (51 × 10  ps)) = 

http://www.gpcr-modsim.org
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6.41  ns for each of the two legs in the thermodynamic 
cycle, resulting in a total sampling time of 12.82  ns per 
perturbation. For comparison, a typical perturbation in 
the commercial alternative FEP+ includes one simula-
tion of 12 lambda windows, with 5 ns sampling per win-
dow giving 120 ns under a bigger system using PBC [30]. 
However, in cases where large changes are considered 
(i.e. more than 6 heavy atoms) the sampling above might 
be insufficient to achieve the desired convergence, which 
might be easily diagnosed by a high SEM or even simula-
tion crashes. In such cases, one can increase the phase-
space overlap by increasing the λ windows, or either 
using a more dense (non-linear) sampling around the ini-
tial/ending states, or just increase the sampling of each λ 
window to increase convergence. In this work, a different 
scheme was used for the larger perturbations involved in 
the datasets of the relative hydration free energies and 
the A2AAR antagonist binding.

In the dual topology paradigm, each perturbation 
involves parallel growing (A) or annihilation (B) of the 
relative atoms of the two ligands A and B, and includes 
the perturbation to/from soft-core potentials as an inter-
mediate step to ensure sufficient convergence [57]. Half-
harmonic distance restraints of 2.0  kcal/mol/Å2 were 
applied to maintain pairs of equivalent (non-dummy) 
atoms between the two ligands (A and B), within a win-
dow distance of 0.0–0.2  Å. Since this restraint is only 
applied on atom pairs, of which one of them will have the 
interactions fully turned off in each of the end states, the 
energetic term of the restraints cancels and no additional 
correction needs to be applied. The relative free energy 
(∆∆GA-B) is calculated by closing the corresponding ther-
modynamic cycle, where the ∆G corresponding to each 
of the two legs was calculated with the BAR approach 
[45]. When the ligand mutation involves a change in the 
total charge of the sphere, a Born correction term was 
added to the calculated free energies to account for the 
polarization effect [58], estimated as:

where QI is the net charge of the solute, and rBorn is the 
radius of the cavity in the macroscopic medium, with a 
dielectric constant ε, in which the charge is embedded.

All calculations were performed using the OPLS-
AA/M [33] force field with TIP3P waters, except for the 
CDK2 inhibitor set where results are reported with the 
three families of force fields implemented in QligFEP. 
Standard errors of the mean (SEM) are estimated from 
the individual replicate simulations by QligFEP, whereas 
errors reported for FEP+ are either BAR analytical error 
estimations or bootstrap estimated errors as reported in 
their original publications [49].

(1)�GBorn = −332
Q2
I

2rBorn

(

1−
1

ε

)

Results and discussion
In this section, we use the workflow described above in 
four different case scenarios, where the calculation of 
relative free energies can be correlated with experimen-
tal hydration or binding free energies for different series 
of molecules as reported in the literature. The first case 
accounts for estimation of solvation free energies, tested 
on the Wolfenden set of protein side chain mimics [28]. 
Next, QligFEP is used to automatically estimate relative 
binding affinities of ligand series in two different target 
systems: (1) a globular enzyme, cyclin-dependent kinase 
2-cyclin A receptor (CDK2), where relative affinities of 
a dataset of 16 inhibitors are also used to evaluate the 
accuracy of the three different force fields implemented, 
and (2) antagonist binding to a G-protein coupled recep-
tor, the adenosine receptor A2A (A2AAR). Finally, we 
show how our perturbation protocol can accurately assist 
‘scaffold hopping’ [59] modifications on a series of five 
Checkpoint kinase 1 (Chk1) inhibitors.

