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Combining structural and bioactivity‑based 
fingerprints improves prediction performance 
and scaffold hopping capability
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Abstract 

This study aims at improving upon existing activity predictions methods by augmenting chemical structure fin-
gerprints with bio-activity based fingerprints derived from high-throughput screening (HTS) data (HTSFPs) and 
thereby showcasing the benefits of combining different descriptor types. This type of descriptor would be applied 
in an iterative screening scenario for more targeted compound set selection. The HTSFPs were generated from HTS 
data obtained from PubChem and combined with an ECFP4 structural fingerprint. The bioactivity-structure hybrid 
(BaSH) fingerprint was benchmarked against the individual ECFP4 and HTSFP fingerprints. Their performance was 
evaluated via retrospective analysis of a subset of the PubChem HTS data. Results showed that the BaSH fingerprint 
has improved predictive performance as well as scaffold hopping capability. The BaSH fingerprint identified unique 
compounds compared to both the ECFP4 and the HTSFP fingerprint indicating synergistic effects between the two 
fingerprints. A feature importance analysis showed that a small subset of the HTSFP features contribute most to the 
overall performance of the BaSH fingerprint. This hybrid approach allows for activity prediction of compounds with 
only sparse HTSFPs due to the supporting effect from the structural fingerprint.
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Introduction
The traditional and most intuitive method of predicting 
compound activity is through the use of structure activ-
ity relationship (SAR) models. Logically, compounds with 
similar structural features or scaffolds would express sim-
ilar activities. While SAR-based activity predictions are 
a practical and often effective method, the predictions 
made are based on structural similarity and therefore 
are inherently limited in structural diversity. This limits 
the scaffold hopping potential or exploration of chemi-
cal space and impedes the identification of novel active 
compounds. Another limitation of structure based fin-
gerprints is the existence of activity cliffs, this is where 

two compounds with high degrees of similarity express 
inverse activity relationships towards a target. It is there-
fore very difficult to distinguish such compounds using 
structural descriptors. To bypass the drawbacks of SAR 
models, historical bioactivity data can be used to build 
fingerprints for each compound which can subsequently 
be applied in machine learning to make compound prop-
erty predictions independent of chemical structural 
information. Such predictive models have been built 
using bioactivity data obtained from various sources, e.g. 
transcriptomics [1], cell imaging [2], affinity/inhibition 
data [3, 4], or high throughput screening (HTS) [5–7]. 
Such bioactivity data has been utilized for a number of 
applications such as compound safety/toxicity predic-
tions [1, 8], compound potency/activity predictions 
[3–5, 9, 10], target elucidation [11], or elucidation of 
compound MoA [12, 13]. A review by Wassermann et al. 
provides an in-depth summary of the history and appli-
cations of historical bioactivity data to date [14]. A study 
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by Kauvar et al. presented one of the earliest applications 
of bioactivity profiles for compound property prediction 
[3]. In this study, affinity profiles of compounds based on 
a panel of 18 olfactory proteins were generated and used 
to predict compound binding properties on external tar-
gets. A study presented by Fliri et  al. used a somewhat 
larger database to build bioactivity profiles termed ‘bio-
spectra’ to predict compound-target activities [4]. This 
bioactivity profile was based on a panel of 1567 com-
pounds and 92 assays representing a diverse cross-sec-
tion of the proteome.

HTS is a method used for large scale testing of com-
pound libraries, containing up to five million com-
pounds, against a single target [15]. HTS has become 
feasible during the last three decades due to advances in 
process automation along with the development of new 
technologies [15, 16]. HTS is a resource-intensive pro-
cess, which usually only identifies a very small portion of 
active compounds [17]. To reduce resource costs in HTS, 
compound activity prediction methods can be employed. 
Using machine learning together with either structural 
or bioactivity descriptors, predictive models can be built. 
The limiting factor in using bioactivity based methods is 
the lack of data, meaning this method can only be applied 
to existing compounds which have sufficient bioactivity 
data. Structural descriptors can be useful for predicting 
a variety of compound properties [18]. Structure based 
descriptors such as ECFP/Morgan circular fingerprints 
are an effective and established method for predicting 
compound activity [6, 19, 20], although the structural 
diversity of predictions can be limited by the training 
data. To overcome this potential drawback Petrone et al. 
introduced a bioactivity based descriptor derived from 
historical HTS data i.e. the HTS Fingerprint (HTSFP) 
[5]. The HTSFP has the advantage of not containing any 
structural information and thereby can be used to make 
activity predictions independent of any structural fea-
tures. Moreover, in phenotypic screens HTS fingerprints 
may detect active compounds with distinct MoAs, such 
as alternate binding sites. Unfortunately, the HTSFP 
has one major drawback, which is that predictions can-
not be made for all compounds but only for compounds 
that have been previously tested in HTS assays, com-
pounds without any HTS data cannot have an HTSFP. 
Furthermore, compounds with very sparse HTSFPs i.e. 
compounds having only been tested in very few assays, 
have limited practicality in such predictive models. These 
compounds are often not useful as they introduce noise 
into the data and reduce the predictive performance of 
models and therefore are removed from the dataset. A 
fingerprint density cutoff is commonly used to exclude 
these compounds [21, 22]. This method of data process-
ing leads to the loss of a significant amount of potentially 

valuable information. Despite these problems HTSFPs 
have proven to be an effective and robust tool for com-
pound activity predictions in a number of retrospective 
studies.

