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Abstract 

Symmetry of proteins, an important source of their elegant structure and unique functions, is not as perfect as it 
may seem. In the framework of continuous symmetry, in which symmetry is no longer a binary yes/no property, 
such imperfections can be quantified and used as a global descriptor of the three-dimensional structure. We pre‑
sent an improved algorithm for calculating the continuous symmetry measure for proteins that takes into account 
their complete set of atoms including all side chains. Our method takes advantage of the protein sequence and the 
division into peptides in order to improve the accuracy and efficiency of the calculation over previous methods. The 
Hungarian algorithm is applied to solve the assignment problem and find the permutation that defines the symmetry 
operation. Analysis of the symmetry of several sets of protein homomers, with various degrees of rotational symme‑
try is presented. The new methodology lays the foundations for accurate, efficient and reliable large scale symmetry 
analysis of protein structure and can be used as a collective variable that describes changes of the protein geometry 
along various processes, both at the backbone level and for the complete protein structure.
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Introduction
Symmetry offers several advantages for the evolution, oli-
gomerization and function of proteins [1–3]. It has been 
shown that symmetry leads to a reduction of errors in the 
process of protein synthesis, especially when long peptide 
chains are involved [1, 4]. Symmetry tends to increase the 
effectiveness of allosteric regulation, e.g., by the Monod–
Wyman–Changeux model of allostery (also referred to 
as the symmetry model) [5]. Synthesizing a symmetric 
structure requires less information for coding the pro-
tein, therefore may lead to faster processes [1]. Usually 
closed symmetric systems tend to have lower energy than 
asymmetric ones as the interactions between the subu-
nits are maximized due to the symmetry. Consequently 

symmetry could make proteins more stable and mini-
mize unwanted excessive aggregation [6]. Indeed, sym-
metry is a characteristic of many protein structures [7]. 
Searching the Research Collaboratory for Structural 
Bioinformatics Protein Data Bank (RCSB PDB) [8, 9] 
for symmetric structures reveals that within ca. 145,000 
structures, around 40% are symmetric, ~ 30% have cyclic 
symmetry with one rotation axis, and the other 10% have 
higher symmetry (e.g., dihedral, octahedral, icosahedral, 
etc.). Moreover, out of ~ 55,000 homooligomers in the 
database, 96% are symmetric.

Nevertheless, research shows time and again that pro-
tein symmetry is far from being perfect. Such imper-
fections have been related to several factors, among 
which are the function of the protein, thermodynamic 
considerations, and experimental conditions [10–12]. 
Quantification of these imperfections is still in its very 
beginning. The pioneering work of Zabrodsky Peleg 
and Avnir [13] introduced the Continuous Symmetry 
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Measure (CSM)—a structural descriptor that translates 
the full collection of geometrical parameters that define 
a molecular structure into a single number that measures 
the distance of that structure from its nearest symmet-
ric counterpart with respect to a given cyclic point group 
G. The group G can be generated either by a proper or 
an improper rotation. The latter case allows a calcula-
tion of the Continuous Chirality Measure (CCM) [14], 
as an important feature of the general CSM framework. 
The task of computing the CSM requires the solution of 
an optimization problem, in which the parameters are 
both a permutation of the molecule’s atoms and a three 
dimensional direction vector [15]. For macromolecules, 
the huge number of possible permutations makes the 
calculation (and even approximation) of the CSM a non-
trivial algorithmic problem.

The first step towards an efficient method for calcu-
lating the CSM was the work of Pinsky et  al. [15] who 
developed an efficient method for finding the optimal 
direction vector, for any given permutation. They also 
introduced a division of the molecule’s atom into certain 
equivalence classes, based on the atoms’ type and the 
connectivity map of the molecule [16]. This division nar-
rows down the realm of possibilities for the atom permu-
tation, but the number of permutations remains too large 
to enumerate, except for very small molecules.

A partial solution to this problem was given in the work 
of Dryzun et al. [17] who were the first to introduce an 
approximate method for the calculation of the CSM. 
Starting with a reasonable guess of the direction vec-
tor, a sequence of iterative steps is performed where in 
each step a new atom permutation is calculated from the 
direction vector, and a new direction vector is calculated 
from that permutation, until convergence is reached. 
While the method of calculating the vector from the per-
mutation (similar to the strategy of Pinsky et al. [15]) is 
both efficient and exact, as we recently proved [16], the 
method of calculating the permutation from the direc-
tion vector uses a greedy algorithm to find the permu-
tation, which is relatively fast, yet generally provides 
only a crude approximation as compared with the exact 
algorithm. Nevertheless, the method provided the first 
practical tool for estimating the CSM of proteins, macro-
molecules and nanomaterials [17].