Relative hydration free energies
The solubility of small molecules is a key physicochemi-
cal property of any drug candidate [60]. Therefore, there 
is much interest in accurate computational estimations of 
ligand solubility via e.g. calculation of their correspond-
ing solvation free energies. FEP has been quite success-
fully applied to obtain such estimations, although force 
field and water models can significantly influence accuracy 
[61]. To calculate the water solvation (hydration) free ener-
gies, a thermodynamic cycle can be constructed where the 
calculation legs refer to perturbations of the molecules of 
interest in vacuum and water, respectively. Our test case 
consists of mimics of amino acid side chains, for which 
absolute hydration free energies have been well character-
ized [28]. Notably, these experimental values were deter-
mined in a way that, in case of ionizable residues, only 
neutral states of the side chain mimic were considered. 
Thus, to be able to compare the solvation free energies 
of the corresponding charged species, the hydration free 
energy of the proton needs to be taken into account [62]. 
Here we use the values reported by Tissandier et al. [63], 
as adopted by Kelly et al. [64] and included in the Minne-
sota solvation database [65, 66]. For a more detailed dis-
cussion on the hydration free energy of the proton we refer 
to the work of Zhang et al. [62]. The total set thus includes 
23 amino acid mimics (Table  1), encompassing diverse 
molecules in terms of physicochemical properties for 
which hydration free energies cover an energetic span of 
more than 80 kcal/mol. Taking the smallest methyl group 
sidechain in alanine as a reference, we calculated rela-
tive hydration free energies between any given side chain 
mimic (X) to methane (Me), and compared to the relative 
hydration free energies provided in Wolfenden et al. (note 
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that, given this strategy, glycine was excluded) [28]. The 
dual topology framework allows us to perform the calcu-
lations in three alternative ways: sidechain annihilation 
(X → Me), sidechain growing (Me → X), both following 

a classical λ (1 → 0) FEP pathway, or alternatively start-
ing from a mixture of both states (λ = 0.5) and propagat-
ing in each direction (1 ← λ → 0). As reported in Table 1, 
the simulations are well converged with a very low SEM 

Table 1  Experimental and calculated relative solvation free energies of side chain mimics [28]

a  Relative free energies were calculated using sigmoidal sampling and λ = 101 windows
b  The population distribution of a single proton NεH:NδH is approximately 80:20 [62]

Sidechain mimic Exp Solvation free energies (∆∆G (kcal/mol)) X → CH4 λ0 ← λ0.5 → λ1

λ0 → λ1

X → Me Me → X Average Hysteresis

Propane − 0.05 0.20 ± 0.08 − 0.19 ± 0.19 0.20 0.01 0.08 ± 0.12

Isobutane − 0.34 − 0.27 ± 0.16 0.22 ± 0.09 − 0.25 0.05 − 0.04 ± 0.12

1-butane − 0.21 0.02 ± 0.25 − 0.33 ± 0.11 0.16 0.35 − 0.06 ± 0.11

Ethanol 6.82 7.05 ± 0.15 − 6.97 ± 0.11 7.01 0.08 6.75 ± 0.14

Methanol 7.00 6.69 ± 0.07 − 6.69 ± 0.07 6.69 0 6.62 ± 0.08

Methanethiol 3.18 2.01 ± 0.05 − 1.61 ± 0.09 1.81 0.4 1.78 ± 0.05

methylsulfanylethane 3.42 2.68 ± 0.08 − 2.39 ± 0.37 2.54 0.29 2.06 ± 0.11

Acetamide 11.62 10.91 ± 0.16 − 10.89 ± 0.08 10.90 0.02 10.93 ± 0.10

Propionamide 11.32 11.02 ± 0.31 − 11.09 ± 0.14 11.06 0.07 11.29 ± 0.15

Toluene 2.70 2.56 ± 0.48 − 1.96 ± 0.63 2.26 0.6 2.66 ± 0.35

p-cresol 8.05 8.16 ± 0.44 − 7.20 ± 0.12a 7.68a 0.96a 7.74 ± 0.48

4-methylimidaziole (NδH) 12.21b 9.86 ± 0.09 − 8.35 ± 0.96 9.11 1.51 10.22 ± 0.13

4-methylimidaziole (NεH) 12.21b 11.13 ± 0.15 − 10.85 ± 0.17 10.99 0.28 10.68 ± 0.34

3-methylindole 7.82 6.25 ± 0.37 − 5.25 ± 0.13a 5.75a 1.00a 7.41 ± 0.52

n-Propylguanidine (N2H3) 12.86 16.43 ± 0.44 − 15.47 ± 0.53 15.95 0.96 16.99 ± 0.29

Acetic acid (COOH) 8.64 8.16 ± 0.08 − 7.84 ± 0.09 8.00 0.32 8.07 ± 0.11

Propionic acid (COOH) 8.41 11.44 ± 0.17 − 11.41 ± 0.15 11.43 0.03 11.98 ± 0.23

butan-1-amine (NH2) 6.32 5.52 ± 0.22 − 4.37 ± 0.34 4.95 1.15 4.88 ± 0.38

n-Propylguanidine (N2H4
+) 69.15 68.17 ± 0.51 − 67.05 ± 0.35 67.61 1.13 67.33 ± 0.71

