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Abstract 

The application of convolutional neural networks (ConvNets) to harness high-content screening images or 2D 
compound representations is gaining increasing attention in drug discovery. However, existing applications often 
require large data sets for training, or sophisticated pretraining schemes. Here, we show using 33 IC50 data sets from 
ChEMBL 23 that the in vitro activity of compounds on cancer cell lines and protein targets can be accurately pre‑
dicted on a continuous scale from their Kekulé structure representations alone by extending existing architectures 
(AlexNet, DenseNet-201, ResNet152 and VGG-19), which were pretrained on unrelated image data sets. We show that 
the predictive power of the generated models, which just require standard 2D compound representations as input, 
is comparable to that of Random Forest (RF) models and fully-connected Deep Neural Networks trained on circular 
(Morgan) fingerprints. Notably, including additional fully-connected layers further increases the predictive power of 
the ConvNets by up to 10%. Analysis of the predictions generated by RF models and ConvNets shows that by simply 
averaging the output of the RF models and ConvNets we obtain significantly lower errors in prediction for multiple 
data sets, although the effect size is small, than those obtained with either model alone, indicating that the features 
extracted by the convolutional layers of the ConvNets provide complementary predictive signal to Morgan finger‑
prints. Lastly, we show that multi-task ConvNets trained on compound images permit to model COX isoform selectiv‑
ity on a continuous scale with errors in prediction comparable to the uncertainty of the data. Overall, in this work we 
present a set of ConvNet architectures for the prediction of compound activity from their Kekulé structure representa‑
tions with state-of-the-art performance, that require no generation of compound descriptors or use of sophisticated 
image processing techniques. The code needed to reproduce the results presented in this study and all the data sets 
are provided at https​://githu​b.com/isidr​oc/kekul​escop​e.
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Introduction
Cultured cancer cell lines are limited disease models in 
that they do not recapitulate the tumor microenviron-
ment nor interactions with the immune system [1–6], 
fundamental properties of cellular organization are 

altered in culture [7], and their response to anticancer 
drugs is affected by both assay heterogeneity [8] and 
genomic alterations acquired in  vitro [9]. However, 
cancer cell lines still represent versatile models to study 
fundamental aspects of cancer biology [10, 11], and 
the genomic determinants of drug response [3, 12–14]. 
Hence, the development of computational methods 
to harness the large amount of in  vitro cell line sensi-
tivity data collected to date to unravel the underlying 
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molecular mechanisms mediating drug activity and 
identify novel biomarkers for drug response is an area 
of intense research [14–20].

Whereas existing computational tools to model 
in  vitro compound activity mostly rely on estab-
lished algorithms (e.g., Random Forest or Support 
Vector Machines), the utilization of deep learning in 
drug discovery is gaining momentum, a trend that 
is only expected to increase in the coming years [21]. 
Deep learning techniques have been already applied 
in numerous drug discovery tasks, including toxicity 
modelling [22, 23], bioactivity prediction [24–30], and 
de novo drug design [31–34], among others. Most of 
these studies have utilized feedforward neural networks 
consisting of multiple fully-connected layers trained on 
one of the many compound descriptors developed over 
the last >  30  years in the chemoinformatics field [27, 
35]. However, the high performance of convolutional 
neural networks (ConvNets) [36–38], a type of neural 
network developed for image recognition tasks, in find-
ing complex high-dimensional relationships in diverse 
image data sets is fostering their application in drug 
discovery [21, 39, 40].

ConvNets consist of two sets of layers (Fig. 1): (1) the 
convolutional layers, which extract features from the 
input images, and (2) the classification/regression layers, 
which are generally fully-connected layers that output 
one value for each of the tasks being modelled. A major 
advantage of ConvNets is that the extraction of features is 
performed on a fully automatic and data-driven fashion, 
thus not requiring to engineer feature selection or image 
preprocessing filters beforehand [33, 39, 41, 42]. Today, 
convolutional neural networks are applied to diverse 
image recognition tasks in healthcare and biomedicine 

[43–46]. An obvious critical element for the application 
of ConvNets is the availability of images for training, or 
the ability to formulate the modelling task of interest as 
an image classification problem. An illustrative exam-
ple of the latter is DeepVariant [47], a recently published 
algorithm that uses images of sequencing read pileups as 
input to detect small indels and single-nucleotide vari-
ants, instead of assigning probabilities to each of the gen-
otypes supported by the data using statistical modelling, 
as has been the standard approach for years.

