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Dataset’s chemical diversity limits 
the generalizability of machine learning 
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Abstract 

The QM9 dataset has become the golden standard for Machine Learning (ML) predictions of various chemical proper‑
ties. QM9 is based on the GDB, which is a combinatorial exploration of the chemical space. ML molecular predictions 
have been recently published with an accuracy on par with Density Functional Theory calculations. Such ML models 
need to be tested and generalized on real data. PC9, a new QM9 equivalent dataset (only H, C, N, O and F and up to 
9 “heavy” atoms) of the PubChemQC project is presented in this article. A statistical study of bonding distances and 
chemical functions shows that this new dataset encompasses more chemical diversity. Kernel Ridge Regression, Elas‑
tic Net and the Neural Network model provided by SchNet have been used on both datasets. The overall accuracy in 
energy prediction is higher for the QM9 subset. However, a model trained on PC9 shows a stronger ability to predict 
energies of the other dataset. 
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Introduction
Quantum mechanical (QM) calculation is so far the most 
accurate method to obtain molecular energetic charac-
teristics like the total energy and the frontier molecular 
orbitals energies (HOMO and LUMO). However, a huge 
computational cost prevents its daily usage for exhaus-
tive exploration of chemical space. Till recently the only 
alternative in overcoming the time factor was to use less 
accurate approximation of QM or classical molecular 
mechanics. Yet, with those methods, the gain in time 
means a loss in precision. An appealing alternative is 
to use a computationally much more efficient approach 
based on machine learning (ML) models, which could 
be trained on any kind of data. It is indeed a hot topic. 
Just in 2019, an impressive amount of studies have been 

devoted to the application of ML for the prediction of 
molecular energetic characteristics [1–11].

In chemistry-oriented ML, especially for molecular 
energies, the employed methods encompass Kernel Ridge 
Regression (KRR) [12–18], sometimes Gaussian process 
regression (GPR), linear regressions (Elastic Net, Bayes-
ian Ridge Regression) and Random Forest (RF) [17, 19, 
20]. The most recent state-of-the-art predictions have 
been obtained by neural networks (NN) [1, 2, 21–28]. 
ML performance as well depends on the molecular repre-
sentation used. Graph representations can be employed 
[23, 25], but the most common approaches are based 
on derivatives of geometry features like the Coulomb 
Matrix (CM) proposed by Rupp et  al. [12], the Bag of 
Bonds (BoB) proposed by Hansen et  al. [13] or Bonds 
and Angles ML (BAML) descriptors [16, 18]. More com-
plex representations have been also proposed. The idea 
behind those “alchemical” descriptors is to introduce a 
part of the Hamiltonian before the ML treatment for bet-
ter predictive power and generalizability. We can cite for 
example smooth overlap of atomic potentials (SOAP) 
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paired sometimes with Gaussian approximation potential 
(GAP) [19, 29, 30] and multidimensional distributions of 
interatomic many-body expansion [31].

Furthermore, the ML performance depends heavily on 
the dataset size and quality. Most of the works related to 
ML modeling of quantum chemical properties are using 
either the QM7(b) collection or its enlarged version 
QM9 [21, 32]. They are both subsets of the combinato-
rially enumerated chemical universe GDB up to 13 or 
17 heavy atoms [33]. Whereas the QM7 is composed of 
7211 molecules (C, H, N, O, S and Cl), the QM9 dataset 
encompasses 133,885 molecules with up to nine “heavy” 
atoms from the range C, O, N and F. The geometric, ener-
getic, electronic, and thermodynamic properties of theirs 
were computed with a DFT method at the B3LYP/6-
31G(2df,p) level of theory. This dataset has become a 
classical benchmark for ML studies due to its homogene-
ity, purity and lack of noise.

So, since 2012, the ML modeling of total molecular 
energies and the HOMO/LUMO energies, among other 
properties, has been the focus of several studies. Table 1 
presents the evolution of the published mean absolute 
errors (MAE) reported in the literature. Clearly, with 
QM7 and QM9 datasets, a well tuned KRR model can 
almost reach chemical accuracy for the three properties 

with descriptors like the BoB or the BAML [16, 17]. With 
more complex “alchemical” representations and radially 
scaled KRR /GPR, they can even compete with the best 
Neural Networks results [30]. Such accuracy is really 
tempting, taking into account the relatively low computa-
tional cost of KRR/GPR methods.