Acetic acid (COO−) 79.52 82.64 ± 0.10 − 82.21 ± 0.22 82.42 0.43 82.71 ± 0.07

Propionic acid (COO−) 78.04 82.28 ± 0.21 − 82.63 ± 0.31 82.45 0.35 82.37 ± 0.13

butan-1-amine (NH3
+) 73.07 77.71 ± 0.48 − 78.49 ± 0.16 78.10 0.78 78.39 ± 0.22

4-methylimidaziole (Nδ,εH2+) 64.23 67.75 ± 0.19 − 67.77 ± 0.18 67.75 0.02 67.42 ± 0.20

Statistical figures

All sidechains R2 1.00 1.00 1.00 1.00

[95% CI] [0.99–1.00] [0.99–1.00] [0.99–1.00] [0.99–1.00]

MAE 1.46 1.76 1.60 1.58

Slope 1.05 1.05 1.05 1.05

Intercept 0.43 0.89 0.66 0.43

Neutral sidechains R2 0.91 0.88 0.90 0.89

[95% CI] [0.77–0.97] [0.71− 0.96] [0.74− 0.96] [0.74–0.96]

MAE 0.95 1.24 1.08 1.03

Slope 0.98 0.98 1.00 1.04

Intercept 0.21 0.43 0.32 0.36

Charged sidechains R2 0.92 0.86 0.89 0.89

[95% CI] [0.23–0.99] [0.07–0.99] [0.14–0.99] [0.13–0.99]

MAE 3.33 3.67 3.48 3.57

Slope 1.11 1.31 1.12 1.16

Intercept 5.21 6.71 5.94 8.50
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(± 0.23  kcal/mol on average) over all replicate simula-
tions in each of the three cases. The hysteresis, defined 
as the difference between the values obtained in the for-
ward (annihilation) and backward (creation) directions, is 
also generally very low, with an average value of 0.47 kcal/
mol. Notably, in the cases involving the largest growth (i.e. 
for p-cresol and 3-methylindole in the Me → X pathway), 
the default sampling with 51 λ windows was not sufficient 
to ensure convergence, as none of the simulations ran to 
completion. In these cases, a second round with 101 λ win-
dows were needed and the corresponding values reported 
in Table 1. This is a first example indicating that low con-
vergence may be a criterion for revising the FEP strategy 
(see below for A2A antagonists). Regardless of the pertur-
bation scheme applied, the calculated solvation free ener-
gies show an overall excellent agreement with experiment, 
with an almost perfect correlation in terms of R2. Given 
the large span of free energies, this value indeed masks the 
accumulated deviation from experiment, and the R2 deter-
mined on the separate charged/neutral groups is around 
0.9 for all methods (see Table  1). While the calculated 
MAE over the whole dataset falls within a range of 1.46–
1.76  kcal/mol, most of this error is caused by the higher 
deviations for ionizable molecules, with a smaller error 
below 1  kcal/mol in the best case for neutral sidechains. 
This is to be expected, as it is well known that the accu-
racy of force fields for these moieties is lower, and various 
corrections are needed to account for artifacts introduced 
by periodicity and long-range electrostatic cut-offs [62]. 
In our case, the latter does not apply since simulations are 
performed in a finite spherical droplet of water, where no 
cut-off is used for any atoms undergoing the alchemical 
transformation, allowing us to apply a simple correction to 
the calculated free energies of charged species using Born’s 
formula [58]. This yields an overall MAE of 3.67  kcal/
mol for the five charged residues, which is considerably 
lower than those reported with the same force field by 
Zhang et al. [62], which range from 5.52 to 20.23 kcal/mol 
depending on the correction applied. It is also interesting 
to compare the results of QligFEP to other computational 
studies which, using a variety of sampling techniques and 
force fields, did not report any calculations on the charged 
species [67–70]. The MAE obtained in the study consider-
ing the neutral form of the aminoacid mimics is 1.71 kcal/
mol, which is outperformed by our results (Table 1, con-
sidering only non-charged residues MAE = 0.95–1.24 kcal/
mol). Indeed the lowest MAE (0.69 kcal/mol) was reported 
from the Sandler group excluding any form of Asp, Glu, 
Lys or Arg [67], which in our case would yield an even 
lower value of MAE = 0.53 kcal/mol. 