In drug discovery, applications of ConvNets include 
elucidation of the mechanism of action of small mol-
ecules and their bioactivity profiles from high-content 
screening images [48–50], and modelling in  vitro assay 
endpoints using 2D representations of compound struc-
tures, termed “compound images”, as input [23, 41, 51–
53]. Efforts to model compound activity using ConvNets 
trained on compound images were spearheaded by Goh 
et  al., who developed Chemception [51, 54], a ConvNet 
based on the Inception-ResNet v2 architecture [55]. The 
performance of Chemception was compared to multi-
layer perceptron deep neural networks trained on circu-
lar fingerprints in three tasks: prediction of free energy 
of solvation (632 compounds; regression), inhibition of 
HIV replication (41,193; binary classification), and com-
pound toxicity using data from the “Toxicology in the 
21st Century” (Tox21) project (8014; multi-task binary 
classification) [56]. Chemception slightly outperformed 
the multi-layer perceptron networks except for the 
TOX21 task. In a follow-up study, the same group intro-
duced ChemNet [51], a learning strategy that consists of 
pre-training a ConvNet (e.g., Chemception [54]) using a 
large set of compounds (1.7 M) to predict their physico-
chemial properties (e.g., logP, which represents an easy 

Fig. 1  KekuleScope framework. a We collected and curated a total of 8 cytotoxicity data sets from ChEMBL version 23. b Compound Kekulé 
representations were generated for all compounds and used as input to the ConvNets. c We implemented extended versions of 4 commonly 
used architectures (e.g., VGG-19-bn shown in the figure) by including five additional fully-connected layers to predict pIC50 values on a continuous 
scale. d The generalization power of the ConvNets was assessed on the test set, and compared to RF models trained using Morgan fingerprints as 
covariates
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task) in order to learn general features related to chemis-
try from the images. Subsequently, the trained networks 
were applied to model smaller data sets using trans-
fer learning. Although such an approach led to higher 
performance than Chemception, a major disadvantage 
thereof is that it requires the initial training of the net-
work on a large set of compounds, which is computation-
ally demanding. More recently, Fernández et al. proposed 
Toxic Colors, a framework to classify toxic compounds 
from the TOX21 data set using compound images as 
input [23]. Although these studies have paved the way for 
the application of ConvNets to model the bioactivity of 
compounds using their images as input, a comprehensive 
analysis of ConvNet architectures with a reduced compu-
tational footprint to model cancer cell line sensitivity on a 
continuous scale and comparison against the state of the 
art is still missing. Moreover, whether the combination 
of models trained on widely-used compound descriptors 
(e.g., circular fingerprints) and ConvNets trained using 
compound images leads to increased predictive power 
remains to be studied.

Here, we introduce KekuleScope, a flexible framework 
for modelling the bioactivity of compounds on a con-
tinuous scale from their Kekulé structure representation 
using ConvNets pretrained to model unrelated image 
classification tasks. We demonstrate using 8 cytotoxic-
ity data sets and in vitro IC50 data for 25 diverse protein 
targets extracted from ChEMBL version 23 (Table 1) that 
compound images convey enough predictive power to 
build robust models using ConvNets. Instead of using 
networks pretrained on compound images [51], we show 
that widely-used architectures developed for unrelated 
image classification tasks (AlexNet [57], DenseNet-201 
[58], ResNet152 [59] and VGG-19 [60]) are versatile 
enough to generate robust predictions across a dynamic 
range of bioactivity values using compound images as 
input. Moreover, comparison with Random Forest mod-
els and Deep Neural Networks (DNN) trained on circular 

fingerprints (Morgan fingerprints [61, 62]) reveals that 
ConvNets trained using compound images lead to com-
parable predictive power on the test set. In addition, 
combining RF and ConvNet predictions into model 
ensembles often leads to increased model performance, 
suggesting that the features extracted by the convolu-
tional layers of the networks provide complementary 
information to Morgan fingerprints. Therefore, our work 
presents a novel framework for the prediction of com-
pound activity that requires minimal deep learning archi-
tecture design, processing of chemical structures and no 
descriptor choice, and that leads to improved predictive 
power over the state of the art in our validation on 8 can-
cer cell line sensitivity and 25 in vitro potency data sets.

Methods
Data collection and curation
We gathered cytotoxicity IC50 data for 8 cancer cell lines 
and 25 protein targets from ChEMBL database version 
23 using the chembl_webresource_client Python module 
[63–65]. To gather high-quality bioactivity data sets, we 
only kept IC50 values for small molecules that satisfied 
the following stringent filtering criteria [8]: (1) activity 
unit equal to “nM”, and (2) activity relationship equal to 
‘=’. The average pIC50 value was calculated when multiple 
IC50 values were annotated for the same compound-cell 
line or compound-protein pair. IC50 values were mod-
eled in a logarithmic scale (pIC50 = − log10 IC50 [M]). We 
selected the data sets on a purely data-driven fashion, as 
these are the protein targets with the highest number of 
IC50 values available (after applying the stringent filtering 
and data curation criteria specified above). As for the cell 
lines, we selected these 8 on the basis of data availability 
as well, and because they are commonly used in preclini-
cal drug discovery. Further information about the data 
sets is given in Tables 1 and 2. All data sets used in this 
study are available at https​://githu​b.com/isidr​oc/kekul​
escop​e.