In a somewhat different direction, we have recently 
developed an algorithm for an exact calculation of the 
CSM [16], which is feasible for small to medium sized 
molecules. This algorithm takes into account all the 
information from the connectivity map of the molecule, 
and enumerates only the permutations that preserve the 
molecule’s bonding structure.

All of the methods described above are insufficient 
for estimating the symmetry of proteins. For the exact 

method [15, 16], the number of atoms, and consequently 
the number of permissible permutations are simply too 
large for the algorithms to complete the calculation in 
a reasonable time. The approximate method of Dryzun 
et al. [17] is also ineffective for this case, because of accu-
mulated inaccuracies due to the approximate scheme 
and the use of the greedy algorithm. Furthermore, dis-
regarding the peptide structure produces symmetric 
structures that mix atoms from different peptides and 
violate chemical rules. Nevertheless, assuming the per-
mutation is dictated by the serial numbers, that is, each 
atom is permuted to an atom from another peptide with 
the same sequence number, provides a good estimation 
of the CSM of protein homomers. Recently, Bonjack-
Shterengartz and Avnir applied this strategy and showed 
the effectiveness of using the CSM to describe the near 
symmetry of proteins [10, 11]. As will be shown here, 
this method limits the precision of the CSM calculation, 
especially when the number of peptides increases.

Other methods for the estimation of the protein sym-
metry are discussed in the literature [18–27]. These are 
generally based on quaternary structure alignment algo-
rithms that involve the superposition of two peptides 
one over each other, while estimating their alignment 
by either root mean square deviation (RMSD) of match-
ing α-carbons, or by a related scoring formula (e.g., the 
combinatorial extension (CE) score [28] or the template 
modeling (TM) score [18, 29]). However, these meth-
ods generally ignore the geometry of the side chains and 
therefore do not attempt to find the true permutation of 
the atoms.

In this paper we describe a new method for estimat-
ing the CSM for proteins. Our method relies on the 
properties of the protein sequence and the division into 
peptides, and presents algorithmic improvements as 
compared with previous methods. Specifically, our strat-
egy introduces three improvements over the method of 
Dryzun et  al. [17]: (a) We take into consideration the 
information of the protein sequence. This allows us to 
refine the division of atoms into equivalence groups, 
such that only atoms of the same identity, residue type 
and residue sequence number can be interchanged. (b) 
The greedy algorithm for calculating the permutation in 
the iterative step is replaced with the Hungarian algo-
rithm, which is known to guarantee to yield an optimal 
solution of the related assignment problem [30, 31]. (c) 
We take into considerations the division of the molecule 
into peptides. Our algorithm distinguishes between the 
permutation of the peptides and the permutation of the 
atoms in the peptides, thus making sure that the result-
ing permutation will not mix atoms from different pep-
tides. The Hungarian algorithm is applied at this stage 
as well, to find the optimal peptide permutation. These 
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improvements lead to a tremendous increase in the accu-
racy and speed of the calculation, and turn the CSM into 
a robust methodology to describe protein structure, that 
can be used both for homomers as well as internal sym-
metry investigation of protein domains.

Methodology
Review of the CSM
Let us briefly review the fundamentals of the CSM meth-
odology [13, 15, 16]. We consider a given molecule A of N 
atoms, and a point group symmetry G of order n, which 
can be of the type Cn or Sn. Let Q =

{

Qk : 1 ≤ k ≤ N
}

 
be the set of coordinate vectors of the molecule’s atoms, 
and let Q0 =

1
N

∑N
k=1Qk be its geometric center of 

mass. We are looking for a symmetry operation T  , which 
generates a cyclic point group of type G. Note that T 
is a rotation (either proper or improper) by an angle of 
360◦

/

n . In both cases, T  is determined by a 3-dimen-
sional direction vector, which we denote by vsym . The 
continuous symmetry measure (CSM) is defined by 
S(G) = 100 ·M(G)

/

N (G) , where

and the minimum is over all the symmetric (i.e. T-invari-
ant) structures 

{

Pk : 1 ≤ k ≤ N
}

 and all possible direc-
tion vectors vsym . Each symmetric structure {Pk} induces 
a permutation π on the set of atoms {1, 2, . . . ,N } , defined 
by the relation

A symmetric structure {Pk} which minimizes Eq.  (1) is 
determined by T  and the permutation π , via the relation

Therefore, the calculation of the CSM and the nearest 
symmetric structure amount to finding the vector vsym 
and the permutation π which minimize Eq. (1), or equiv-
alently, attain the minimum

The permutation π must satisfy a few requirements:

(a)	 Since T is a generator of the group G, and π is 
related to T by Eq.  (2), the cycles of π can only be 
of size 1, 2, or n (2 is only allowed when G = Sn or 
G = C2).