While the complete annihilation of a sidechain seems 
to work well in all cases, we noted that the sidechain 
growth needs a smoother protocol to be implemented 

for bigger substituents (e.g. see Me to p-cresol or 3-meth-
ylindole). Thus, we have adopted the ‘middle’ scheme 
(1 ← λ = 0.5 → 0) as the standard protocol throughout 
the rest of this manuscript, since it forms the best trade-
off between general applicability and accuracy. There are 
cases where the user might want to have more control 
over endpoints, introduce a smoother lambda spacing 
scheme, or calculate averages over two endpoint simula-
tions, which is easily achieved using QligFEP.

Ligand binding to CDK2
The first example of ligand binding involves a series of 
antagonists of the CDK2 receptor [71]. This receptor is a 
drug target in oncology, and several inhibitors have been 
identified. Indeed, many solved CDK2—inhibitor crys-
tal structures exist, making this system particularly suit-
able for testing structure-based computational methods. 
In an earlier FEP study on this system, Wang et al. [49] 
examined the relative affinities for a set of 16 inhibitors 
using FEP+, which included 6 crystallized inhibitor-pro-
tein complexes and 10 analogs of these inhibitors, with a 
manually designed cycle closure and the OPLS2005 force 
field. Later on, the same dataset was used to test the auto-
mated FEP workflow implemented in FEP+, in combina-
tion with the new proprietary versions of the OPLS force 
field [17, 29]. We herein use this dataset to evaluate the 
performance of QligFEP in a (retrospective) ligand design 
project. Figure  2 shows the binding mode of the main 
scaffold (panel A) and the perturbation scheme applied 
in this study (panel B). The six structures solved in com-
plex with CDK2 are depicted as square nodes, with their 
PDB codes indicated, while the remainder of the ligands 
(ellipsoidal boxes) were considered in the docking poses 
kindly provided by Wang et al. All substituents involved 
different modifications of the benzene ring of ligand 
1h1q, which forms the central node in our FEP strategy. 
The results are summarized in Table 2 and Fig. 3, which 
also includes the values obtained with Schrodinger’s 
FEP+ for comparative purposes [29], together with the 
relevant statistical figures of merit. The affinity values, 
computed relative to the reference compound 1h1q, 
are here transformed to absolute binding free energies 
by scaling to the affinity of this compound, to facilitate 
the comparison with the FEP+ results. QligFEP results 
show very good agreement with the experimental data, 
in particular with the OPLS force field. The low MAE 
obtained (0.85  kcal/mol) is very encouraging and only 
slightly higher than the MAE computed from the FEP+ 
results. The correlation of QligFEP-OPLS results with 
experimental data, on the other hand, is the highest of 
the methods compared. Not only does this model result 
in the best correlation coefficient, but the statistics actu-
ally denote an important improvement in the predictive 
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Fig. 2  a Binding mode of CDK2 inhibitor 17, showing key interactions with the backbone in the hinge region of the protein. All substituents 
introduced at R are positioned in a solvent exposed cavity on the surface on the protein. b Overview of the chemical constitution of the 16 
R-groups (nodes) and selected perturbations (edges) for the calculations reported in Table 2

Table 2  Calculated and  experimental relative binding free energies between  pairs of  the  16 CDK2 inhibitors, 
corresponding to the FEP pathways depicted in Fig. 2

a  Experimental ∆IC50 values extracted from Ref. [71] and are transformed into ∆∆Gbind using the relation ��Go
bind,exp = RTln

(

IC50(B)
IC50(A)

)

b  All energies are in kcal/mol, with standard error of the mean (SEM) estimated from replicate simulations for Q, and cycle closure errors for FEP+ [29]
c  MAE taken from Ref. [29], based on cycle closure correction

Ligand Experimenta Calculatedb

FEP+ QligFEP

OPLS2005 OPLS3 OPLS2005 AMBER CHARMM

1h1q − 8.18 − 8.15 ± 0.00 − 7.56 ± 0.00 – – –

1h1r − 7.67 − 8.52 ± 0.26 − 8.61 ± 0.17 − 8.04 ± 0.11 − 7.52 ± 0.31 − 9.75 ± 0.45

1h1 s − 11.25 − 10.66 ± 0.40 − 10.14 ± 0.56 − 10.90 ± 0.28 − 11.07 ± 0.41 − 12.60 ± 0.72