Table 1  Cell line data sets used in this study

Cell line Description ChEMBL cell ID Cellosaurus ID Organism of origin Number 
of bioactivity 
data points

A2780 Ovarian carcinoma cells CHEMBL3308421 CVCL_0134 Homo sapiens 2255

CCRF-CEM T-cell leukemia CHEMBL3307641 CVCL_0207 Homo sapiens 3047

DU-145 Prostate carcinoma CHEMBL3308034 CVCL_0105 Homo sapiens 2512

HCT-15 Colon adenocarcinoma cells CHEMBL3307945 CVCL_0292 Homo sapiens 994

KB Squamous cell carcinoma CHEMBL3307959 CVCL_0372 Homo sapiens 2731

LoVo Colon adenocarcinoma cells CHEMBL3307691 CVCL_0399 Homo sapiens 1120

PC-3 Prostate carcinoma cells CHEMBL3307570 CVCL_0035 Homo sapiens 4294

SK-OV-3 Ovarian carcinoma cells CHEMBL3307746 CVCL_0532 Homo sapiens 1589

https://github.com/isidroc/kekulescope
https://github.com/isidroc/kekulescope


Page 4 of 16Cortés‑Ciriano and Bender ﻿J Cheminform           (2019) 11:41 

Molecular representation
We standardized all chemical structures to a common 
representation scheme using the Python module stand-
ardizer (https​://githu​b.com/flatk​inson​/stand​ardis​er). 
Entries containing inorganic elements were entirely 
removed from the data sets, and the largest fragment was 
kept to remove counterions and solvents. We note that, 
although imperfect, removing counterions is a standard 
procedure in the field [66, 67]. In addition, salts are not 
generally well-handled by descriptor calculation soft-
ware, and hence, filtering them out is generally preferred 
[68].

Kekulé structure representations for all compounds 
(i.e., ‘compound images’) in Scalable Vector Graphics 
(SVG) format were generated from the compound struc-
tures in SDF format using the RDkit function MolsToGri-
dImage and default parameter values. SVG images were 
then converted to Portable Network Graphics (PNG) 
format using the programme convert (version ImageMag-
ick 6.7.8-9 2016-03-31 Q16; http://www.image​magic​
k.org) and resized to 224 ×  224 pixels using a density 
(−d argument) of 800. The code needed to reproduce the 

results presented in this study is provided at https​://githu​
b.com/isidr​oc/kekul​escop​e. To represent molecules for 
subsequent model generation based on fingerprints, we 
computed circular Morgan fingerprints [61] for all com-
pounds using RDkit (release version 2013.03.02) [69]. 
The radius was set to 2 and the fingerprint lengths to 128, 
256, 512, 1024 and 2048.

Machine learning
Data splitting
The data sets were randomly split into a training (70% of 
the data), validation (15%), and test set (15%). For each 
data set, the training set was used to train the ConvNets, 
the validation set served to monitor their predictive 
power during the training phase, and the test set served 
to assess their predictive power on unseen data after the 
ConvNets were trained.

Convolutional neural network architectures and training
ConvNets pretrained on the ImageNet [70] data set 
were downloaded using the Python library Pytorch [71]. 
The structure of the classification layer(s) in each of the 

Table 2  Protein target data sets used in this study

Target preferred name Target abbreviation Uniprot ID ChEMBL ID Number 
of bioactivity 
data points

Alpha-2a adrenergic receptor A2a P08913 CHEMBL1867 203

Tyrosine-protein kinase ABL ABL1 P00519 CHEMBL1862 773

Acetylcholinesterase Acetylcholinesterase P22303 CHEMBL220 3159

Androgen Receptor Androgen P10275 CHEMBL1871 1290

Serine/threonine-protein kinase Aurora-A Aurora-A O14965 CHEMBL4722 2125

Serine/threonine-protein kinase B-raf B-raf P15056 CHEMBL5145 1730

Cannabinoid CB1 receptor Cannabinoid P21554 CHEMBL218 1116

Carbonic anhydrase II Carbonic P00918 CHEMBL205 603

Caspase-3 Caspase P42574 CHEMBL2334 1606

Thrombin Coagulation P00734 CHEMBL204 1700

Cyclooxygenase-1 COX-1 P23219 CHEMBL221 1343

Cyclooxygenase-2 COX-2 P35354 CHEMBL230 2855

Dihydrofolate reductase Dihydrofolate P00374 CHEMBL202 584

Dopamine D2 receptor Dopamine P14416 CHEMBL217 479

Norepinephrine transporter Ephrin P23975 CHEMBL222 1740

Epidermal growth factor receptor erbB1 erbB1 P00533 CHEMBL203 4868

Estrogen receptor alpha Estrogen P03372 CHEMBL206 1705

Glucocorticoid receptor Glucocorticoid P04150 CHEMBL2034 1447

Glycogen synthase kinase-3 beta Glycogen P49841 CHEMBL262 1757

HERG HERG Q12809 CHEMBL240 5207

Tyrosine-protein kinase JAK2 JAK2 O60674 CHEMBL2971 2655

Tyrosine-protein kinase LCK LCK P06239 CHEMBL258 1352

Monoamine oxidase A Monoamine P21397 CHEMBL1951 1379

Mu opioid receptor Opioid P35372 CHEMBL233 840

Vanilloid receptor Vanilloid Q8NER1 CHEMBL4794 1923

https://github.com/flatkinson/standardiser
http://www.imagemagick.org
http://www.imagemagick.org
https://github.com/isidroc/kekulescope
https://github.com/isidroc/kekulescope