Petrone et  al. compared the performance of HTSFP 
and ECFP4 and showed that the HTSFP had better per-
formance for certain targets. The most prominent aspect 
of this study was the increased structural diversity of 
the HTSFP predictions [5]. Paricharak et  al. showed 
that HTSFPs are effective tools for iterative screening 
approaches in HTS to provide more targeted and effi-
cient screening, saving costs and resources [10]. More 
recently, HTSFPs have been employed for multitask 
machine learning methods. The study by Sturm et  al. 
compared HTSFP and ECFP4, again showing that the 
predictions returned from HTSFP models have little 
overlap with those of the ECFP, concluding that HTSFPs 
are valuable tools for scaffold hopping [20, 22]. A study 
by Wassermann et al. in 2013 showed the first step in the 
direction of combining structural and bioactivity descrip-
tors [9]. Their study focused on generating HTSFPs for 
compounds which had no available HTS data. This was 
performed by calculating an untested compounds struc-
tural similarity to compounds with existing HTSFPs. The 
HTSFP of compounds with high similarity were substi-
tuted onto the untested compounds. A different study by 
Riniker et al. went a step further and described a method 
of using both ECFP4 and HTSFPs for activity prediction 
by building machine learning models on each of the two 
descriptor types individually and subsequently combin-
ing the two trained models using heterogeneous classifier 
fusion for the final activity predictions [6].

In this study, a novel fingerprint was designed by com-
bining bioactivity descriptors (HTSFPs) with structural 
descriptors. The aim was to improve compound activ-
ity predictions and scaffold hopping potential of struc-
tural fingerprints while also showing that the method 
of combining different types of descriptors can in gen-
eral be beneficial in terms of synergistic effects. This 
method is developed with the prospect of improving 
iterative screening approaches, through targeted com-
pound set selection with greater accuracy and coverage 
of chemical space. The underlying idea was that combin-
ing the fingerprints fortifies the HTSFP with structural 
data, thereby removing the necessity of having to make 
a HTSFP density cutoff and allowing for a more efficient 
use of available HTS data. The fingerprint introduced 
herein was designed by concatenating the HTSFP with 
an ECFP4 to make a bioactivity-structure hybrid (BaSH) 
fingerprint. The HTSFP was constructed using HTS data 
from PubChem made up of 561 assays and is based on 
the activity flags set in the PubChem database. A random 
forest binary classifier was used to build the predictive 
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model. The results were validated via a retrospective 
analysis on a set of HTS assays which had been excluded 
from the training data, i.e. these assays were not included 
in the HTSFP or BaSH fingerprint. The results were 
benchmarked against the individual HTSFP and ECFP4.

Results and discussion
The HTS data was obtained from PubChem bioas-
says and post-refinement contained a total of 715,000 
unique compounds and 561 HTS assays. A retrospec-
tive analysis was performed using separate test and 
validation sets. A set of ten test assays were randomly 
chosen and excluded from the HTSFP and BaSH fin-
gerprint and used for the hyperparameter optimiza-
tion. Another 24 assays where chosen at random from 
the HTS dataset as the validation set and were excluded 
from the HTSFP and BaSH fingerprint, a detailed over-
view of these assays is shown in Table 1. These 24 vali-
dation set assays did in some cases have a biological 

overlap with the assays in the HTSFP. While this over-
lap was not investigated prior to building the predic-
tive models, the overlap is discussed for the relevant 
assays further on in the results. The results from the 
bioactivity-structure hybrid (BaSH) fingerprint were 
benchmarked against the un-concatenated HTSFP and 
ECFP4. Furthermore, the scaffold hopping potential of 
the BaSH fingerprint was investigated by comparing 
topological scaffolds and performing a nearest neigh-
bor comparison. The random forest classifier models 
built on the ECFP4, HTSFP, and BaSH fingerprint were 
used to make predictions for each assay. The results of 
the random forest analysis were investigated for each of 
the three fingerprint types using a variety of different 
performance metrics most of which are derived from 
values of the confusion matrix. Each metric was aver-
aged using the results of a sixfold cross validation and 
are discussed in detail in the following paragraphs. An 
overview of all metrics and the confusion matrix for all 
assays can be found in Additional file 1: Table S2.

Table 1  Overview of the 24 test assays used in the validation set

Shown are their PubChem AID, total number of compounds tested in assay, and the proportion of active compounds, assay target information, and assay type. 
Compounds are labeled active or inactive based on the activity flag set in the PubChem data
a  Assay types were not indicated in PubChem for these assays and were interpreted manually

AID Compounds 
tested

Actives % Actives Target information Assay type

522 64907 1225 1.89% Nuclear receptor Steroidogenic Factor 1 (SF-1) Cell-based

527 24074 64 0.27% Bacterial Quorum Sensing Cell-based

555 65239 316 0.48% Mevalonate kinase Biochemical

560 64907 979 1.51% Retinoic Acid Receptor-related orphan receptor A (RORA) Cell-based

746 59787 366 0.61% c-Jun N-Terminal Kinase 3 (JNK3) Biochemical

798 218716 302 0.14% Coagulation factor XIa Biochemical

1006 195564 2976 1.52% Compounds inhibiting luciferase Biochemical

1273 127297 1153 0.91% Insulin promoter activity—Proinsulin Cell-baseda

1515 217964 445 0.20% Retinoblastoma binding protein 9 (RBBP9) Biochemical

2129 315002 2199 0.70% BCL2-related protein, long isoform (BCLXL). Biochemical

2280 324750 1419 0.44% GLD-1 protein—TGE RNA interaction. Biochemical

2540 330397 4119 1.25% Sentrin-specific protease 8 (SENP8) Biochemical

2544 330397 393 0.12% Intestinal alkaline phosphatase Biochemical

2553 305614 3253 1.06% Transient receptor potential cation channel C6 (TRPC6) Cell-baseda

2606 324751 157 0.05% Membrane-associated serine protease Rv3671c Biochemical

463104 331676 1100 0.33% Adaptive arm of the Unfolded Protein response Cell-based

504406 323914 194 0.06% UDP-galactopyranose mutase (UGM) enzyme Biochemical

504454 339285 1446 0.43% Beta-2AR agonists-b2AR Cell-based

588497 340322 780 0.23% Botulinum neurotoxin light chain F protease Biochemical

602363 347157 446 0.13% Modulators of the fidelity of start codon recognition Cell-based

