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Fast, efficient fragment‑based coordinate 
generation for Open Babel
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Abstract 

Rapidly predicting an accurate three dimensional geometry of a molecule is a crucial task for cheminformatics and 
across a wide range of molecular modeling. Consequently, developing a fast, accurate, and open implementation 
of structure prediction is necessary for reproducible cheminformatics research. We introduce a fragment-based 
coordinate generation implementation for Open Babel, a widely-used open source toolkit for cheminformatics. The 
new implementation improves speed and stereochemical accuracy, while retaining or improving accuracy of bond 
lengths, bond angles, and dihedral torsions. Input molecules are broken into fragments by cutting at rotatable bonds. 
The coordinates of fragments are set according to a fragment library, prepared from open crystallographic databases. 
Since the coordinates of multiple atoms are decided at once, coordinate prediction is accelerated over the previous 
rules-based implementation in Open Babel, as well as the widely-used distance geometry methods in RDKit. This new 
implementation will be beneficial for a wide range of applications, including computational property prediction in 
polymers, molecular materials and drug design.
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Introduction
Accurate prediction of the three-dimensional structure of 
a molecule is critical to a wide range of cheminformatics 
and molecular modeling tasks, since electrostatic, inter-
molecular, and other conformation-driven properties 
depend on the interatomic distances. There is an increas-
ing interest in the “inverse design” of molecules [1] with 
optimal or near-optimal properties. For example, genera-
tive neural networks [2–4] and genetic algorithms [5–7] 
create molecules with desirable target properties. Moreo-
ver, many computational chemistry simulations, includ-
ing molecular dynamics and quantum chemistry require 
full three-dimensional structures to run.

Consequently, there have been many proposed meth-
ods for three-dimensional coordinate generation, 
including rule-based,  [8, 9] fragment-based  [10, 11], 
and distance geometry embedding methods  [12–18]. 
There are a few free or open source packages capable of 

coordinatte generation, including BALL [19], FROG [20, 
21], RDKit [22], and Open Babel [23]. The latter, which is 
highly popular, has used a rule-based coordinate builder 
with a small set of ring fragments, followed by force field 
minimization. Fragment-based approaches [10] have 
reported increased accuracy and speed over Open Babel, 
since no force field minimization is required.

In this work, we discuss an open source implementa-
tion of a new fragment-based approach for coordinate 
generation in Open Babel, with improved accuracy and 
performance. We compare the stereochemical accuracy 
with the previous implementation and the open source 
RDKit distance geometry method, as well as speed and 
geometric accuracy, measured by heavy-atom root mean 
square displacement with experimental crystal structures 
(RMSD), bond distance, bond angle, and torsional/dihe-
dral angle errors. RDKit is chosen as a baseline because 
it is widely used and a benchmark paper  [24] describes 
it as “competitive with the commercial algorithms”. We 
also discuss molecules with large geometric or stereo-
chemical errors and future work to improve both geo-
metric and stereochemical accuracy while retaining fast 
performance.
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Implementation
The new implementation, using a fragment database, 
required generation of a suitable fragment library, as well 
as code in Open Babel to perform the new coordinate 
generation method.

The new fragment-based coordinate generation 
requires several steps: (1) break the input molecule into 
fragments, (2) look up fragments from the library, and (3) 
generate a 3D structure by stitching fragments together. 
Figure  1 shows an overview of the method. Since frag-
ments include multiple atoms, placement of fragments 
improves both speed and accuracy over the rule-based 
method, in which the position of heavy atoms were deter-
mined one-by-one.

All figures are produced by Avogadro version 1.2 from 
the corresponding SDF files [25].

Generating the fragment library
Before fragment-based coordinate generation can be 
implemented, a library of known fragments must be cre-
ated. For this implementation, any molecular substruc-
ture which does not have rotatable bonds is considered a 
fragment. Thus, each molecule is divided into fragments 
by cutting at all rotatable bonds, including both rings 
and large non-rotatable functional groups. Small frag-
ments (less than 5 atoms) are not currently stored into 
the library.

In generating the library of known fragment geom-
etries, we collected 3D structure information from the 
Crystallography Open Database (COD)  [26], the Plati-
num Dataset  [24], and Ligand Expo  [27]. We stored 
only fragments with at least 5 atoms that occurred at 
least 3 times in the superset of these repositories, cre-
ating a total of 5,779 fragments. For each fragment 
the canonical SMILES was stored—ensuring that only 
unique substructures were retained. When the same 
fragment was encountered multiple times, only the first 
conformation found in the database was stored. Future 
work will focus on including averaged consensus geom-
etries from similar fragment conformers (e.g., chair vs. 
twist-boat cyclohexane).