1oi9 − 9.74 − 9.95 ± 0.32 − 9.66 ± 0.22 − 9.88 ± 0.16 − 10.40 ± 0.24 − 9.35 ± 0.49

1oiu − 9.08 − 10.10 ± 0.24 − 9.50 ± 0.47 − 9.89 ± 0.26 − 10.81 ± 0.74 − 11.26 ± 0.63

1oiy − 9.79 − 8.97 ± 0.29 − 8.94 ± 0.39 − 10.10 ± 0.23 − 10.82 ± 0.48 − 11.13 ± 0.52

17 − 7.04 − 8.56 ± 0.19 − 8.79 ± 0.13 − 7.99 ± 0.11 − 9.14 ± 0.51 − 10.63 ± 0.33

20 − 8.72 − 8.52 ± 0.33 − 7.96 ± 0.28 − 8.70 ± 0.18 − 8.60 ± 0.23 − 8.65 ± 0.37

21 − 7.83 − 8.50 ± 0.27 − 8.70 ± 0.15 − 7.54 ± 0.15 − 7.07 ± 0.35 − 11.11 ± 0.39

22 − 7.76 − 8.58 ± 0.23 − 9.00 ± 0.18 − 7.74 ± 0.15 − 6.68 ± 0.51 − 9.66 ± 0.47

26 − 8.43 − 9.44 ± 0.33 − 8.68 ± 0.39 − 9.57 ± 0.14 − 9.42 ± 0.44 − 10.31 ± 0.59

28 − 11.11 − 9.90 ± 0.49 − 10.31 ± 0.49 − 13.47 ± 1.10 − 5.45 ± 0.93 − 11.54 ± 0.89

29 − 9.88 − 9.53 ± 0.47 − 9.32 ± 0.61 − 13.59 ± 0.99 − 11.44 ± 1.18 − 11.55 ± 1.21

30 − 9.81 − 8.92 ± 0.38 − 9.13 ± 0.48 − 10.87 ± 0.60 − 11.48 ± 0.77 − 10.92 ± 0.50

31 − 9.54 − 8.19 ± 0.41 − 9.03 ± 0.46 − 8.75 ± 0.19 − 9.68 ± 0.48 − 10.83 ± 0.91

32 − 9.75 − 9.26 ± 0.47 − 10.27 ± 0.49 − 8.48 ± 0.84 − 9.77 ± 0.65 − 11.92 ± 0.93

R2 [95% CI] 0.48 [0.09–0.78] 0.51 [0.11–0.79] 0.59 [0.20–0.84] 0.13 [0.01–0.52] 0.33 [0.01–
0.69]

MAE 0.75 (0.69c) 0.75 (0.79c) 0.85 1.11 1.54

Slope 0.43 0.44 1.17 0.53 0.56

Intercept − 5.22 − 5.06 1.08 − 4.39 − 5.47
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Fig. 3  Scatter plots for the calculated and experimental relative binding free energies (∆Gbind, kcal/mol) for the series of 16 CDK2 inhibitors, taking 
1h1r as reference. The orange line represents the calculated linear equation for the correlation coefficient R2. The black line represents a perfect 
correlation, and the two dashed lines are +/− 1 and +/− 2 kcal/mol respectively
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power and interpretation of this model as compared to 
all other models in Table  2, with a slope very close to 
the ideal value of 1 (Fig.  3) and the smallest intercept 
of 1 kcal/mol. These values are in contrast with the two 
FEP+ models and the QligFEP models obtained with the 
AMBER and CHARMM force fields, where the slope is 
around 0.5 and the intercept close to − 5 kcal/mol, indi-
cating that most of the variability of the data is actually 
not explained by the models (Fig.  3). We should stress 
that in QligFEP no attempts have been made to increase 
the quality of the ligand parameters generated by any of 
the automated parameterization methods. In particular, 
when using either GAFF or CGenFF, quite a few criti-
cal warnings were ignored, which in a real (prospective) 
application one would certainly optimize, and this could 
partially account for the lower performance as compared 
to the results using the OPLS force field. However, we feel 
that such an optimization procedure would be beyond 
the scope of this work, as the aim of the reported tool is 
to automate FEP calculations, not parameter generation, 
and the possibility of using different force fields as per 
the preference (and experience) of the user. In this sense, 
we would also like to stress that the QligFEP calculations 
were performed using the OPLS-AA/M model, which is 
very similar to OPLS2005 but supposedly inferior to the 
latest version OPLS3, a proprietary version not publicly 
available. However, as stated before the performance of 
OPLS3 with a more complex cycle closure strategy only 
improves slightly in terms of the MAE (0.1  kcal/mol), 
whilst the R2 and interpretation of the model is superior 
in QligFEP.  