623901 332759 470 0.14% Inhibitors of miR-122 (miRNA) Cell-based

624414 400339 482 0.12% Mucolipin-1 Transient Receptor Potential 1 (TRPML1) Cell-based

686964 369939 1149 0.31% Methyl-CpG binding domain protein 2 Biochemical

720700 369939 3123 0.84% Phospholipase C, gamma 1 Biochemical
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Classification performance
Receiver operator characteristic
Receiver-operator-characteristic (ROC) curves for each 
of the three fingerprint types and eight of the 24 test 
assays are displayed in Fig. 1. The ROC area-under-curve 
(ROC-AUC), shown in Fig. 2 bar plot, were calculated to 
compare the relative performances between the three fin-
gerprint models. The ROC curve compares the true posi-
tive rate (TPR) against the false positive rate (FPR), while 
varying the threshold of the classification confidence 
scores, this provides an indication of the early enrich-
ment and gives a rough idea of the overall performance. 
Analysis of these curves and AUC values indicates that 
prediction performance of the ECFP was better than the 
HTSFP in only seven of the 24 test assays. The original 
study on HTSFPs by Petrone et al. showed that the ECFP 
was a more reliable descriptor than HTSFP in terms of 
ROC AUC [5]. The HTSFP used in Petrone’s study was 
based on 195 assays which may have limited its poten-
tial performance compared with 651 assays used in this 
study. Other recent studies also show that the HTSFP 
often outperforms the ECFP in terms of ROC AUC, but 
credit this in part to the presence of confirmatory or 
similar assays [6, 20]. The relative performance between 
the ECFP and HTSFP varied from assay to assay, which 
is likely dependent on the assay target types and also on 
the density of the HTSFPs for the compounds tested in 
each assay. Some of the test assay targets have also been 
tested in other assays or have closely related targets in 
other assays, thereby boosting the predictive perfor-
mance of these particular assays. The BaSH fingerprint 
predictions showed increased ROC for 18 of the 24 
test assays, although in the remaining seven assays the 
BaSH fingerprint showed comparable performance to 
the better of the HTSFP and ECFP. Noticeably the ROC 
curves showed that the early enrichment appeared to be 
improved in most test assays.

Precision, recall, and F1 score
The precision, recall and F1 scores were calculated for 
each of fingerprints, these were based on the averages 
from the sixfold cross validation and are plotted in Addi-
tional file  1: Figure  S3. The HTSFP had relatively low 
precision compared to the ECFP, for all but five of the 
24 test assays but inversely had the highest recall/sensi-
tivity in every test assay except one (623901). The BaSH 
fingerprint performed best in all 24 assays for preci-
sion but was out performed by the HTSFP in the sensi-
tivity scores in all but one assay (623901), although the 
BaSH fingerprint sensitivity was still better than that of 
the ECFP4 In the majority of cases. This shows that the 
HTSFP is predicting a very large number of compounds 
to be active, thereby recovering a large portion of the true 

positives, i.e. the high sensitivity, but at the same time a 
large number of false positives are predicted giving the 
HTSFP a low precision. To further analyze these results 
the F1 scores were compared, which gave the harmonic 
mean of the precision and sensitivity. The plot of the F1 
scores resolves the previously unclear results, showing 
that the BaSH fingerprint is on par, or outperforming the 
other two fingerprints in all test assays. The trends seen 
in the F1 scores are similar to those of the MCC analysis 
seen in Fig. 2.

Mathews correlation coefficient
Results were also compared using the Mathews correla-
tion coefficient (MCC). This is a well-suited metric for 
measuring the predictive quality on very unbalanced 
datasets, which is the case for this data, having an aver-
age active compound rate of 0.80% across the 561 assays 
used. The average proportion of actives across the 24 
tested assays was 0.57% which is very imbalanced and 
can affect the quality of other measurement techniques. 
The bar plot in Fig. 2 compares the average MCC scores 
from the sixfold cross validation for each of the three fin-
gerprint types. In eight of the 24 test assays the ECFP4 
outperformed the HTSFP by a clear margin, in fourteen 
assays the HTSFP scored higher than the ECFP4 and in 
the remaining two MCC scores were similar. Again, the 
varying relative performances between these two fin-
gerprints is likely highly dependent on the amount of 
information in the assay compounds’ HTS fingerprints, 
therefore test assays who have biological overlap with the 
assays of the fingerprint will have better performance and 
also assays with large portions of mostly sparse HTSFPs 
will be expected to perform poorer. The MCC scores for 
the BaSH fingerprint are higher than those of the other 
two fingerprints for all but five of the 24 test assays.

Cohen’s Kappa score
The Cohen’s kappa scores were also calculated from the 
cross-validation results and are plotted in Additional 
file 1: Figure S3. The plot again shows the improved per-
formance of the BaSH fingerprint compared with the 
other two fingerprints. The Kappa score shows an identi-
cal trend to that seen in the MCC plot.

Enrichment
To further investigate the relative performances of the 
three different fingerprints, the top scoring 1% of com-
pounds from each prediction run of the cross valida-
tion were compared. The top 1% represented between 
240 and 4000 compounds, depending on the assay (see 
Table 1). The enrichment factor (EF1%) for each assay was 
determined. The average enrichment factor for each fin-
gerprint type in each assay is shown in Fig. 2. The ECFP4 
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Fig. 1  Receiver operator characteristic (ROC) curves comparing the hybrid fingerprint (BaSH) with the HTSFP and ECFP4, green, orange, and blue 
respectively. The shaded area either side of the ROC curve represents one standard deviation. Shown are 8 of the 24 validation set assays with the 
most diverse results
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showed the poorest enrichment in 18 of the 24 test 
assays. Overall, the BaSH fingerprint produced the on 
par or better enrichment factor for all test assays except 
one (assay 602363). In many cases the EF1% differences 

were only marginal but the EF of the BaSH fingerprint 
did become slightly more apparent when taking into 
account a higher percentage of compounds, i.e. EF1.5%, 
EF2%, EF2.5%.