(1)

M(G) = min

[

N
∑

k=1

|Qk − Pk |
2

]

; N (G) =

N
∑

k=1

|Qk −Q0|
2

(2)TPk = Pπ(k) for 1 ≤ k ≤ N

(3)Pk =
1

n

n
∑

i=1

T−iQπ i(k)

(4)M(G) =
1

2n
min

n
∑

i=1

N
∑

k=1

∣

∣

∣
TiQk −Qπ i(k)

∣

∣

∣

2

(b)	 π must preserve the structure of the original mol-
ecule. This means that π only permutes atoms of 
the same type, and that π neither breaks the bonds 
between atoms, nor creates new ones.

A method for an efficient enumeration of the permu-
tations satisfying these conditions was described in 
our previous publication [16]. However, for proteins, 
such an enumeration is impossible as there are just too 
many such permutations. In earlier implementations of 
the CSM calculation [15, 17], the structure preserving 
condition was not enforced, but rather a weaker con-
dition was used: The molecule’s atoms were divided 
into equivalence classes {C1, C2, . . .} . The division was 
determined by an iterative process in which the initial 
division is deduced from the atom types, and further 
refinements were based on neighboring atoms in the 
connectivity map of the molecule. Finally, the permuta-
tion was required to preserve the equivalence classes.

Estimating the CSM for large structures
The approximate algorithm of Dryzun et  al. [17] is 
based on an iterative calculation. One begins with a 
reasonable guess of the direction vector vsym ; and then, 
at each iterative step, a permutation is calculated from 
the current vector, and a new vector is calculated from 
that permutation. This is repeated until either the pro-
cess converges (the value of vsym stabilizes) or too many 
iterations have passed. The initial guess of the direc-
tion vector is found by performing linear regression 
on the set of centers of mass of the equivalence classes 
{C1, C2, . . .} . This is reasonable because for perfectly 
symmetric molecules, the symmetry operation preserve 
these centers of mass. The permutation is calculated in 
each iterative step by a greedy algorithm: In each step, 
an atom i and a permutation value π(i) = j are chosen, 
such that: (a) j is in the same equivalence class as i. (b) 
The atom i has not yet been assigned a permutation 
value and the atom j has not yet been assigned as a per-
mutation value. (c) The distance |TQi −Qj| is minimal 
among such pairs i,j. The direction vector vsym is calcu-
lated from the permutation π by observing that given 
π , the solution of Eq.  (4) is a quadratic optimization 
problem, which can be efficiently and accurately solved 
using Lagrange multipliers and matrix eigenvalues [15].

The above algorithm for finding the permutation 
has the advantage of a reasonable running time, which 
makes it feasible for large molecules. However, it is not 
always accurate since the greedy algorithm does not 
take into account the interaction between the choices 
of permutation values for various atoms. An example of 
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the inaccuracy created by the greedy algorithm even in 
the case of two atoms is given as Additional file 1.

Finding the permutation with the Hungarian algorithm
Our first improvement of the approximate method, 
which is not specific for proteins, focuses on the calcu-
lation of the permutation in the iterative step. We are 
given a direction vector vsym (determined in the previ-
ous step), and a symmetry operation T. For each equiv-
alence class Ci , consisting of the atoms {a1, . . . , ak} we 
define a k × k matrix A, whose elements, Aij, are given 
by:

Our algorithm chooses the permutation π of the values 
{a1, . . . , ak} , defined by π(ai) = aµ(i) (for i = 1, . . . , k ), 
where µ is the permutation of 

{

1, . . . , k
}

 for which the 
sum 

∑k
i=1 Aiµ(i) is minimal. Therefore, µ is the solution 

of the assignment problem for the matrix A [30]. For this 
problem, there is an efficient algorithm—the so-called 
Hungarian Algorithm, which finds the optimal solution 
in time O(k3) [30]. We provide further information about 
the assignment problem and its well-known solution in 
the Additional file 1.