A2AAR antagonist binding
The A2AAR has been widely used by us and others as a 
test-case for the performance of computational meth-
ods in the design of ligands for more complex membrane 
systems [72]. The advantage of using spherical bound-
ary conditions becomes evident in these systems, where 
a sphere centered on the binding site with a diameter 
of 50 Å contains approximately 7.400 atoms (see Fig. 1). 
This significantly decreases the computational time 
needed for a simulation as compared to a periodic system 
of i.e. an optimized hexagonal shaped box with ~ 42.000 
atoms. We have shown that calculations performed on 
larger sphere systems of the same A2AAR receptor com-
plex result in larger errors, but yield the same average 
changes in binding free energies [12, 73]. On the related 
A3AR, our FEP approach now automated under QligFEP 
was used to elucidate the role of a nitrogen substitution 
in the core of antagonists with a pyrimidine scaffold 
[74]. Here, we apply QligFEP to compute the relative 
affinities of 8 analogs of the triazol-2-yl-9 H-purin-6-
ylamine (ST1535, Fig. 4) [31]. The binding mode of this 

compound, shown in Fig.  4, was inferred by analogy to 
the binding mode of the triazolopyrimidine antagonist 
ZM241385 [75]. This includes key hydrogen bonds with 
N2536.55 and E169EL2 (subscripts indicate the general 
GPCR topological nomenclature [31]) and π–π stacking 
interactions between the bicyclic core of the ligand and 
F168EL2, which are common interactions in adenosine 
receptor ligand recognition [76]. Table 3 reports the cal-
culated relative free energy (∆∆Gbind) of each compound 
to the simplest ligand compound 11. For comparison, the 
experimental values are shown together with the values 
obtained by Lenselink et al. [30] using FEP+ under PBC. 
In a first attempt, each of the eight analogs was directly 
perturbed to the reference ligand 11 (note the nomen-
clature of the compounds following the original report 
by Minetti et al. [31]). Six out of the eight perturbations 
are well converged, whereas we observed a large SEM 
(over 1.6  kcal/mol) for the perturbations including the 
largest compounds 25c and 25d. This provides some 
insight in the convergence limitations of a direct pertur-
bation between two related ligands. In this case, it was 
evidenced that the phenylethyl (25d) or pentyl (25c) sub-
stitutions are too large to compute reliable relative affini-
ties when directly perturbed to hydrogen (11). To solve 

Fig. 4  a Binding mode of compound 25d to the A2AAR, with the key 
interacting residues denoted by sticks. b Core scaffolds of the two 
series investigated in this work
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this, we created an alternative pathway that involved a 
smoother annihilation scheme through two interme-
diate steps linking these ligands to the reference com-
pound 11, i.e. 25d → 25c → 25b → 11. The calculated 
relative affinities with QligFEP show excellent agreement 
with the experimental data (Table 3). Moreover, the sta-
tistical figures of merit (R2 = 0.88; MAE = 0.72  kcal/
mol) are equivalent to those reported by Lenselink et al. 
(R2 = 0.78; MAE = 0.68  kcal/mol). Notably, in that work 
the proprietary OPLS3 force field was used and the level 
of performance indicated was only achieved after apply-
ing the cycle-closure strategy, which includes a total of 
17 perturbations in redundant cycles and the transfor-
mation of the data to include ∆G values relative to 11. 
If only the perturbations to 11 are selected and the rela-
tive binding free energies are used (which give a shorter 
span and thereafter are more sensible to fluctuations in 
the overall correlation), the correlation of the FEP+ strat-
egy is moderately hampered (R2 = 0.50, as opposed to the 
corresponding value of R2 = 0.74 for QligFEP). It is worth 
noting that two perturbations that we accurately model 
include changes in the core ring (32 and 41–11), which 
belong to the scaffold hopping modifications that we dis-
cuss in more detail below.