Fig. 2  Performance metrics for the 24 test assays comparing the hybrid fingerprint (BaSH) with the HTSFP and the ECFP4, green, orange, and blue 
respectively. Top: ROC-AUC, Middle: Matthews correlation coefficient, Bottom: enrichment factor. The errors bars in black represent one standard 
deviation
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Scaffold hopping analysis
Scaffold overlap
The second goal of the study was to determine the scaf-
fold hopping potential of the BaSH fingerprint compared 
with the ECFP4 and the HTSFP. The scaffold hopping 
capabilities of the HTSFP is well known and has been 
demonstrated in a number of studies [5, 20]. To compare 
the chemical diversity of the predicted compounds, the 
topological-Murcko scaffolds of each of the true positive 
predicted compounds in the top scoring 1% of predic-
tions were compared. The topological-Murcko scaffold 
is created by removing all side chains and subsequently 
converting all atoms in the structure to sp3 carbons. As 
expected the scaffolds predicted using the HTSFP had 
only a limited overlap with the scaffolds predicted using 
the ECFP4. On average, 59% of the scaffolds from the 
ECFP4 were also detected by HTSFP. Venn diagrams 
were constructed for the three fingerprint types and 
are shown in Fig.  3. The Venn diagrams in Fig.  3 show 
the total number of unique scaffolds detected by each 
descriptor next to the descriptor name. The blue orange 
and green circles represent the unique scaffolds retrieved 
by the ECFP, HTSFP, and BaSH respectively. The num-
bers in each segment of the circles correspond to the 
number of unique scaffolds found in that segment. The 
number of scaffolds is proportional to the sizes of the 
circles. Combining the structural (ECFP4) and bioactiv-
ity (HTSFP) fingerprints into one fingerprint (BaSH), 
one would expect the therefrom predicted scaffolds to 
reflect some form of overlap from the predictions of both 
the other two fingerprint types. Assays 527 and 1515 
are representatives of the two extremes within the 24 
test assays and are shown in Fig. 3. In the case of assay 
1515, a very wide separation between the three scaffold 

groups can be seen, whereas in assay 527 the BaSH over-
laps with almost all the scaffolds of both the ECFP4 and 
the HTSFP. The latter is the expected result, which shows 
no or very few novel scaffolds relative to the ECFP and 
HTSFP. This distribution pattern seen in the Venn dia-
gram for assay 527 was not very common among the 
other 24 test assays. Interestingly, the BaSH fingerprint 
also predicted an additional completely unique set of top-
ological scaffolds that did not overlap with either of the 
ECFP4 or the HTSFP predictions in all test assays (green 
shaded area). This effect was most pronounced in assay 
1515 showing 37% unique scaffolds predicted only by the 
BaSH fingerprint. On average, the BaSH fingerprint pre-
dicted 16% unique scaffolds across the 24 test assays. The 
33 scaffolds unique to assay 1515 (see Fig. 3) were investi-
gated more closely, an example of six of these structurally 
diverse compounds predicted correctly only by the BaSH 
are shown in Additional file  1: Figure S8. These results 
indicate synergistic effects when combining the two fin-
gerprints, leading to the detection of additional novel 
scaffolds. The overall count of true positive scaffolds pre-
dicted within the top scoring 1% of compounds was also 
highest for the BaSH fingerprint in most test assays. This 
suggested that the BaSH fingerprint was a more effective 
fingerprint for scaffold hopping than its precursors. Venn 
diagrams of all test assays can be found in the additional 
data Fig. 4.

Nearest neighbor Tanimoto similarity
To further investigate the results shown in the Venn 
diagrams a nearest neighbor analysis was performed. 
The Venn diagrams revealed the presence of different 
scaffolds but did not reveal how different these scaf-
folds were to one another structurally. By plotting the 

Fig. 3  Venn diagrams showing the number of unique topological-Murcko scaffolds in the top scoring 1% of predictions. Each circle represents one 
of the three predictive models: BaSH, HTSFP, and ECFP4 (green, orange, blue respectively). Left diagram refers to test assay 527 and right diagram to 
test assay 1515
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nearest neighbor for each compound, the overall struc-
tural diversity of the compound set could be visualized. 
Figure  4 shows the plot of the nearest neighbor Tani-
moto similarity of the top scoring 1000 compounds of 
assay 463104 using each of the three prediction mod-
els. The plot shows that the compounds predicted using 
the ECFP4 share a larger degree of structural similarity 
relative to the predictions made using the HTSFP. The 
majority of the compounds predicted using ECFP4 have 
a Tanimoto similarity between 0.7 and 0.9 whereas the 
majority of compounds predicted using the HTSFP have 
a Tanimoto similarity around 0.3–0.4. The compounds 
predicted using the BaSH fingerprint had similarity 

values in between those of ECFP4 and the HTSFP. This 
distribution provides evidence that the ECFP4 is not 
as well suited for scaffold hopping as the HTSFP or the 
BaSH. It must also be mentioned that the diversity of the 
ECFP predictions is highly dependent on the diversity of 
its training data, i.e. highly diverse training data can also 
lead to diverse predictions for ECFP but these predic-
tions would theoretically never expand into new chemi-
cal space as well as bioactivity fingerprints. Although the 
compounds predicted with the BaSH fingerprint exhibit a 
lower degree of structural diversity than the HTSFP, the 
predictive accuracy of the BaSH is better and is therefore 
the favored model. All 24 test assays followed a similar 
trend as the seen in Fig.  4, plots for all test assays are 
shown in Additional file 1: Figure S4.