Our revised method consists of forming the matrix 
A for each equivalence class, and obtaining the permu-
tation values in each equivalence class by running the 
Hungarian algorithm on this matrix.

It should be noted that our algorithm does not take 
into account the restriction on the cycle structure of 
the permutation, described above. To the best of our 
knowledge, there is no efficient solution to the assign-
ment problem under such cycle structure constraints. 
We also note that our method for finding the permuta-
tion (like the method of Pinsky et al. [32]) aims to min-
imize the term in Eq.  (4) corresponding to i = 1 . This 
has proved to be a good approximation of the mini-
mizer of the entire sum in Eq. (4).

Reducing equivalence groups: the “use sequence” 
algorithm
It is intuitively clear, and practically verifiable, that 
a crucial factor in the accuracy and efficiency of the 
approximate algorithm (with the Hungarian method 
improvement) is the size of the atom equivalence 
classes: The algorithm has better performance when 
the classes are small. For proteins, we can greatly refine 
the initial division into classes by using the infor-
mation of the protein sequence. We assign different 
classes to pairs of atoms which differ in their chemical 

(5)
Aij =

∣

∣

∣
TQai −Qaj

∣

∣

∣

2

for 1 ≤ i ≤ k , 1 ≤ j ≤ k

identity, residue type or sequence number (excluding 
the remoteness indicator). Consequently the size of the 
equivalence classes is determined by either the num-
ber of peptides (for protein backbone atoms and most 
of the side chains atoms as well), twice this number for 
atoms that differ only by their remoteness indicator 
(e.g., the two Cγ atoms of Val), or three times this num-
ber if hydrogen atoms are taken into account.

The many chains algorithm
We now describe a further improvement of the algo-
rithm, in which we make sure that the permutation does 
not break the peptides, but rather, carry each peptide in 
its entirety to another peptide. This is achieved by per-
forming two levels of implementation of the Hungarian 
algorithm. The lower level calculates the mapping of the 
atoms in a peptide, and the higher level calculates the 
permutation of the peptides.

Let us denote the peptides by {P1, . . . ,Pℓ} . In the itera-
tive step of the approximate algorithm, given the sym-
metry operation T  , we calculate for each pair of peptides 
Pi,Pj , the following minimum:

where {U1, . . . ,UM} are the atoms of Pi , {V1, . . . ,VM} are 
the atoms of Pj , and the minimum is over all the permu-
tations ν of {1, . . . ,M} which preserve the equivalence 
classes. The value of Bi,j and the minimizing permutation 
ν is calculated by the Hungarian algorithm as explained 

(6)Bi,j = min

M
∑

u=1

∣

∣TUi − Vν(i)

∣

∣

2

Fig. 1  Atoms’ permutation for a two-residue (Leu-Phe) section of a 
homodimer. Black atoms form equivalence classes of two atoms each 
(one from each peptide). Orange, blue and magenta carbon atoms 
represent carbon atoms that differ only by their remoteness indicator, 
each couple forms an equivalence group of four atoms. Red bonds 
represent the protein backbone. Two choices for permuting the 
Leu-Cδ carbon atoms (magenta) are illustrated with blue and green 
arrows
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above. We call this stage the lower level application of the 
Hungarian algorithm—see Fig. 1.

Applying the Hungarian algorithm to the matrix 
B =

(

Bi,j

)

 (this is the higher level application of the Hun-
garian algorithm, see Fig. 2) results with the optimal per-
mutation of the peptides. Given the permutation of the 
peptides, and using the permutation calculated in the 
lower level, we obtain the full permutation of the mol-
ecule’s atoms. This permutation has the desired prop-
erty of maintaining the peptides structure as well as the 
protein sequence, and is the optimal one among all such 
permutations.