Scaffold hopping
Thus far, examples presented in this work involved typical 
lead-optimization strategies, where R-group substituents 

are introduced to a scaffold with the aim to increase 
binding affinity. Another strategy within the medicinal 
chemist’s toolbox is to change the core of the lead ligand 
while retaining peripheral R-group substituents that 
are identified as crucial for protein–ligand recognition 
[59, 77]. Such a procedure, also referred to as ‘scaffold-
hopping’, can be extremely useful to overcome problems 
related to the initial scaffold, such as ADMET proper-
ties or reactivity, as well as to expand the chemical space 
and overcome patentability problems [77]. However, 
scaffold hopping has been elusive to FEP approaches as 
it often involves significant amounts of changes in the 
bond topologies within the ligand series. Within a single 
topology framework, one would have to make or break 
bonds to include such changes, something that is prone 
to numerical instabilities due to the asymptotic nature of 
harmonic potentials representing bond stretching/clos-
ing in classical force fields [21, 78]. One strategy to over-
come this is to change the asymptotic nature of the bond 
by introducing a softcore bond potential [78]. Within 
the QligFEP dual-topology framework, we introduce an 
alternative approach, since no bonded terms are altered 
within the transition of the ligand pair, even if the bond 
topology changes. Additionally, since the two molecules 
exist as two unrelated entities, the necessary dummy 
atoms do not experience any strain from residual ‘real’ 
atoms, and the thermodynamic cycle can be formally 
closed [21]. To test the applicability of this approach in a 
typical scaffold-hopping case, we performed a total of six 
perturbations between five inhibitors of the Checkpoint 
kinase 1 (Chk1, see Fig.  5). This set was extracted from 
a recent benchmark on scaffold hopping using FEP+ 
applying the aforementioned softcore potentials, and it 
is illustrative of the various topological changes observed 
in these type of modifications, i.e. ring opening, ring clo-
sure, changing the ring size and the substitution of atoms 
within a ring. The results are summarized in Table  4. 
Even if the changes in affinity within the series are rela-
tively small (which is typically the case in a successful 
scaffold hoping project, i.e. to discover new chemical 
entities with similar binding affinities) these are very suc-
cessfully captured with our QligFEP approach, with an 
MAE of 0.32 kcal/mol. More importantly, with the only 
exception of the pair 19 → 21 involving a ring formation, 
see Fig. 5, the simulations are well converged with a SEM 
typically under 0.5 kcal/mol (Table 4). Notably, these val-
ues are quite comparable with those reported with the 
alternative FEP+ approach [78], even though a different 
force field version was used (OPLS2005 in our methods 
versus OPLS3 in FEP+, see Table 4). This shows that the 
practical advantages of a dual topology approach in scaf-
fold hopping do not cause a lower performance as com-
pared to single topology approaches.

Table 3  Calculated and  experimental shifts in  binding 
free energies of  a  series of  A2AAR antagonists, relative 
to the parent compound 11 

a  MAE reported in the original work form Lenselink et al. [30], based on cycle 
closure correction and using the affinity of 11 to calculate ∆G values
b  R2 for ∆G values using the same strategy of using ∆G with 11 as a reference

Compound R Binding free energies (ΔΔGbind, kcal/mol)

Experiment FEP+a QLigFEP

11 H – – –

25a CH3 0.25 0.53 ± 0.04 0.74 ± 0.34

25b (CH2)3CH3 − 1.15 − 0.34 ± 0.10 − 0.96 ± 0.81

25c (CH2)4CH3 − 1.56 − 0.56 ± 0.09 − 0.93 ± 0.86

25d (CH2)2Ph − 1.35 − 0.69 ± 0.11 − 0.75 ± 0.95

25e CH(CH4)2 1.39 0.88 ± 0.09 2.46 ± 0.99

25f (CH2)2CH3 0.35 0.23 ± 0.07 2.17 ± 1.07

32 H 0.06 1.24 ± 0.18 0.67 ± 0.22

41 CH3 0.56 3.08 ± 0.16 0.98 ± 0.33

R2

[95% CI]
0.49 (0.78a)
[0.00–0.88]

0.74 (0.88b)
[0.16–0.95]

MAE 0.74 (0.68a) 0.72

Slope 0.74 0.99

Intercept 0.56 0.49
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Discussion
We present QligFEP, an automated workflow to setup, 
run and analyze ligand free energy perturbation cal-
culations within a structure-based drug design frame-
work. The workflow is built as an API that interacts 
with the open-source software package Q. It aims to 
automate the tedious process of creating input and 
parameters files and to facilitate a robust setup to per-
form free energy calculations between a given pair of 
ligands to calculate e.g. their relative binding affinities. 
We show how this approach can be scaled up to per-
form pair comparisons in a high-throughput fashion 
for a versatile set of ligands and receptors, which to 
the best of our knowledge is achievable with a limited 
amount of software packages [9, 29, 49].