In addition to this main fragment library, the pre-
existing Open Babel database of generic ring fragments 
was retained. This includes ∼1000 of the most com-
mon ring fragments from analysis of the NCI Open 
Database [28] and ZINC [29], as well as ring templates 
from 3− 18 atoms in size, stored as generic SMARTS 
patterns  [30, 31]. This additional library is intended to 
ensure other ring fragments not explicitly covered in 
the larger fragment database have approximate matches 
(e.g., if the stereochemistry or elemental composition 
differs slightly). Using this auxiliary database is dis-
cussed below.

Breaking down fragments
Coordinate prediction starts by breaking the query mole-
cule into multiple fragments of non-rotatable bonds. For 
each fragment, the canonical SMILES of each fragment is 
determined.

Fragment search
Using the canonical SMILES of a fragment, the coordi-
nates of all atoms in a fragment are retrieved from the 
flat-file database. To improve performance, an index file 
is used to determine the file offset of the particular coor-
dinates. The speedup provided by the index is discussed 
below.

If the exact canonical SMILES is not found in the 
fragment database, the fragment is tested against the 
SMARTS patterns of general ring fragments in the 
auxiliary database. If a fragment is not found in both 
databases, the atoms are handled by the rules-based 
atom-by-atom builder. In the set of 4548 Platinum com-
pounds, there were 9741 fragments which have at least 
five atoms, and 7852 (80.6%) of fragments are found in 
the COD-based rigid fragment database, 1,887 (19.4%) 
are partially found in general ring database, and only two 
fragments are not found in either database.

Fig. 1  An overview of fragment-based coordinate generation. 
An input molecule is given without 3D information (e.g. SMILES). 
The molecule is broken into fragments, which are retrieved from 
the fragment database. The coordinates of all atoms in a matched 
fragment are determined in one step, accelerating overall speed 
of coordinate generation. Fragments and non-fragment atoms are 
stitched together to generate the final structure
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Stitching fragments
Building up the entire geometry requires connect-
ing fragments and atom-by-atom rules-based coordi-
nate generation. A working molecule is prepared in the 
beginning of this process. It only includes atoms of the 
input molecule, i.e. all bonds are removed. Atoms are 
iterated by depth-first search order of original molecule. 
Any atom that has already been determined is skipped 
from further processing. Otherwise, it is checked for a 
fragment match. All atoms not matching fragments are 
connected one-by-one to the working molecule by the 
previous Open Babel rules-based builder code.

For each fragment match, the geometry of the match is 
retrieved from the database, and translated to connect to 
the neighboring atom in the working molecule. The bond 
vector between the existing atom and the new fragment 
is determined based on the perceived hybridization of 
the atom (e.g., sp, sp2, sp3), the covalent radii of the two 
elements, and the bond order (i.e., single, double, triple, 
aromatic).

Results and discussion
We evaluated the performance of our method on the 
Platinum dataset, including 4548 organic ligands from 
the Protein Data Bank  [32]. For testing, we used 4432 
fragments from the open crystallographic database 
(COD) to avoid overlap of “training” and test sets. If 
fragments were drawn from test set molecules, RMSD 
and other geometric errors would reduce unfairly as 

fragments know the “answer” of the prediction. For 
comparison, we considered the most recent release of 
Open Babel (v. 2.4.1), RDKit (Release 2018.09.1) with 
the ETKDG method  [33] and this new implementation. 
Each molecule was supplied to the programs as the cor-
responding SMILES string.

Across the entire set of molecules, we considered the 
time to generate coordinates and heavy-atom root mean 
square deviation (RMSD) between the generated and ref-
erence molecule. As the RMSD is highly susceptible to 
differences in conformers, we also considered the mean 
bond length error, mean bond angle error, and dihedral 
angle error. Finally, we tested the “success” of retaining 
the stereochemistry of the original SMILES. All experi-
ments are conducted as single-core processes on a Think-
pad X1 Carbon laptop with Core i7-7500U (2.70GHz), 
16GB RAM and Ubuntu 16.04 running on Docker 
(18.09.1).