Page 5 of 16Cortés‑Ciriano and Bender ﻿J Cheminform           (2019) 11:41 

architectures used was modified to output a single value, 
corresponding to compound pIC50 values in this case, 
by removing the softmax transformation of the last fully 
connected layer (which is used in classification tasks to 
output class scores in the 0–1 range). The Root Mean 
Squared Error (RMSE) value on the validation set was 
used as the loss function during the training phase of the 
ConvNets, and to compare the predictive power of RF, 
fully-connected neural networks, and ConvNets on the 
test set. We performed grid search to find the optimal 
combination of parameter  values for all networks. The 
parameter values considered are listed in Table 3.

We generated an extended version of each architecture 
by including five fully-connected layers, consisting of 
4096, 1000, 200 and 100 neurons (Fig. 1). Thus, for each 
architecture we implemented two regression versions, 
one containing one fully-connected layer, and a second 
one containing five fully-connected layers (abbreviated 
from now on as “extended”). The feature extraction layers 
were not modified.

In cases where the data sets were augmented, the fol-
lowing transformations were applied (as implemented in 
the Pytorch [71] library): (1) 180° rotation about the ver-
tical axis (function transforms.RandomHorizontalFlip); 
(2) 180° rotation about the horizontal axis (transforms.
RandomVerticalFlip); and (3) random 90° rotation (trans-
forms.RandomRotation). In the three cases, each trans-
formation was applied at every epoch during the training 
phase with a 50% chance. Thus, in some cases a set of the 
images might remain intact depending on this sampling 
step during a given epoch.

We used stochastic Gradient Descent algorithm with 
Nesterov momentum [72] to train all networks, which 
was set to 0.9 and kept constant during the training phase 
[72]. The parameters for all layers, including the convo-
lutional and regression layers, were optimized during the 
training phase. Networks were allowed to evolve over 
600 epochs. The networks were allowed to evolve over 
600 epochs because we did not observe an increase in 

predictive power in our initial experiments if we trained 
for more epochs. Given the high computational cost 
associated to training these models we decided that 600 
epochs represent and appropriate trade-off between 
computational cost and predictive power (see Fig. 2).

To reduce the chance of overfitting, we used (1) early 
stopping, i.e., the training phase was stopped if the vali-
dation loss did not decrease after 250 epochs, and (2) 
50% dropout [27, 73] in the five fully-connected layers 
(labelled as “Regression layers” in Fig. 1) in the extended 
versions of the architectures considered. The training 
phase was divided into cycles of 200 epochs, through-
out which the learning rate was annealed and set back to 
its original value at the beginning of the next cycle. The 
learning rate was decreased by 90% or 40% every 10 or 25 
epochs (decay rates of 0.1 and 0.6, respectively; Table 3).

Fully‑connected deep neural networks (DNN)
DNN were trained using the Python library Pytorch [71] 
as previously described [74]. Briefly, we defined three 
hidden layers, composed of 60, 20, and 10 nodes, respec-
tively, and used 10% dropout in the three hidden layers 
[27, 73]. The RMSE value on the validation set was used 
as the loss function during training. The training data 
were processed in batches of size equal to 15% of the 
number of instances. Rectified linear unit (ReLU) activa-
tion [27], and stochastic gradient descent with Nesterov 
momentum, which was set to 0.9 and kept constant dur-
ing the training phase [72], were used to train all net-
works. The networks were allowed to evolve over 2000 
epochs, and early stopping was performed in cases where 
the validation loss did not decrease after 200 consecutive 
epochs. We used 2000 epochs because this number was 
long enough to reach convergence of the networks. We 
note that the computational cost associated to training 
fully-connected networks using Morgan fingerprints is 
much smaller than the computational footprint of image-
based models, which permitted us to train longer. We 
note that longer training times for networks using Mor-
gan fingerprints can only result in an advantage for these 
over the image-based ones. The fact that the performance 
of fully-connected networks trained on Morgan finger-
prints and networks trained on images is comparable 
indicates that we are not biasing our results in favor of 
the image-based models.

Random Forest (RF)
RF models based on Morgan fingerprint representations, 
which were calculated as described above,  were gener-
ated using the Python library scikit-learn [75]. Default 
parameter values were used except for the number of 
trees, which was set to 100 because higher values do not 

Table 3  Parameters tuned during the training phase using 
grid search

The names in parentheses indicate the parameter name abbreviation used in 
the main text and figures

Parameter Values evaluated

Learning rate (Lr) {0.1, 0.01, 0.001, 
0.005, 0.001, 
0.0001}

Decay rate {0.1, 0.6}

Annealing rate step {10, 25}

Data augmentation (augmentation) {Yes: 1, No: 0}

Batch size (batch) {4, 16, 32}
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generally increase model performance when modelling 
bioactivity data sets [15, 76]. Identical data splits were 
used to train the ConvNets, DNN and the RF models.