Compound ranking comparison
The top ranking 1000 compounds predicted using BaSH 
fingerprint were selected. Compounds could be ranked 
based on their probability scores obtained from the ran-
dom forest model. This probability score is based on con-
sensus voting by the decision trees of the random forest 
model. The rankings of these compounds in the ECFP4 
predictions were plotted against the rankings from the 
HTSFP predictions. These plots for assays 463104 and 
624414 are shown in Fig.  5. The green dots represent 
active compounds and the orange dots represent inac-
tive compounds. Compounds above the diagonal black 
line were ranked higher in the ECFP4 model and com-
pounds below the line were ranked higher in the HTSFP 
model, i.e. a smaller number equals higher rank. The 
dashed lines represent the boundary for rankings not 

Fig. 4  Compound diversity of top scoring 1000 compounds. The 
nearest neighbor Tanimoto similarity was calculated for each of the 
1000 compounds and plotted as a fitted histogram. The nearest 
neighbor similarity was calculated for each of the 3 predictive models 
BaSH: green, HTSFP: orange, and ECFP4: blue

Fig. 5  Comparison of compound rankings for the three prediction models. The top scoring 1000 compounds predicted using the BaSH are 
shown. The rankings of the same compounds in the HTSFP model (Y-axis) and the ECFP4 model (X-axis) are compared. The green and orange dots 
represent active and inactive compounds, respectively. The dashed line boarders the upper right quadrant, which refers to rankings outside the top 
1000 rankings for the HTSFP and EFCP4. Results from two test assays are shown in the plots left: AID 463104 and right: AID 624414
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in the top 1000 for either the ECFP4 or HTSFP. It was 
expected that the top 1000 BaSH compounds would be 
within the top ranking 1000 compounds of either the 
ECFP4 or the HTSFP i.e. not in the upper right quad-
rant of the plot. This expectation would give a rise to an 
‘L’ shaped clustering. This ‘L’ shaped clustering was only 
partially visible in the plot of assay 624414, but even here 
a small number of the compounds were located outside 
the expected rankings, i.e. in the upper right quadrant. 
The remaining 24 assays larger portions of the 1000 BaSH 
predicted compounds appeared in the upper right quad-
rant (see Additional file 1: Figure S6). For example, assay 
463104 showed a large portion of compounds ranked 
outside the top 1000 for both the ECFP4 and the HTSFP. 
The fact that the BaSH fingerprint predicts many active 
compounds outside the top 1000 rankings of ECFP4 and 
HTSFP demonstrates a synergistic effect between struc-
tural and bioactivity descriptors. This synergistic effect 
allows for improved predictive performance and scaffold 
hopping capability. The scatter plots for all 24 test assays 
are show in the Additional file 1: Figure S6.

Feature importance
The feature importance of each of the models for the 
BaSH fingerprint six-fold cross validation were analyzed 
using a feature importance function [23]. The feature 
importance for assay 463104 is plotted in Fig.  6. Fea-
tures 0–560 refer to the HTSFP (orange) while features 
560–1584 refer to the ECFP4 (blue). This plot shows the 
average and the maximum importance (light and dark 
shades respectively) calculated from the six-fold cross 
validation. The ECFP4 seldom shows any features that are 
significantly more important than others and in general 
displays an overall constant basal level of importance, 
i.e. almost every ECFP4 feature has some importance. 

In one case, assay 555, where the HTSFP had no signif-
icant contribution did some of the ECFP features show 
pronounced importance. For some of the assays certain 
features in the ECFP4 show higher importance but due 
to the way the ECFP4 is folded into a 1024 binary vector 
it is impossible to determine precisely which structural 
features each bit corresponds to. The HTSFP portion 
of the BaSH shows much greater variability in feature 
importance from assay to assay. Overall the basal level 
of feature importance in the HTSFP is lower than in the 
ECFP4, although a small number of the HTSFP features 
show highly pronounced importance values. This trend 
of pronounced HTSFP features could be seen across 19 
of the 24 test assays (see plots in Additional file 1: Figure 
S7). The assays corresponding to these pronounced fea-
tures were investigated in more detail and an overview of 
the top 5 most important HTSFP features for each test 
assay is shown in Additional file  1: Table  S1. Discussed 
here are three representative test assays i.e. AID 798, AID 
463104, and AID 504454. The assay biological targets 
corresponding to the top 5 most important HTSFP fea-
tures were determined and are shown in Table 2.

Test assay 798, from the PubChem dataset, is a bio-
chemical assay aimed at identifying compounds which 
inhibit coagulation factor XI. The random forest model 
used to make the retrospective predictions on this assay 
was analyzed and the feature importances were deter-
mined. According to the ROC AUC shown in Fig. 2 the 
HTSFP expressed better performance than the ECFP 
although the performance difference between the two 
was negligible when considering the MCC score. The 
five most important features all correlate to compounds 
which were active against targets involved in secondary 
hemostasis which all have a serine protease function. The 
4th and 5th most important features referred to assays 

Fig. 6  Feature importance of the combined fingerprint (BaSH) for two representative assays of the validation set. Features 0–560 correspond to the 
HTSFP portion (orange) and features 560–1584 correspond to the ECFP4 portion (blue) of the combined fingerprint. The light and dark shades of 
each feature refer to the mean and max values from the six-fold cross validation, respectively
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687 and 680 which also targeted coagulation factor XI 
but had surprisingly low importance. Closer investigation 
of these two assays revealed the reason for their relatively 
low importance. One point was that the two assays only 
had tested compound sets with a compound overlap of 
32511 and 59853 respectively, which is relatively small 
compared to the 798-test assay (218716 compounds). 
Another point was that the agreement between the 
assays was limited, only 23/94 and 21/120 actives were 
in agreement with the 798-test assay for assays 687 and 
680 respectively. The fact that the random forest model 
is successfully identifying and correlating compounds 
which have similar activities against similar targets is an 
expected result. These results act as a form of validation 
for the methods and procedure used in this study.