As compiled in Table  1 the new implementation 
improves the stereochemical success rate from 76.3% to 
93.9% while dramatically decreasing the time required 
by almost a factor of two (93.7 s to 54.8 s). The geomet-
ric accuracy increases very slightly, in part due to over-
all decreases in bond and dihedral/torsion errors. The 
differences between methods in RMSD, bond errors, 
angles and torsions are all statistically significant through 
analysis of variance (ANOVA) with p-values less than 
1.0× 10

−11 . Illustrated in Fig.  2, the distribution of 
RMSD across the entire set of 4548 ligands is fairly 

Table 1  Comparison between implementations

The performance on 4548 molecules in the Platinum dataset is shown. Time column shows the total time to process all molecules in second. RMSD column shows 
mean RMSD. Bond, Angle, Torsion columns show mean error of each. TFD column shows mean of the torsion fingerprint deviation [34]. Success indicates the percent 
of predicted molecules whose InChIKey match that of the original molecule. RMSD and mean error are calculated over successful molecules

Software Time (s) RMSD (Å) Bond (Å) Angle (◦) Torsion (◦) TFD Success (%)

Open Babel 93.7 1.75 0.055 2.40 48.8 0.27 76.3

RDKit (ETKDG) 274.6 1.59 0.060 2.87 43.9 0.21 99.5

This work 54.8 1.75 0.049 2.49 44.1 0.27 93.9
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Fig. 2  Histograms of heavy-atom RMSD (Å) for a the original Open Babel rule-based coordinate generation, b RDKit distance geometry method, 
and c current work
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similar between the original Open Babel implementa-
tion, RDKit ETKDG and the new implementation. The 
relatively high RMSD distribution is largely due to dif-
ferences in conformations between the stochastic single 
pose considered here and an ensemble of diverse con-
formers needed to find low-RMSD geometries.[35–37]

In addition to the mean torsion angle error between 
the generated geometries and the experimental geom-
etries, we computed the torsion fingerprint devia-
tion (TFD)  [34] using RDKit, as an established metric 
for comparison of torsional errors. The metric ignores 
hydrogen atoms and minimizes effects of dihedral angles 
with multiple symmetric atoms. Both the mean torsion 
angle errors and TFD metrics in Table 1 indicate evident 
differences in dihedral angles between generated geome-
tries and experimental—the main cause for the relatively 
high observed RMSD.

The fragment-based method is much faster than other 
methods because it can determine the coordinates of 
many atoms at once from the database. Compared to 
ETKDG, bond length errors and angle errors are gen-
erally better (e.g., 0.049  Å  vs. 0.060  Å, respectively and 
2.49◦ vs. 2.87◦ , respectively). On the other hand, RMSD 
and torsion errors are slightly worse than ETKDG, pos-
sibly because the current implementation does not con-
sider torsion angle explicitly. Some stereo errors remain, 
likely because of issues with poor layout of some non-
fragment bonds, resulting in incorrect stereochemistry.

Overall, the new implementation is a notable improve-
ment. For example, Fig.  3 indicates two example mole-
cules with very low RMSD to the experimental structure. 
The processing time is much faster than both released 
versions of Open Babel and RDKit.

While errors in dihedral/torsion angles exist, the pur-
pose of this study is not to find the conformer that best 
matches experiment by generating various conform-
ers, but rapidly generating initial geometries for further 
processing. Some evaluation papers (e.g. [24, 36]) report 
better RMSD for RDKit or Confab. This is because they 
generate multiple, geometrically diverse conformers and 
to find the best RMSD. Such conformer generation is 
recommended subsequent to creating an initial three-
dimensional geometry if desired.[36, 38–45]

Analysis of problem molecules
We find that 9.6% of molecules have RMSD above 3.5 
Å or incorrect stereochemistry, compared to 26.8% 
for the original Open Babel implementation, and only 
2.8% for RDKit ETKDG. Figure 4 shows two examples 
of predicted molecule with high RMSD. In both cases, 
the main differences between experimental and pre-
dicted structures come from inter-fragment dihedral 

angles. In the bottom example, Fig. 4c, d the predicted 
conformation is more extended than in experiment. 
While additional post-processing with conformational 
searches help to minimize such differences, further 
work to find patterns of inter-fragment dihedral angle 
preferences will also improve initial predictions.

Beyond poor placement of fragments and choice of 
dihedral angles, some molecules exhibit incorrect ste-
reochemistry after coordinate generation. Figure  5 
shows two examples of molecule with stereochemistry 
errors. In the first case, an incorrect geometry at the 
circled carbon yields a difference in stereochemistry 
after hydrogen atom placement.

In the second case, an extended ring-closure bond 
occurs in a macrocycle. This structure is generated 
by stitching small ring fragments together, and they 
are placed one by one i.e. without considering overall 
structure. As a result, a long ring-closure bond is inevi-
table to make ends meet. Post-processing by MMFF 
optimization (discussed later) reduces these strange 
connections, but stereochemistry can become scram-
bled in the process.