Given a dataset with a number l of ligands, one can 
eventually perform all possible pair comparisons, 
which is proportional to l2. This brings up the question 
on how to optimize the design of the FEP strategy such 
that a selected sample of pair comparisons (li, lj) rep-
resent the spectrum of relative affinities to cover the 
whole dataset whilst minimizing the structural changes 
involved in order to ensure sufficient convergence. 
One way to approach this problem is through the use 
of MCS algorithms, further combined with the idea of 
cycle closures, to validate the FEP pathways (i.e., the 
addition to the ∆∆Gbind calculated along a given path 
A → B → C → A should be zero). While for big datasets 
this automated approach is a useful solution, in most 
cases one can design pathways based on basic medici-
nal chemistry knowledge, and assess the feasibility of 
this design solely based on the convergence achieved. 
This is nicely illustrated in this work by the calculations 
performed on the A2AAR antagonists set. The initial 
design of the FEP pathway involved the calculation of 
the affinities of each compound relative to a single ref-
erence compound. This is, in our opinion, the recom-
mended approach in a lead optimization project, where 
typically one only knows the affinity of a reference com-
pound and variations of one or several substituents 
are designed. In this case, two perturbations showed 
low convergence, detected by an abnormally high SEM 
within the replicate simulations of the system. We rede-
signed the strategy to circumvent this issue, involving 
a cycle closure defined by four compounds within the 
dataset. This case also illustrates the increased compu-
tational efficiency of QligFEP as compared to the FEP+ 
methodology. First, the cycle-closure strategy used in 
FEP+ involved 17 perturbations as compared to the 10 
perturbations in our FEP pathway. Second, our system 
setup with SBC is approximately 6 times smaller than 
the PBC setup used by FEP+. Third, the simulation 
times reported are 10 times longer (see methods sec-
tion) for a single simulation per ligand pair. Taken all 
together, QligFEP provides an alternative for efficient 
FEP simulations, at a substantial reduction of the com-
putational cost as compared with existing commercial 
software. In other words, we show an alternative to a 
more exhaustive cycle closure, which is based on start-
ing with a simple FEP design based on the MCS idea, 
detect potential problematic pairs based on conver-
gence using the SEM as a metric and iterative process-
ing of the obtained data if needed.

Another advantage of our approach is the implemen-
tation of a dual topology representation, which allows 
the comparison of molecules with unrelated topologies. 
This is a particularly interesting approach in, for instance, 
scaffold hopping where one wants to normally compare 

Fig. 5  Core of the scaffold of the Chk1 inhibitor series, showing 
the variable position explored by scaffold hopping with the five 
different R-group modifications (bottom). The pathways chosen 
to connect these groups through FEP simulations to calculate the 
relative change in binding free energies are indicated by arrows, the 
corresponding values reported in Table 4
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different chemical scaffolds. In a single topology frame-
work, where a one-to-one mapping of atoms between the 
two states is used, this potentially includes the transfor-
mation of bonded terms to represent the change in bond 
topology. In contrast, with QligFEP this problem can be 
circumvented, whilst still achieving excellent correla-
tion with experiment. Our initial results are promising, 
and the next direction in our research will be to apply 
the QligFEP dual topology approach the binding affinity 
prediction of fragment-like compounds, which involves 
comparing different chemical scaffolds where even 
potential multiple binding modes can be assessed.

Conclusion
QligFEP provides a versatile, robust and accurate frame-
work to routinely perform FEP calculations in struc-
ture-based ligand design projects. We herein show the 
performance on a diverse benchmark set of systems and 
ligands, showing agreement between experiment and cal-
culations similar to that of other state-of-the-art meth-
ods. QligFEP is implemented as an easy to use, modular 
API, which interacts with the open-source MD engine 
Q. Additionally, our package already works with a num-
ber of standard force fields, whilst the implementation 
of additional force fields is currently under development. 
The benchmark test sets included in this study are part 
of the tutorials and provide a useful start for users with 
limited training in free energy calculations. QligFEP and 
its associate MD engine Q are available free of charge 
through github.
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