Test assay 463104 is a cell-based, phenotypic assay 
targeted at identifying promoters of the unfolded pro-
tein response (UPR), specifically the adaptive arm. UPR 
is involved in protein degradation as well as apoptosis 
related processes. The top 5 most important features of 
the random forest model were determined for this assay 
and their corresponding assay biological targets are listed 
in Table 2. The first most important feature corresponds 
to an assay targeting E3 ubiquitin protein ligase. The E3 
ubiquitin protein ligase is involved in Ubiquitination 

processes, which are directly involved with protein deg-
radation, and are a vital element of the UPR. The 2nd 
and 3rd most important features both refer to assays also 
targeting different domains of the UPR. The 4th most 
important feature corresponds to an assay targeting ‘Pro-
tein phosphatase 1 regulatory subunit 15A’. This target is 
involved with regulation of protein synthesis and plays a 
role in the UPR, its relatively high importance suggests 
that this target is likely also present or closely related to 
the target(s) in the 463104-test assay. Again, the fact that 
the four most important features all correspond to com-
pounds which were active in the UPR process, validates 
the method and observed results. The 5th most impor-
tant feature corresponds to an assay targeted at melano-
cortin receptor 4 (MC4R). MC4R is a GPCR which has 
no known association to the UPR. This result suggests 
that the predictive model has the ability to draw correla-
tions from unrelated features of the HTSFP, thereby sup-
porting a wider applicability domain which has also been 
observed in previous studies for HTSFPs [5–7]. Consid-
ering this lack of correlation between the two targets, it 
must also be mentioned that the relative importance of 
this feature is much lower (0.013) as can be inferred from 
Fig. 6.

Table 2  The PubChem assays corresponding to the five highest importance features as seen in Fig. 6

Column one refers to the PubChem AID, column two refers to feature position with the combined fingerprint, column 3 indicates the importance value, and column 4 
gives information on the assay target

PubChem AID Feature number Importance value Assay biological target
798 Test assay Coagulation factor XI

800 532 0.044 Coagulation factor XIIa light chain

873 551 0.035 Human kallikrein 5 (hK5) serine protease

1046 17 0.020 Prothrombin

687 466 0.004 Coagulation factor XI

680 458 0.003 Coagulation factor XI 

PubChem AID Feature number Importance value Assay biological target
463104 Test assay Activators of the adaptive arm of the unfolded protein response

485346 216 0.074 E3 ubiquitin-protein ligase Mdm2/MdmX

2732 165 0.031 Inhibitors of CHOP to regulate the unfolded protein response 

449763 190 0.030 Activators of the apoptotic arm of the unfolded protein response

588405 315 0.028 Protein phosphatase 1 regulatory subunit 15A

540308 293 0.014 Melanocortin receptor 4 (MC4R)

PubChem AID Feature number Importance value Assay biological target
504454 Test assay Beta-2 adrenergic receptor

588405 315 0.043 Protein phosphatase 1 regulatory subunit 15A 

743279 505 0.026 Inhibitors of inflammasome signaling: IL-1-beta

488899 226 0.018 MITF microphthalmia-associated transcription factor 

485346 217 0.016 E3 ubiquitin-protein ligase Mdm2/MdmX

624352 394 0.010 Endothelial PAS domain-containing protein 1
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Assay 504454 is a cell-based, phenotypic assay aimed 
at identifying inhibitors of the beta-2 adrenergic receptor 
(b2AR) which is a member of the GPCR family. The bio-
logical target of test assay 504454 did not have any known 
relation to the biological targets of the top 5 features. The 
PubChem assays and their associated biological targets 
corresponding to these five features are listed in Table 2. 
These five assays target a variety of different functional 
proteins, none of which are members of the GPCR fam-
ily. The targets types include regulatory subunits, inflam-
masomes, protein ligases, and two transcription factors. 
This result shows activity predictions for a given assay 
are not dependent on the HTSFP containing assays with 
related or similar biological targets. In other words, valid 
activity predictions can be made for compounds which 
are being tested on previously unexplored targets, as has 
shown in previous studies [5–7].

Conclusion
From analysis of the various metrics used to assess the 
prediction quality of the BaSH fingerprint it can be con-
cluded that the BaSH yields a viable improvement in 
prediction performance relative to the individual ECFP4 
and HTSFP. The MCC, F1 score, enrichment factor, 
ROC-AUC and Cohen’s kappa score all show evidence of 
the combined fingerprint’s enhanced performance. The 
results indicate that this combined fingerprint is a use-
ful tool for scaffold hopping, detecting not only a more 
diverse set of active compounds with different scaffolds 
but also identifying novel scaffolds that were not identi-
fied with either the ECFP4 or the HTSFP. The improved 
scaffold hopping ability of the BaSH fingerprint was fur-
ther supported by the nearest neighbor analysis. A com-
parison of the compound rankings provided evidence of 
the synergistic effects between the structural and bio-
activity-based fingerprints. Feature importance analy-
sis quantified the relative contributions of ECFP4 and 
HTSFP to the BaSH predictions, revealing that a small 
subset of the HTSFP features contribute most to the 
overall performance. This subset of features often corre-
sponded to assays with targets biologically related to the 
test assays, however, this was not necessary for the HTS-
FP’s increased contribution. Naturally, the BaSH finger-
print has some limitations due to its HTSFP portion. The 
most notable limitation being the availability of histori-
cal HTS data, meaning that only previously tested com-
pounds can be used. Furthermore, the presence of assays 
in the HTS portion which have related targets to the test 
assay has a strong positive influence on model perfor-
mance. Therefore the inverse also applies, models built 
for previously untested targets or targets with no close 
relations, may exhibit reduced performance, although 
meaningful predictions are still possible. An example for 