Experimental design
To compare the predictive power of the ConvNets to 
model cell line sensitivity in a robust statistical manner 
we designed a balanced fixed-effect full-factorial experi-
ment with replications [77]. The following factors were 
considered:

1.	 Data set: 8 cytotoxicity data sets (Table 1).
2.	 Model: 8 convolutional network architectures.
3.	 Batch size (Batch): number of compound images pro-

cessed in each batch during the training phase.
4.	 Data Augmentation (Augmentation): binary variable 

indicating whether data augmentation was applied 
during the training phase.

We implemented the following linear model to study 
this factorial design:

(1)

pIC50 = Data seti +Modelj + Batchk

+ Augmentationl + µ0 + εi,j,k ,l,m

(i ∈ {1, . . . ,Ndatasets = 8};

j ∈ {1, . . . ,Nmodels = 8};

k ∈ {1, . . . ,Nbatch sizes = 3};

l ∈
{

1, . . . ,Naugmentation = 2
}

;

m ∈
{

1, . . . ,Nrepetitions = 10
})

where the factors Data seti, Modelj, Batchk, Augmen-
tationl, are the main effects considered in the model. 
The levels “A2780” (Data set), “AlexNet” (Model), “4” 
(Batch), and “0” (Augmentation) were used as reference 
factor levels to calculate the intercept term of the linear 
model, μ0, which corresponds to the mean pIC50 value 
for this combination of factor levels. The coefficients (i.e., 
slopes) for the other combinations of factor levels corre-
spond to the difference between their mean pIC50 value 
and the intercept. The error term, ϵi,j,k,l,m, corresponds 
to the random error of each pIC50 value, defined as 
εi,j,k ,l,m = pIC50i,j,k ,l,m −mean(pIC50i,j,k ,l) . These errors 
are assumed to (1) be mutually independent, (2) have 
zero expectation value, and (3) have constant variance.

We trained ten models for each combination of fac-
tor levels, each time randomly assigning different sets of 
data points to the training, validation and test sets. The 
normality and homoscedasticity assumptions of the lin-
ear models were respectively assessed with (1) quantile–
quantile (Q–Q) plots and (2) by plotting the fitted values 
against the residuals [77]. Homoscedasticity means that 
the residuals are equally dispersed across the range of the 
dependent variable used in the linear model. A system-
atic bias of the residuals would indicate that the errors 
are not random and that they contain predictive informa-
tion that should be included in the model [78, 79].

To compare the performance of (1) the most predictive 
ConvNet for each data set and replication, (2) RF and (3) 
DNN models trained on Morgan fingerprints, and (4) the 
Ensemble models generated by averaging the predictions 
of the RF and ConvNet models, we also used a linear 
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Fig. 2  Benchmarking the predictive power of ConvNet architectures on cytotoxicity data sets. Mean RMSE values (± standard deviation) on the 
test set across ten runs for each of the ConvNet architectures explored in this study (AlexNet [57], DenseNet-201 [58], ResNet152 [59] and VGG-19 
[60]). Overall, all architectures enabled the generation of models with high predictive power on the test set, with RMSE values in the 0.65–0.96 pIC50 
range. However, the extended versions of these architectures that we designed by including 5 fully-connected layers (see Fig. 1) constantly led to 
increased predictive power on the test set
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model with two factors, namely Data set and Model. In 
this case, we only considered the results of the ConvNet 
architecture leading to the lowest RMSE value on the test 
set for each data set and replication.

Results and discussion
We initially evaluated the performance of ConvNets to 
predict the activity of compounds from their Kekulé 
structure representations using 8 cytotoxicity data sets. 
To this aim, we modelled these data sets using four 
widely-used architectures, namely AlexNet, DenseNet 
201, ResNet-152, and VGG-19 with batch normalization 
(VGG-19-bn), and the extended versions thereof that 
we implemented by including four additional fully-con-
nected layers after the convolutional layers (see Meth-
ods and Fig.  1). We obtained high performance on the 
test set for all networks, with mean RMSE values in the 
0.65–0.96 pIC50 range (Fig. 2). These errors in prediction 
are comparable to the uncertainty of heterogeneous IC50 
measurements in ChEMBL [8], and to the performance 
of drug sensitivity prediction models previously reported 
[15, 18, 80]. Notably, high performance was also obtained 
for data sets containing few hundred compounds (e.g., 
LoVo or HCT-15), suggesting that the framework pro-
posed here is applicable to model small data sets.