As noted above, distance geometry methods such as 
RDKit ETKDG  [33] and stochastic proximity embed-
ding [18] provide greater stereochemistry success rates. 
The implementation could potentially be improved by 
using distance geometry to create fragment geometries 
for species not in the database. Other techniques to 
augment generation of unusual ring systems and mac-
rocycles should also be explored [46, 47].

a Experimental
(08J 3U5K A )

b This work
(RMSD 0.36 Å)

c Experimental
(1CA 3RY9 A)

d This work
(RMSD 0.22 Å)

Fig. 3  Examples of molecules with low RMSD. Across the molecules 
in the Platinum set the heavy-atom RMSD between predicted 
structures and experiment 5.2% falls below 0.5 Å, and 20.5% falls 
below 1.0 Å, without further force field optimization
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Effects of implementation and post‑processing
In order to accelerate the fragment search, we prepared 
an index file, which stores only the canonical SMILES of 
fragments and the corresponding position in fragment 
geometry database. When a match occurs, the file offset 
of the query fragment is retrieved and the database can 
be read directly to that position without requiring pars-
ing or searching the entire database. While the latter is 
currently only ∼744 kb in size, as indicated in Table 2 the 
use of this index file improves performance by a factor 
of 2.6× (i.e., 140.9 s without the index to 54.8 s with the 
index).

Beyond the use of the index file, as described above, we 
also used an auxiliary database of general ring fragments 
to improve database hit rate. As indicated in Table 2, we 
tried using the generic fragments before and after plac-
ing fragments. Using the generic rings results in bet-
ter RMSD, in exchange for somewhat longer prediction 
time (e.g., 20.6 s vs. 54.8 s). More importantly, the generic 
fragments reduce bond and angle errors and increase 

stereochemical success. By searching ring fragments 
before rigid fragments, the prediction accuracy slightly 
improved but speed and success rate deteriorated. The 
final implementation places generic ring fragments after 
exact matching with rigid fragments.

We also evaluated the effect of post-processing after 
coordinate generation. The default –gen3d option for 
Open Babel performs coordinate generation followed by 
MMFF94 [48–52] geometry optimization and conformer 
searching, increasing processing time in favor of pro-
ducing fewer poor geometries (i.e., incorrectly extended 
ring closure bonds). As illustrated in Table 3, we find that 
both methods improve RMSD, bond and angle errors and 
somewhat increase stereochemical accuracy (to 94.0%) at 
the cost of 10− 20× increased processing time.

The current default Open Babel conformer search is 
a weighted stochastic rotor search, changing the likeli-
hood of different dihedral angles on the basis of evalu-
ated MMFF94 energies. That is, during the Monte Carlo 
search, a high-energy conformation will lead to lower 

a Experimental
(0JF 4DCE A)

b Predicted
(RMSD 4.05 Å)

c Experimental
(0K0 4DFL A)

d Predicted
(RMSD 4.08 Å)

Fig. 4  Examples of molecules with high RMSD > 4.0 Å. Note that differences in dihedral angles produce apparently different geometries as judged 
by RMSD
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likelihood of the associated dihedral angles being chosen 
in subsequent iterations.

We would generally suggest that users should use both 
force field optimization and conformer search to reduce 

bond, angle and RMSD errors, since the resulting pro-
cessing time is still an average of 0.16s per compound 
with a single core process on a laptop. This is set as the 
default option in Open Babel, although users can opt for 

a Experimental
(002 2FV9 B)

b Predicted

c Experimental
(06J 3R92 A)

d Predicted e Predicted
(after MMFF post-
processing)

Fig. 5  Examples of molecules with incorrect stereochemistry. Note that the bottom case indicates a case with a long ring closure bond in a 
macrocycle

Table 2  Effect of implementation

The performance on 4548 molecules in the Platinum dataset is shown. Time column shows the total time to process all molecules in second. RMSD column shows 
mean RMSD in Å. Bond, Angle, Torsion columns show mean error of each. TFD column shows mean of the torsion fingerprint deviation [34]. Success indicates the 
percent of predicted molecules whose InChIKey match that of the original molecule. RMSD and mean error are calculated over successful molecules

Difference from final Time (s) RMSD (Å) Bond (Å) Angle (◦) Torsion (◦) TFD Success (%)

No index 140.9 1.78 0.056 2.77 45.5 0.30 92.8

No generic rings 20.6 2.01 0.103 4.75 51.5 0.51 89.4

Match generic rings before 
fragments

56.7 1.78 0.061 2.76 46.9 0.31 92.7

Final implementation 54.8 1.75 0.049 2.49 44.1 0.27 93.9
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“fastest” processing if other optimization or conformer 
search methods are desired.