Alongside with kernel methods, several Neural Net-
works (NN) have been proposed and tested for the pre-
diction of energetic and electronic properties of QM9. 
Complex NN architectures have been carefully designed 
to achieve good predictive performances. For instance, 
some convolutional layers are inspired by the “alchemi-
cal” descriptors mentioned above. Such models can be 
expected to have a good capacity for generalization. The 
precise description of those NN architectures is beyond 
the scope of this article. Gilmer et  al. have proposed a 
framework called Message Passing Neural Networks 
(MPNNs), that shares common attributes of several 
promising existing NN models for graph structured data 
and uses bond type features in addition to interatomic 
distances [23]. It achieved exciting performances on 
QM9 benchmark where 11 out of 13 properties were 
predicted within chemical accuracy (1 kcal/mol on total 
energies and 0.1 eV for orbital energies). It is worth 
noting here that the reported values in the literature 

Table 1  Mean absolute errors for  atomisation energies U0 in  kcal/mol, HOMO and  LUMO energies (in eV) for  several 
models Kernel Ridge regression (KRR), Elastic Net (EN), Gaussian process regression (KRR), and  neural networks (NN) 
reported in the literature (from oldest to most recent)

CV denotes a cross validation procedure. Since NN descriptors can be quite complex, they have been omitted

References ML method/descriptor Dataset (Training–Test sizes) U0 HOMO LUMO

Rupp [12] KRR/CM QM7 (7000–165) 10.0 – –

Montavon [21] multitask NN QM7b (CV 5000–2211) 3.7 0.15 0.13

Hansen [14] KRR/BoB QM7 (CV 5732–1433) 1.5 – –

Huang [16] KRR/BoB QM7b (5011–2200) 1.8 0.15 0.16

Huang [16] KRR/BAML QM7b (5011–2200) 1.2 0.10 0.11

Faber [17] EN/CM QM9 (CV 118k–13k) 21.0 0.34 0.63

Faber [17] EN/BoB QM9 (CV 118k–13k) 13.9 0.28 0.52

Faber [17] KRR/CM QM9 (CV 118k–13k) 3.0 0.13 0.18

Faber [17] KRR/BoB QM9 (CV 118k–13k) 1.5 0.09 0.12

Faber [17] KRR/BAML QM9 (CV 118k–13k) 1.2 0.09 0.12

Bartók [19] GPR/SOAP-GAP QM7b (5411–1800) 0.40 – –

Bartók [19] GPR/SOAP-GAP QM9 (100k–31k) 0.28 – –

Gilmer [23] NMP NN QM9 (120k–10k) 0.45 0.04 0.04

Smith [22] ANI-1 NN ANI (13.7M–1.7M) <1.5 – –

Hou [26] multitask NN QM9 (119k–13k) 44.0 0.38 0.63

Schütt [24] SchNet NN QM9 (CV 110k–10k) 0.32 0.04 0.03

Lubbers [27] HIP-NN QM9 (CV 110k–20k) 0.26 – –

Unke [28] HDNN QM9 (CV 100k–30k) 0.41 – –

Willatt [30] KRR/SOAP QM9 (CV 100k–30k) 0.14 – –

Unke [2] PhysNet NN QM9 (CV 110k–20k) 0.14 – –
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correspond to scores on test sets (a random sample of 
the dataset unseen during training) generally after cross 
validation (average over different runs with different sub-
sets of data). The next study was a neural network engine 
for molecular energies called ANI, representing trans-
ferable neural network potentials and utilizing a Behler 
and Parrinello symmetry functions to build single-atom 
atomic environment vector [22]. ANI has been shown to 
predict total molecular energies at the level of < 1.5 kcal/
mol albeit with a much larger training set size (a subset 
of GDB-11). This model has been very recently refined 
and errors in total energies prediction equal to 0.14 kcal/
mol were reported by Smith et  al. [1] Schütt et  al. have 
proposed a deep tensor neural network (DTNN) to 
mimic many-body Hamiltonians [34]. Then they have 
introduced continuous filter convolutional layers as 
novel building blocks for deep neural networks [24, 35]. 
The architecture has been called SchNet. The reported 
accuracy achieved by SchNet on QM9 is 0.32 kcal/mol 
for U0 and 0.04 − 0.03 eV for HOMO and LUMO ener-
gies. Finally, Willatt et al. published a KRR model with a 
SOAP descriptor and Unke et al. a complex NN architec-
ture PhysNet. Both also reach a MAE of 0.14 kcal/mol on 
total energies [2, 30]. The advances in accuracy achieved 
for energetic properties of QM9 is truly enthusiastic. 
However, the correspondence of the virtual combinato-
rial dataset to subsets of real molecules has not yet been 
examined. The expectation of a scientist working with a 
custom dataset, regarding the performance achievable 
by the variety of ML methods and tools built upon QM9, 
could hence be overestimated.