this is provided by assay 504454 for the beta-2 adrener-
gic receptor. Although the top 5 most important features 
correlated with unrelated targets, predictive performance 
was reasonable, with ROC-AUC of 0.78 for HTSFP com-
pared to 0.70 for the ECFP4. Another point is that assays 
with only small numbers of ‘active’ samples which have 
limited diversity don’t contain sufficient information for 
training of a reliable model, which has a negative effect 
on the model performance. A positive characteristic of 
the BaSH fingerprint is that although the HTSFP portion 
was very sparse, and contains a lot of noise through the 
labelling of missing data points as ‘inactive’, the noise did 
not negatively effect on the overall performance. Due to 
the relatively small size of the HTSFP to the ECFP4 (561 
to 1024 respectively), the noise presented by the missing 
data is possibly drowned out by dominating presence of 
the ECFP. This provides a point of additional optimiza-
tion, by applying weighting factors or altering the length 
of the ECFP further performance increases could poten-
tially be achieved. Another positive characteristic of the 
BaSH is that compounds with sparse or no HTSFP finger-
prints need not be filtered out, as they are fortified by the 
presence of the ECFP and therefore valid activity predic-
tions can still be made. An alternative approach would be 
to use continuous data such as IC50 values and apply an 
adjustable threshold to optimize the HTSFP to possibly 
get further model improvements. Additional improve-
ments could possibly be achieved by implementing fre-
quent hitter or interference compound filters. Overall the 
BaSH fingerprint appears to be a promising tool for activ-
ity prediction and provides evidence that combining dif-
ferent types of descriptors is a valid method for boosting 
model performance.

Methods and data
Dataset
For this research 24 HTS assays obtained from PubChem 
were investigated retrospectively, they contained diverse 
ratios of active to inactive compounds as well as vary-
ing target types and a range of assay sizes ranging from 
approximately 20,000–400,000 compounds per assay. An 
overview of the 24 test assays is shown in Table 1.

Descriptors for models
Generation of HTS fingerprints
A set of 582 HTS assays were downloaded from the 
PubChem database. Assays containing fewer than 
20,000 compounds were discarded, leaving a total of 
561 assays. This cut off was made to reduce the size and 
sparsity of the HTS fingerprint. The ‘Active’ or ‘Inac-
tive’ activity flags set by PubChem were used to build 
the fingerprint. If any compounds were tested multiple 
times with mixed activity outcomes, the most common 
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activity flag was used. In the case where there were 
equal numbers of active and inactive flags, the active 
flag was used. All compound’s activity flags were col-
lated into a matrix of ‘compound ID’ versus ‘Assay ID’, 
with dimensions 715,328 (compounds) × 561 (assays). 
The fingerprint was subsequently binarized by convert-
ing all ‘active’ labels to ‘1’ and ‘inactive’ labels to ‘0’. All 
missing data was also set to ‘0’, the reasoning for this 
was that the HTS data is very unbalanced and a com-
pound with unknown activity has a much higher prob-
ability of being inactive and is therefore given the label 
of an inactive bit. Each test assay was removed from the 
HTSFP prior to its analysis.

Structural descriptors
For the same list of 715,328 compounds as in the 
HTSFP, ECFP4 fingerprints were created. The 
PubChem HTS data contained only the CID for the 
compounds and to make the ECFP fingerprints the 
smiles for each compound was required. Using the list 
of CIDs, the Smiles for each compound were down-
loaded from the PubChem database. The Morgan circu-
lar fingerprint (an analogue of ECFP) implemented in 
RDKit was used [24]. After removal of compounds with 
invalid or unreadable smiles for RDKit, a compound 
set of 715327 was obtained. The bit length was set to 
1024 bits and the fragment radius was set to 2 (diam-
eter 4). Tests were run comparing 1024-bit ECFP4 with 
1024-bit ECFP6 for one of the test assays. Only minor 
differences could be seen in predictive performance 
but the ECFP6 appeared to be slightly weaker, there-
fore the ECFP4 was chosen for the full analysis. The 
performance of the 1024 bit ECFP4 was compared with 
a 2048 bit ECFP4, the results showed no noticeable 

improvement when using the longer ECFP4, therefore 
the shorter version was chosen.

Generation of the BaSH fingerprint
The bioactivity-structure hybrid (BaSH) fingerprint was 
created by concatenating the ECFP4 to the HTSFP, giv-
ing a new fingerprint of length 1585 (561 + 1024). These 
fingerprints were created using the same compound set 
(715327) as output from the ECFP4. Prior to analysis 
of each test assay, it was first removed from the BaSH 
fingerprint.

Modelling methods
Due the nature of the random forest learning method, 
where specific features within a fingerprint are identified 
and not the entire fingerprint, it was theorized that RF 
would be the best suited technique to deal with the large 
portion of majorly sparse HTSFPs in the dataset. A test 
run was performed comparing random forest with support 
vector machine models of the Scikit-learn package [23]. 
The two models were tested on one of the ten test assays, 
the random forest showed better performance according 
to the ROC AUC values and also ran significantly faster.