Testing methodology
Creating a database of the proteins: selection criteria
To test the effectiveness of our code we applied it to sev-
eral sets of protein homomers. The coordinates of the 
proteins of each set were extracted from the RCSB web-
site [8, 9]. In order to assure that only high quality pro-
teins with minimal statistical bias will be selected [33, 
34], several criteria for filtering the proteins were applied: 
(a) The experimental method was X-ray crystallogra-
phy with a resolution of 2.5 Å or better, equivalent to at 
least a “Good” grade as defined by FirstGlance in Jmol 
[35]; (b) Only homomeric proteins were chosen in which 
the asymmetric unit contained all chains of the protein 
required to create a symmetric structure, that is, a bio-
logical assembly identical to the asymmetric unit exist, 
as defined by the transformation matrix in remark 350 of 

the PDB file. (c) DNA, RNA or hybrid chains were filtered 
out. (d) Based on Rfree values the proteins were assigned 
with an Rfree grade [36], which measures the quality of fit-
ting a simulated diffraction pattern to the analyzed exper-
imental diffraction pattern. Only proteins with a grade of 
“average at this resolution” and better were included; (e) 
finally, to reduce redundancy, proteins were filtered to 
maintain up to 70% sequence identity as defined by the 
RCSB website. Lists of the proteins used in this work are 
provided in the Additional file 1. Filtering was based on 
the RSCB search terms and followed by our own Python 
code: pdb_prep (see below). It should be noted that aver-
aged B-factors, representing the mean square isotropic 
displacement of each atom [37, 38], were not required as 
an additional filter since for most of the protein used, the 
above filters naturally reduced these values to less than or 
equal to 40 Å2. However, those with higher average B fac-
tor showed good Rfree grades and were therefore included 
in this study.

The above filters were applied to all symmetric 
homomers found in the RCSB website with C4, C5 and C6 
rotational symmetry resulting with sets of 31, 51 and 16 
proteins respectively. For protein homodimers with C2 
symmetry and homotrimers with C3 symmetry, which 
are common in the RCSB database, we applied a rand-
omization algorithm (by the Linux “shuf” command writ-
ten by Paul Eggert) to choose 300 proteins of each type 
from the website. After applying the above filters these 
sets were reduced to 194 and 214 proteins respectively.

Preparing proteins for CSM calculations
Prior to analysis, each protein in our sets was cleaned 
with our python code pdb_prep to delete ligands, sol-
vents, non-coordinates lines (e.g., ANISOU data repre-
senting anisotropic temperature factors) from the ATOM 
section in the PDB file [8, 9], and choose the first location 
in cases of alternate locations of specific residues. Hydro-
gen atoms, if existed, were deleted in order to unify the 
dataset, as most of the PDB files did not include them. In 
addition the code used reported data on missing residues 
and atoms (based on remarks 465 and 470 in the PDB 
file) to insure that all peptides have the same length. If a 
residue was missing from one or more of the peptides—it 
was automatically deleted from all other peptides. Simi-
lar treatment was given to missing atoms. Finally the files 
were checked to verify that the length of all peptides is 
identical.

Results
Symmetry levels of homomers
Table  1 presents descriptive statistics of our set of pro-
teins. It should be noted that while the general scale of 
the CSM is between 0 and 100, typical CSM values of 

A C

D

B

E

Fig. 2  Peptides’ permutation in AB5 toxin from E. coli (PDB ID: 
3DWA) fits the peptide permutation order: A → C → D → B → E. 
S(C5) = 0.0410. Peptides’ labels are taken from the PDB file
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proteins with approximate symmetry are significantly 
smaller than 100 [10]. For our sets of proteins the distor-
tion levels varied between 0 and 2. This does not neces-
sarily mean that proteins are more symmetric than small 
molecules. Rather this results from the definition of the 
symmetry measure. The denominator, N (G) , in Eq.  (1) 
is the sum of distances of each atom from the center of 
mass of the molecule. While for small molecules this 
value may be at the order of the sum of deviations of each 
atom from its expected symmetric position (as appears 
in the numerator, M(G) ), for a protein, especially for an 
elongated structure, the sum of these distances can be 
much higher than the numerator leading to a small CSM 
value. Table 1 should thus be used as a reference table to 
which CSM levels of proteins with approximate symme-
try can be compared. Within this range, up to 4 orders of 
magnitude differences exist between the minimum CSM 
representing highly symmetric proteins and the maxi-
mum CSM representing highly distorted ones. It should 

be noted that for asymmetric proteins, the CSM can be 
significantly higher than the values in Table 1, and values 
in the range 20–30 and even higher are common. On the 
other hand, there are specific structures that appear to be 
symmetric by their CSM value, although they are classi-
fied as asymmetric in the RCSB website. We comment 
on this topic in the Additional file 1 and presents statis-
tics for asymmetric homotrimers and homotetramers in 
Additional file 1: Table S1.