In order to study the relative performance of the net-
work architectures in a robust manner, we implemented 
a factorial design that we evaluated using a linear model 
(Eq. 1). The linear model displayed an R2 value adjusted 
for the number of parameters of 0.68 (P  <  10−12), thus 
indicating that the variables considered in our facto-
rial design explain a large proportion of the variation 
observed in model performance, and hence, its coeffi-
cients provide valuable information to study the relative 
performance of the modelling strategies explored here in 
a statistically sound manner. Analysis of the model coef-
ficients revealed that the performance of the extended 
versions of the architectures constantly led to a decrease 
in the RMSE values of ~ 5–10% (P < 10−12; Fig. 2), with 
ResNet-152, and VGG-19-bn constantly leading to the 
highest predictive models. Together, these results thus 
suggest that the four additional fully-connected layers 
we included in the architectures and the use of dropout 
regularization help palliate overfitting (Fig. 2), and hence, 
increase the generalization capabilities of the networks.

(2)

pIC50 = Data seti +Modelj

+ (Data set ∗Model)i,j + µ0 + εi,j,k

(i ∈ {1, . . . ,Ndatasets = 33};

j ∈ {1, . . . ,Nmodels = 4}
)

To ensure that the low RMSE values observed are not 
the consequence of simply predicting the mean value of 
the response variable, we examined the distributions of 
the residuals for the ConvNet and RF models (Fig.  3). 
These complementary analyses are important because, 
as we have previously shown for protein-ligand data sets 
[74], networks that fail to converge often simply predict 
the mean value of the dependent variable. Overall, we 
observed similar patterns for both modelling approaches 
(as shown in Fig. 3), with residuals centered around zero 
and generally showing homoscedasticity, i.e., displaying 
comparable variance across the entire bioactivity range. 
Examination of the residuals is also important when 
modelling imbalanced data sets, which is generally the 
case for data sets extracted from ChEMBL, because a 
large fraction of instances are annotated with pIC50 val-
ues in the low micromolar range (4–5 pIC50 units), and by 
simply predicting the mean value of the response variable 
one might already obtain low RMSE values (~  1 pIC50 
units for these data sets, see yellow bars in Fig. 4). In such 
cases, the residuals would be heteroscedastic, displaying 
increasingly higher variances towards the low-nanomolar 
range (i.e., pIC50 values of 8–9), which however was not 
the case for the models generated here. Together, these 
results thus indicate that compound images convey suf-
ficient chemical information to model compound bioac-
tivities across a wide dynamic range of pIC50 values.

In addition, we performed Y-scrambling experiments 
using the 8 cytotoxicity data sets to ensure that the pre-
dictive power obtained by the ConvNets did not arise 
by chance. With this aim in mind, the bioactivity values 
for the training and validation set instances were shuf-
fled before training. We observed R2 values around 0 
(P < 0.001) for the observed against the predicted values 
on the test set for all the Y-scrambling experiments we 
performed. Therefore, these results indicate that the fea-
tures extracted by the convolutional layers capture chem-
ical information related to bioactivity, and that the high 
predictive power of the ConvNets is not a consequence of 
spurious correlations.

We previously showed that data augmentation rep-
resents a versatile approach to increase the predictive 
power of RF models trained on compound fingerprints 
[81]. Similarly, we here find a significant increase in 
performance for ConvNets trained on augmented data 
sets (P = 0.02). In fact, the utilization of data augmen-
tation during training led to the most predictive models 
in 68% of the cases; when considering the most pre-
dictive network for each data set and run only, we find 
that data augmentation was used in 91% of the cases. 
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Overall, these results indicate that the extraction of 
chemical information by the ConvNets is robust against 
rotations of the compound images, and that data aug-
mentation helps improve chemical-structure activity 
modelling based on compound images [81].

Next, we compared the predictive power of the 
ConvNets to that of RF and DNN models trained on 
Morgan fingerprints of increasingly higher dimen-
sionality (from 128 to 2048 bits) using the factorial 
design described in Eq. 2. The linear model in this case 
showed an adjusted R2 value of 0.97, suggesting that 

the covariates we considered account for most of the 
variability in model performance. Overall, we did not 
find significant differences in performance between RF 
models, DNN trained on circular fingerprints and Con-
vNets trained on compound images (P = 0.76; Figs. 4, 
5). The former models are using Morgan FP and RF or 
DNN, which have previously been shown to generate 
models with high predictive power in benchmarking 
studies of compound descriptors and algorithms [81–
83]. Taken together, these results suggest that com-
pound images provide sufficient predictive signal to 

A2780 CCRF CEM DU 145 HCT 15 KB LoVo PC 3 SK OV 3

4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10

5.0

2.5

0.0

2.5

Prediction RF test set (pIC50)

R
es

id
ua

ls
 R

F
 te

st
 s

et
 (

pI
C

50
)

A2780 CCRF CEM DU 145 HCT 15 KB LoVo PC 3 SK OV 3

5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0
6

3

0

3

Prediction ConvNet test set (pIC50)R
es

id
ua

ls
 C

on
vN

et
 te

st
 s

et
 (

pI
C

50
)