Despite the geometry optimization and low-energy 
conformer search, the RMSD remains fairly high. In 
some cases, this occurs because the lowest energy con-
formation is not necessarily the same as that in the exper-
imental crystal structure [53]. For example in Fig. 6, the 
generated structure reflects an extended alkyl chain, the 
low energy conformation, but the experimental structure 
is folded. Generating geometrically diverse conformers 
is one method to find geometries matching such experi-
mental pose. As stated above, performing a thorough 
conformer search is recommended to find either low-
energy structures for modeling or diverse geometries 
to match experimental conformations found in crystal 
structures.

Finally, we considered use of a larger fragment data-
base by extracting fragments from all of the COD, Ligand 
Expo and the Platinum set itself. This larger fragments 
database includes 5,779 fragments, an additional 1,347 
fragments more than the COD-only database, discussed 
above. Results are compiled in Additional file 1: Table S1. 
In 9,741 fragments (≥ 5 atoms), 9,004 (92.4%) were found 
in the rigid fragment database. The number of matches 

increased from 7,852 (80.6%) in case of using the COD-
only database. This increase of matches reduced execu-
tion time (54.8 s to 28.1 s, respectively), since more 
fragments could be placed before searching general ring 
fragments. However, since almost all fragments were 
found in either of database even in case of COD-only 
database, the larger fragment data set did not contribute 
to increased accuracy.

Conclusion
We developed a highly efficient open source coordinate 
prediction method based on a fragment library. The new 
implementation improves both speed and stereochemi-
cal accuracy over the previous rules-based Open Babel 
implementation. We find that remaining issues often 
result from missing fragments, resulting in extended 
ring-closure bonds and in incorrect dihedral angles. 
Adding explicit rules to handle rare ring fragments and 
macrocycles will improve these issues. In some cases, 
molecules with large RMSD to experimental geometries 
reflect a difference between the low-energy conformer 
generated by this implementation and the experimental 
pose, a known problem [53, 54].

Table 3  Effect of post-processing with MMFF94

The performance on 4548 molecules in the Platinum dataset is shown. Time column shows the total time to process all molecules in second. RMSD column shows 
mean RMSD in Å. Bond, Angle, Torsion columns show mean error of each. TFD column shows mean of the torsion fingerprint deviation [34]. Success indicates the 
percent of predicted molecules whose InChIKey match that of the original molecule. RMSD and mean error are calculated over successful molecules

Speed Time (s) RMSD (Å) Bond (Å) Angle (◦) Torsion (◦) TFD Success (%)

Fastest (No MMFF) 54.8 1.75 0.049 2.49 44.1 0.27 93.9

Fast (100 MMFF) 372.7 1.72 0.049 2.90 44.1 0.26 93.6

Med (200 MMFF + conf. 
search)

732.1 1.60 0.048 2.52 43.0 0.23 93.9

a Experimental
(STE 4WBK A)

b Predicted
(RMSD 5.64 Å)

Fig. 6  Examples of molecules with high RMSD due to differing dihedral angles. Note that while the experimental conformer reflects a folded alkyl 
chain, the predicted geometry favors the low-energy extended chain
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We note that increasing the size of the fragment data-
base decreases the generation time, since more atoms 
can be placed in one step. As an open source, open data 
method, we anticipate further improvements in the per-
formance of the implementation over time. For example, 
drawing from sources such as PubChemQC [55, 56] and 
ZINC [29] will enable incorporating an increasing num-
ber of structurally diverse fragments.

Finally, we note that future work, blending this frag-
ment-based method with distance geometry methods 
(e.g., ETKDG) used by RDKit will combine the speed 
of fragment-based placement with improved geometric 
and stereochemical accuracy. As noted above, fragment 
methods face challenges on less common, macrocyclic, or 
systems with overlapping fragments. On the other hand, 
distance-geometry methods face challenges in producing 
planar aromatic ring systems, which can be found in frag-
ment databases. By combining both methods, we antici-
pate improved performance across multiple metrics.

Availability and requirements

•	 Project name: Open Babel
•	 Project home page: http://openb​abel.org/
•	 Operating system(s): Platform independent
•	 Programming languages: C++, Python, Ruby, Java, 

C#
•	 Other requirements: Modern C++ compiler
•	 License: GNU GPL v2.

Additional file

Additional file 1. Histgrams of bond length errors, angle errors, torsion 
angle errors, torsion fingerprint deviation. Plot of relationship between 
RMSD and molecular weight, and execution time and molecular weight.
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