Figure  3 exemplifies the calculation for the crystal 
structure of the VirB8-like protein, R. typhi RvhB8-II 
homodimer (PDB ID: 4O3  V) [39]. The left structure is 
the original one, and the right structure is the nearest 
symmetric structure with S(C2) = 1.1261. While the dif-
ferences may appear minor with the ribbons view, one 
should bare in mind that these are more significant at the 
atoms level (see a ball and sticks view in Additional file 1: 
Figure S2).

Table 1  Descriptive statistics of CSMs for the sets of homomers

Set CSM N Mean Standard 
deviation

SE of mean Minimum Median Maximum

Dimers S(C2) 194 0.1350 0.3132 0.0225 0.0001 0.0471 2.8786

Trimers S(C3) 214 0.0775 0.1698 0.0116 0.0003 0.0304 1.9519

Tetramers S(C2) 31 0.0446 0.1444 0.0259 0.0006 0.0130 0.8171

S(C4) 31 0.1001 0.2490 0.0447 0.0022 0.0311 1.0366

Pentamers S(C5) 51 0.0974 0.1872 0.0262 0.0028 0.0345 0.9505

Hexamers S(C2) 16 0.0529 0.0437 0.0109 0.0055 0.0435 0.1565

S(C3) 16 0.0714 0.0603 0.0151 0.0077 0.0555 0.2326

S(C6) 16 0.0898 0.0715 0.0179 0.0102 0.0737 0.2699

Fig. 3  The homodimer (R. typhi RvhB8-II) (PDB-ID: 4O3V) is characterized with S(C2) = 1.1261. a Original structure and b nearest symmetric structure. 
The black line represents the direction of the symmetry axis for the nearest symmetric structure. See Additional file 1: Figure S2 for ball and sticks 
models of the structures
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Returning to Table 1 we note that the standard devia-
tion of each set is much higher than the corresponding 
mean value. This is resulting from the fact that the CSM 
is always positive and its distribution has a long tail as 
exemplified in Fig. 4 for our set of 214 trimers.

Another interesting point apparent from Table 1 is that 
for even homomers, distortion increases with the order 
of the rotational symmetry. For tetramers—the mean 
deviation from C2 symmetry (0.0442) is smaller than the 
mean deviation from C4 symmetry (0.1001). Likewise the 
mean distortion of the set of hexamers increases in the 
order: S(C2) < S(C3) < S(C6). The same trend is seen when 
looking at either the minimum, median or maximum 
CSM values. This is to be expected—for a hexamer to be 
perfectly C6-symmetric, all peptides must be symmetri-
cally aligned around the rotation axis. That is, all peptides 
must attain a symmetrically equivalent conformation. 
However, to obtain a C2-symmetry, it is enough that 
three of the peptides will be symmetrically equivalent to 
the other three. That is, the structure has more degrees of 
freedom because the peptides at each triplet need not be 
perfectly symmetric with respect to each other.

Finding the correct permutation
As we have described above, our algorithm guarantees 
that the atom’s permutation does not break the peptides: 
Each peptide is carried in its entirety to another peptide, 
and therefore we have two levels of permutations: The 
permutation of equivalence classes of atoms (Fig. 1), and 
the permutation of the peptides (Fig.  2). Let us look at 
these permutations more closely. For most of the atoms, 
their order in the sequence determines their permutation. 

That is, a Cα of Gly can only be interchanged with a Cα of 
Gly that has the same sequence number on the equiva-
lent peptide. However, Val for example, has two Cγ atoms 
(see Fig. 5). These give rise to two possible permutations: 
either Cγ1(A) → Cγ1(B) or Cγ1(A) → Cγ2 (B) where A and 
B are the equivalent peptides. Other possibilities for 
such permutations are the ring carbons of Phe and Tyr, 
The Cδ’s of Leu, the two nitrogen atoms at the tail of Arg 
and the two oxygen atoms at the tail of Asp and Glu. If 
hydrogen atoms exist in the PDB file, larger equivalence 
groups will result (e.g., for methyl groups at the edge of 
the side chains). The atoms permutation is kept as a sepa-
rate list for each combination of two peptides. After the 
peptides permutation is found, the final total permuta-
tion is constructed by linking the peptides permutation 
with the relevant atoms permutations. In what follows we 
describe the possibilities for peptide permutations, and 
the differences between them.