200 400 600
Number of instances

A2780 CCRF CEM DU 145 HCT 15 KB LoVo PC 3 SK OV 3

4 2 0 2 4 4 2 0 2 4 4 2 0 2 4 4 2 0 2 4 4 2 0 2 4 4 2 0 2 4 4 2 0 2 4 4 2 0 2 4

0.00

0.25

0.50

0.75

1.00

Residuals RF test set (pIC50)

D
en

si
ty

A2780 CCRF CEM DU 145 HCT 15 KB LoVo PC 3 SK OV 3

5.0 2.5 0.0 2.5 5.0 2.5 0.0 2.5 5.0 2.5 0.0 2.5 5.0 2.5 0.0 2.5 5.0 2.5 0.0 2.5 5.0 2.5 0.0 2.5 5.0 2.5 0.0 2.5 5.0 2.5 0.0 2.5

0.0

0.2

0.4

0.6

0.8

Residuals ConvNet test set (pIC50)

D
en

si
ty

a

b

Fig. 3  Analysis of the residuals. Residuals for the ConvNets (top panels) and RF (bottom panels) models for the cytotoxicity data sets. Overall, the 
residuals for both types of models show comparable variance across the bioactivity range (a) and are centered around zero (b), indicating that 
compound images permit to model the activity of small molecules across a dynamic range of pIC50 values
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generate ConvNets with comparable predictive power 
to state-of-the-art methods, even for small data sets of 
few hundred compounds.

As an additional validation of our modelling 
framework, we extended our analysis to 25 protein 

target data sets (Table 2). We trained ConvNets using the 
ResNet-152 and VGG-19-bn architectures given their 
higher performance when modelling the cytotoxicity data 
sets described above. Overall, we obtained comparable 
performance for ConvNets, RF and DDN models (Fig. 6), 
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with effect sizes across algorithms in the 0.03–0.09 RMSE 
(i.e., pIC50) units range. Y-scrambling experiments for 
these data sets also led to R2 values around 0 (P < 0.001). 
We next capitalized on the large number of compounds 
annotated with bioactivity data for both COX-1 and 
COX-2 [84, 85] to model COX isoform selectivity using 
multi-task ConvNets trained on compound images. 
Multi-task ConvNets displayed comparable performance 

to single-task ConvNets trained using either COX-1 or 
COX-2 data, with RMSE on the test set in the 0.72–0.75 
range (Table 4), which are comparable to the uncertainty 
in heterogeneous pIC50 data extracted from ChEMBL 
[86]. Together, these results indicate that ConvNets 
extract structural aspects related to compound activity 
from compound images, which in turn enable the model-
ling of diverse bioactivity read-outs (compound potency 
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and cell growth inhibition), measured in target systems 
of increasing complexity, from purified proteins to cell 
cultures.  

To further characterize the differences between RF and 
ConvNets, we firstly assessed the correlation between the 
predicted values calculated for the same test set instances 
using models trained on the same data splits. We found 
(as shown in Fig. 7) that the predictions of both models 
are highly correlated for all data sets, with R2 values in 
the 0.80–0.89 range (Pearson’s correlation coefficient; 
P  <  0.05), thus indicating that the predictions calcu-
lated with the RF models explain a large fraction of the 
variance observed for the predictions calculated with the 
ConvNets, and vice versa. Analysis of the correlation of 
the absolute error in prediction for each test set instance 

however revealed that the error profiles of RF and Con-
vNets are only moderately correlated (R2 in the 0.58–0.65 
range, P < 0.05; Fig. 8). From the latter, we hypothesized 
that combining the predictions generated by each mod-
elling technique into a model ensemble might lead to 
increased predictive power [84]. In fact, ensemble mod-
els built by averaging the predictions generated by RF 
and ConvNet models displayed higher predictive power 
in some cases, leading to 4–12% and 5–8% decrease in 
RMSE values with respect to RF and ConvNet models, 
respectively (P < 10−5; pink bars in Figs. 4 and 6). In con-
trast to previous analyses [51], where compound finger-
prints and related representations were often thought to 
contain most information related to bioactivity [87], our 
results indicate that Morgan fingerprints and the features 
extracted from compound images with the ConvNets 
convey complementary predictive signal for some data 
sets, thus permitting to obtain more accurate predictions 
than either model alone by combining them into a model 
ensemble.