The random forest classifier machine learning package 
from Scikit-learn was used for building models of three 
different descriptor types, i.e. ECFP4, HTSFP, and BaSH. 
Here the ECFP4 and HTSFP were used for comparative 
and benchmarking purposes in all performance evalu-
ations. The hyperparameters were optimized on a set of 
10 randomly chosen assays, see Table  3 for assay infor-
mation. For testing each assay was removed from the 
training data of the HTSFP and BaSH. An independent 
hyperparameter grid search was carried out for each of 
the three descriptor types. The most commonly occur-
ring hyperparameter setting across the 10 test assays was 
chosen. The optimized hyperparameters were as follows:

Table 3  Overview of test assays used in hyperparameter search

Columns represent PubChem AID, number of compounds tested in assay, number of actives, percentage of actives, target information, and assay type

AID Compounds 
tested

Actives % Actives Target information Assay type

834 84880 123 0.14% Potentiators of clotrimazole Cell-based

1236 218607 799 0.37% Calpain II inhibitors Biochemical

1510 217964 569 0.26% Sphingosine-1-phosphate receptor 4 (S1P4) Cell-based

1899 302667 998 0.33% Hepatitis C Virus (HCV) core protein Biochemical

2732 218659 8240 3.77% DNA damage-inducible transcript 3—CHOP—regulates UPR Cell-based

463165 305614 1365 0.45% Regulator of G-protein signaling 4 isoform 2 (RGS4) Cell-based

588621 359231 887 0.25% Tyrosine-protein phosphatase non-receptor type 5 Biochemical

602229 362013 1281 0.35% Photoreceptor-specific nuclear receptor (NR2E3) Cell-based

720543 369939 2005 0.54% Alpha/beta hydrolase domain containing protein 4 (ABHD4) Biochemical

1117267 91911 1155 1.26% Activators of Transthyretin (TTR) transcription Cell-based
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HTSFP: n_jobs = −1, n_estimators = 150, class_
weight = ‘balanced’, max_features = ‘sqrt’, crite-
rion = ‘entropy’, max_depth = 40, min_samples_split = 2, 
min_samples_leaf = 5, random_state = 56

ECFP4: n_jobs = −1, n_estimators = 200, class_
weight = ‘balanced’, max_features = ‘sqrt’, criterion = ‘gini’, 
max_depth = 30, min_samples_split = 2, min_samples_
leaf = 8, random_state = 56)

BaSH: n_jobs = −1, n_estimators = 150, class_
weight = ‘balanced’, max_features = ‘sqrt’, criterion = ‘gini’, 
max_depth = None, min_samples_split = 2, min_samples_
leaf = 8, random_state = 56)

The number of trees (n_estimators) was set to 150/200 
as above this threshold model performance did not show 
noticeable improvement. A ‘balanced’ class weighting 
was used due to the imbalanced nature of the data, the 
‘balanced’ setting of this hyperparameter was vital for 
adequate performance of the models. For the purpose of 
reproducibility a random_state = 56 was used. For model 
validation a sixfold cross-validation was performed, 
averages and standard deviations were calculated across 
the six folds for each of the test assays. A stratified sam-
pling method was used to generate each fold, this meant 
that each fold had the same ratio of ‘active’ to ‘inactive’ 
samples. The metrics for each test assay were calculated 
using the mean values and standard deviations calculated 
across the six folds.

For the scaffold hopping analysis the true positives in 
the top ranked 1% of predictions were extracted for each 
cross-validation fold and their compound IDs (CIDs) 
were mapped to smiles. Using RDKit each compound 
was converted to a topological Bemis-Murcko scaffold 
(generic scaffold) i.e. all side chains were removed, all 
heteroatoms converted to carbons, and all bond orders 
set to 1 (all C = sp3). The number of unique topological 
scaffolds were then counted and averaged across the six 
folds. The unique scaffolds predicted from each of the 3 
tested fingerprints were compared using Venn diagrams 
made from the matplotlib-venn add-on. Venn diagrams 
were made for each cross-validation fold and the aver-
age for each region in the diagram was taken to make the 
final diagram.

To compare the compound diversity for the predictions 
made using each of 3 fingerprint types (HTSFP, ECFP4, 
BaSH) a nearest neighbor comparison was performed. The 
nearest neighbor is calculated by performing a Tanimoto 
similarity comparison of the ECFP4 s for each compound 
in the prediction set. A Tanimoto similarity score of 1.0 is 
obtained for two compounds whose fingerprints are identi-
cal, whereas a score of 0.0 means that the fingerprints have 
no overlap. The similarity scores for all compounds in the 
top 1000 predictions were calculated and their distribution 
plotted (Fig. 4).

Calculation of metrics
Receiver operator characteristic curves were constructed 
using the false positive rate (FPR) and true positive rate 
(TPR) while changing the classification threshold accord-
ing to the prediction probability scores, this was performed 
using the SKlearn metrics library. The two equations in (1) 
show how the FPR and TPR are calculated.

The precision and recall were calculated using the for-
mulas shown in (2). The F1 score is the harmonic mean of 
the precision and recall and the calculation formula is also 
shown in (2).

The Matthews correlation coefficient (MCC) is a per-
formance metric optimized for imbalanced datasets. The 
equation to calculate the MCC is shown in (3). The MCC 
covers a range from − 1 to 1, where a value of 1 indicates 
a perfect prediction, − 1 a perfect inverse prediction and 0 
indicating prediction no better than random.

The equation in (4) shows how the Cohen’s Kappa score 
is calculated, where po is the relative observed agreement 
of a class (accuracy) and pe is the hypothetical probability 
of chance agreement. A kappa score of 0 reflects a perfor-
mance no better than random chance, the more positive 
the score the better.

The Enrichment factor provides a measure of how much 
the model performance improves compared to random 
screening. The resulting score refers to a factor of improve-
ment, where a score of 1.0 is equivalent to random. The 
formula to calculate the enrichment factor for the top scor-
ing 1% of compounds is shown in (5). The Hitrate1% refers 
to the rate of true positives in the top scoring 1%, and the 
Hitrate100% refers to the hit rate for the overall screen.

Software used: Python 3.6.5, SKLearn 0.19.1, SciPy 
1.1.0, RDKit 2018.03.1.0.

(1)FPR =
FP

FP+ TN
TPR =

TP

TP+ FN

(2)
Precision =

TP

TP + FP
Recall =

TP

TP + FN

F1score =
2TP

2TP+ FP+ FN

(3)

MCC =
TP · TN− FP · FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(4)κ =
po − pe

1− pe

(5)EF1% =
Hitrate

1%

Hitrate
100%
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