Finding the permutation of the peptides follows Eq. (6) 
described above. For dimers and trimers, finding the per-
mutation of the peptides is straightforward: A → B for 
dimers and A → B→C for trimers (note that A → C→B 
is an equivalent permutation). However as the number 
of peptides in a protein increases, it is not clear a priori 
which permutation will lead to a smaller CSM. A pep-
tide permutation that follows the order of the peptides in 
the PDB file was found for 45% of the tetramers, 69% of 
the pentamers and 81% of the hexamers. In other words, 
relying on the PDB file order of peptides can lead to an 
error of up to 55% of the tetramers, 31% of the pentamers 
and 19% of the hexamers. Nevertheless, larger data sets 
may alter these numbers. Additional file 1: Tables S2–S4 
present the specific permutations and their frequencies 
for our sets of tetramers, pentamers and hexamers

We continue by testing the differences between the 
best permutation of the peptides and atoms, to the 
sequence-ordered permutation of the atoms, in which 

Fig. 4  S(C3) distribution for the set of 214 protein trimers. Bin size was 
set to 0.01. The right tail of the distribution is not shown in order to 
increase the visibility

Fig. 5  Val has two Cγ atoms. The free rotation around the Cα–Cβ 
bond, give rise to two possible permutations of these carbon atoms 
with those of another Val on an equivalent peptide
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the atoms are interchanged according to their serial num-
bers in the PDB file, and to the permutation found by the 
greedy algorithm. In both cases all possible permutations 
of the peptides were taken into account. These differ-
ences, although important, do not affect the permutation 
of the peptides. Starting with the sequence-ordered per-
mutation of the atoms, we found that it generally leads 
to higher CSM values as compared with the ones found 
by the Hungarian algorithm. That is, it finds the protein 
to be less symmetric than it really is. Table 2 presents the 
results of these comparisons in terms of the relative error 
defined by:

As is evident, using the sequence-ordered permutation 
adds a median relative error of 4–10%, but the maxi-
mum error is much higher and can be as high as 49%. 
Two comments are in place here. First, the higher errors 
are more abundant when the measure itself is low, that 
is, the protein is highly symmetric. This is resulting from 
the definition of the relative error in Eq. (7). As an exam-
ple, Fig. 6 presents the relative error as a function of S(C3) 
for the set of trimers. Second, in few cases the sequence-
ordered permutation does provide the same CSM value 
as with the Hungarian algorithm. This was obtained for 
11 out of 214 trimers (5%) and 1 out of 31 tetramers (3%) 
in the calculation of S(C4). Note that the minimum rel-
ative error of S(C2) for the same set of tetramers is not 
zero.

Similarly to the analysis presented above, a comparison 
with the greedy algorithm was conducted. In all cases but 
one, the greedy algorithm found a higher CSM value as 
compared with the Hungarian algorithm, that is a per-
mutation that leads to a less symmetric structure. Table 3 

(7)

Relative Error = 100 ·

∣

∣CSMfull − CSMsequence−ordered

∣

∣

CSMfull

presents the comparison of the Hungarian algorithm and 
the greedy algorithm. Here the relative errors are lower, 
with a median error of 1% and up to 3% and a maximum 
error of 3% and up to 10%. This makes sense as the greedy 
algorithm does attempt to find a better permutation than 
the sequence-ordered permutation, although it does not 
succeed in all of the cases. A zero relative error has been 
obtained in higher percentages as compared with the 
sequence-ordered permutation: 9% of the dimers, 12% of 
the trimers, 26% for S(C2) of the tetramers and 19% for 
S(C4), 6% of the pentamers, none for S(C2) and S(C3) of 
the hexamers and 13% for S(C6) of the hexamers. Alto-
gether, we can estimate that the greedy algorithm for 
finding the permutation of the atoms is equivalent to the 
Hungarian algorithm in up to 26% of the calculations.

Table 2  Descriptive statistics of  the  relative deviation of  the  CSM resulting from  the  sequence-ordered permutation 
of the atoms as compared with the Hungarian algorithm

a  Statistical analysis was done on 193 out of 194 dimers. One dimer, with PDB-ID 2AJQ, is highly symmetric with S(C2) = 0.0001 for the Hungarian algorithm and 0.0004 
for the sequence-ordered permutation, led to an error of 300%. It was therefore considered as an outlier and excluded from this calculation

Set CSM N Mean (%) Standard 
deviation (%)

SE of mean 
(%)

Minimum (%) Median (%) Maximum (%)