In this work, we show using 33 diverse data sets 
extracted from ChEMBL database that a proper design 
and parametrization of ConvNets is sufficient to gener-
ate highly predictive models trained on images of struc-
tural compound representations sketched using standard 
functionalities of commonly used software packages (e.g., 

Table 4  Predictive power on  the  test set of  multi-task 
and  single-task models trained on  the  COX-1 and  COX-2 
data sets

Model RMSE ± SD on COX-1 RMSE ± SD on COX-2

Multi-target COX-1 and 
COX-2

0.73 ± 0.05 0.75 ± 0.05

Single-target COX-1 0.73 ± 0.06 NA

Single-target COX-2 NA 0.72 ± 0.05

A2780 CCRF CEM DU 145 HCT 15

5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0

4

6

8

10

P
re

di
ct

io
ns

 R
F

 (
pI

C
50

)

KB LoVo PC 3 SK OV 3

4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10

4

6

8

10

Predictions ConvNet (pIC50)

P
re

di
ct

io
ns

 R
F

 (
pI

C
50

)

100 200 300
Number of instances
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correlation coefficient values in the 0.72–0.84 range). The predictions for the ten runs are shown
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RDkit). Therefore, exploiting such networks, which were 
designed for general image recognition tasks, and pre-
trained on unrelated image data sets, represents a versa-
tile approach to model compound activity directly from 
Kekulé structure representations in a purely data-driven 
fashion. However, it is paramount to note that the com-
putational footprint of ConvNets still represents a major 
limitation of this approach: whereas training the RF mod-
els for these data sets required 6–14  s per model using 
16 CPU cores and no parameter optimization, training 
times per epoch for the ConvNets were in the 15–64  s 
range (i.e., 150–640 min per model using one GPU card 
and 16 CPU cores for image processing).

While the computation of compound descriptors has 
traditionally relied on predefined rules or prior knowl-
edge of chemical properties, bioactivity profiles or 
topological information of compounds, among others 
[88–91], the descriptors calculated by the convolutional 
layers of ConvNets represent an automatic and data-
driven approach to derive features directly from chemi-
cal structure representations [42], as we do here, or from 
image representations of a predefined set of molecu-
lar and topological features [41, 42]. As we show in this 

study, these compound features permit to model com-
pound bioactivity with high accuracy even on a continu-
ous scale. However, image-derived features are generally 
harder to interpret than more traditional descriptors, 
e.g., keyed Morgan fingerprints [84], although few meth-
ods to interpret convolutional graphs have been previ-
ously proposed [41, 92]. We anticipate that extending 
the work presented here by including 3D representations 
of compounds and binding sites using 3D convolutional 
neural networks to account for conformational changes 
of small molecules and protein dynamics, respectively, 
will likely improve compound activity modelling [93–97].

Previous work using compound images and neural net-
works to model compound toxicity has shown that using 
a molecular representation where atoms are colored 
yields high predictive power [23]. We note that there are 
countless sketching protocols to represent molecules, 
and hence, future benchmarking studies will be needed 
to thoroughly examine their predictive signal. Similarly, 
elucidating the most convenient strategies to perform 
data augmentation is an area of intense research [98–
100], also for chemical structure-activity modelling [81, 
101]. In the case of ConvNets, multiple representations 
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of the same molecules generated using diverse sketch-
ing schemes (e.g., using diverse SMILES encoding rules 
[101]) might be implemented to perform data augmenta-
tion. Therefore, future comparative studies of data aug-
mentation strategies will also be needed to determine 
the most appropriate one for bioactivity modelling using 
ConvNets.

The neural network architectures used in this study 
require the input images to be of size 224x224, as mod-
elling larger images would result in a computationally 
intractable increase in the number of parameters. There-
fore, we generated images of that size for all compounds. 
Such an approach however results in larger representa-
tions for small molecules as compared to larger ones: 
the same chemical moiety might span a larger or smaller 
region in the images depending on the size of the mole-
cule in which it appears. To account for this issue, images 
could be cropped to enlarge functional groups as a data 
augmentation strategy during the learning process. In 
this study, we did not investigate this further as the gen-
eralization capability of the networks we generated was 
comparable to that of RF and fully-connected networks 
trained on Morgan fingerprints. Thus, the influence on 
model performance of the relative size of the representa-
tions of chemical moieties and functional groups across 
molecules remains to be thoroughly examined.

Finally, future work will also be required to evaluate 
whether ConvNets trained on both compound and cellu-
lar images lead to more accurate modelling of compound 
activity on cancer cell lines, as well as other output vari-
ables (i.e., toxicity), than current modelling approaches 
based on gene expression or mutation profiles [15, 16, 18, 
102].

Conclusions
In this contribution, we introduce KekuleScope, a frame-
work to model compound bioactivity on a continuous 
scale using extended versions of four widely-used archi-
tectures trained on Kekulé structure representations 
without requiring any image preprocessing or network 
engineering steps. The generated models achieve com-
parable performance to RF and DNN models trained 
on circular fingerprints, and to the estimated experi-
mental uncertainty of the input data. Our work shows 
that Kekulé representations can be harnessed to derive 
robust models without requiring any additional descrip-
tor calculation. In addition, we show that the chemi-
cal information extracted by the convolutional layers of 
the ConvNets is often complementary to that provided 
by Morgan fingerprints, which enables the generation 
of model ensembles with significantly higher predic-
tive power than either RF models or ConvNets alone, 

although the effect size is small. The framework proposed 
here is generally applicable across endpoints, and it is 
expected that also on other datasets the combination of 
models will lead to increases in performance.
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