Dimersa S(C2) 193 6.7 6.7 0.5 0.1 4.5 37.3

Trimers S(C3) 214 6.9 6.6 0.5 0.0 5.1 43.5

Tetramers S(C2) 31 12.8 10.6 1.9 0.4 10.0 49.3

S(C4) 31 9.9 10.1 1.8 0.0 6.6 42.4

Pentamers S(C5) 51 5.7 5.1 0.7 0.1 4.6 21.5

Hexamers S(C2) 16 9.0 6.9 1.7 2.4 6.6 25.0

S(C3) 16 7.7 5.2 1.3 2.2 6.4 20.8

S(C6) 16 7.1 4.9 1.2 1.9 6.1 21.0

Fig. 6  Relative error of S(C3) calculated for the dataset of 214 protein 
trimers resulting from using the sequence-ordered permutation as 
opposed to the permutation found by the Hungrian algorithm
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Calculation time
As an estimation for the speed of the calculation we pre-
sent in Fig. 7 the real time for calculating S(C4) for our set 
of tetramers as a function of the number of atoms in each 
peptide. Generally, for short proteins, time increases line-
arly with size. As the number of atoms increases, the time 
dependency deviates from linearity. The time range was 
9 s for the shortest protein with 174 atoms in each pep-
tide, and up to ca. 5 min for a protein with 3166 atoms 
in each peptide. We note that the number of iterations 
the code performs in order to find the best permutation 
is typically small, between 2 and 4. All calculations were 
performed using one core of an 8-cores Linux machine 
with 64 GB RAM memory.

CSM and RMSD
Symmetry breaking is commonly analyzed in the litera-
ture by superposing the protein subunits and assessing 

the root mean square deviation (RMSD) between them 
[26, 27]. The RMSD, like the CSM is zero for perfect 
symmetry and increases as the distortion increases. As 

Table 3  Descriptive statistics of  the  relative deviation of  the  CSM resulting from  a  greedy algorithm of  the  atoms 
as compared with the Hungarian algorithm

Set CSM N Mean (%) Standard 
deviation (%)

SE of mean 
(%)

Minimum (%) Median (%) Maximum (%)

Dimers S(C2) 194 1.5 1.3 0.1 0.0 1.2 7.1

Trimers S(C3) 214 1.5 1.1 0.1 0.0 1.3 5.6

Tetramers S(C2) 31 2.0 1.9 0.3 0.0 1.7 6.8

S(C4) 31 1.1 1.0 0.2 0.0 1.0 3.3

Pentamers S(C5) 51 2.1 1.9 0.3 0.0 1.6 9.8

Hexamers S(C2) 16 2.9 2.1 0.5 0.5 2.2 7.9

S(C3) 16 1.6 1.2 0.3 0.3 1.3 3.9

S(C6) 16 2.5 1.6 0.4 0.0 2.6 5.1

Fig. 7  Calculation time of S(C4) for the tetramers dataset using the 
many-chains algorithm. Red circles: greedy algorithm. Black square: 
Hungarian algorithm

Fig. 8  RMSD versus S(C3) for the set of trimers. a Full range and b 
inset
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seen in Fig.  8a for our set of trimers, both the RMSD 
(calculated with MOE [40] for all atoms) and the CSM 
increases with the deviation from C3 symmetry, but are 
not quantitatively correlated. For highly symmetric struc-
tures the correlation improves though it remains qualita-
tive (Fig. 8b). Similar results were obtained for the other 
sets of homomers.

Conclusions
Continuous symmetry and chirality measures deter-
mine the distortion level of a structure by searching for 
the nearest symmetric (or achiral) structure and cal-
culating the distance between the two structures. The 
approximate algorithm presented here provides sig-
nificant improvements over pervious codes in terms 
of accuracy, speed of the calculation, and the scope of 
molecular structure complexity it can handle. As has 
been shown here it can be used as a robust and versa-
tile molecular descriptor of protein structure. Symme-
try is an important advantageous for protein structure, 
yet not trivial to achieve. With an accurate and efficient 
tool to estimate this symmetry one opens the door to 
understand where and why nature fails to achieve per-
fect symmetry and what functions do imperfection serve. 
Applications of the methods include characterization of 
the three-dimensional structure of proteins in the solid 
state or in solution, analysis of conformational changes 
during dynamical processes and exploration of quanti-
tative structure–activity relationships. Modification of 
the methods for a robust analysis of non-biological large 
molecules as well as nanomaterials and molecular clus-
ters is currently in progress.

Additional file

Additional file 1. Supplementary material.
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