We propose here to address to the largest database of 
existing compounds, PubChem [36, 37]. Approximately 
≈ 3 million molecules in PubChem have been calculated 
by Nakata et  al. within the framework of PubChemQC 
project, with a DFT method at the B3LYP/6-31G(d) level 
[38]. In this article we have applied the limitations of 
QM9 dataset (size of up to 9 heavy atoms in the range C, 
N, O and F) to isolate a new dataset. Named PC9, it can 
be used for benchmarking comparison with QM9.

This study is constructed in accordance with the work-
flow given in Fig.  1. In the context of our research, we 
started by reproducing simple models, ie. Elastic Net 
(EN) and Kernel Ridge Regression (KRR) with Coulomb 
Matrices (CM), on QM9 and trying to assess their perfor-
mances on PC9. As a first more complex model we began 
to look at SchNet, which was easily available. Results sug-
gest generalization issues. So, in the last part we investi-
gate the role of the dataset.

In the reproducibility and assessment parts, the com-
parison with QM9 results has been made possible by an 
identical modeling protocol. In the generalizability part, 
the ability to predict molecules of the other dataset, that 

were not seen during training, was evaluated. It consists 
in testing a model, trained on one of the datasets, for its 
prediction performance on molecules of the other dataset 
notwithstanding of their different chemical nature, occa-
sional conformational discrepancies and different level 
of DFT theory. This topic is indeed almost never treated. 
Collins et  al. has shown that a KRR model trained on 
QM7 and applied on QM9 displays an increase in MAE 
for U0 from 3.4 to 106 kcal/mol with CM and from 2.4 to 
30 kcal/mol with BoB [18]. However, HOMO and LUMO 
energies accuracy has been maintained around 0.15 eV. 
As it has already been observed by Faber et al. [31], the 
association of KRR and CM or BoB descriptors gener-
alize badly compared to models which decompose the 
energies into atomic contributions. Can a complex NN 
architecture like SchNet that does such decomposition 
generalize better?

The last part of this article is devoted to the study of the 
differences between QM9 and PC9 in terms of chemical 
composition, abundance of functional groups and bond 
length distribution. Similarities and differences between 
the two datasets are exposed and visualized, providing 
insights concerning the ML performances.

Method
PubChemQC subset: PC9
Contrary to the pure in silico approach of QM9, 
PubChemQC represents so-far the largest quantum 
chemistry database of publicly reported molecules [38]. 
PubChemQC calculations are based on a DFT approach 
at the B3LYP/6-31G(d) level of theory and comprises 
more than 3 million molecules. The ground state geom-
etries were optimized but no frequency calculations have 
been performed. To compare the ML predictions on 
QM9 and PubChemQC datasets, a congruent subset that 
meets QM9 limitations, i.e. restricted to up to 9 heavy 
atoms of the series H, C, N, O and F has been extracted. 
Chemical species were compared using the IUPAC Inter-
national Chemical Identifier (InChI) notation [39]. The 
InChI for PubChemQC have been generated from the 
3D Cartesian coordinates using the Open Babel software 
(version 2.4.1) [40]. A comparison has been performed 

Fig. 1  Workflow of this study
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between the InChI strings of the two datasets without 
the enantiomeric sublayer. Out of 3 million molecules in 
PubChemQC database, 118,662 met QM9 limitations. 
Out of this number, 99,234 InChI were unique since 
enantiomers, tautomers, isotopes or specific artefacts in 
PubChem lead to duplicated InChIs.

Different conformations for same chemical structure 
have been observed comparing QM9 and PC9. This 
point, as well as the composition and chemical function 
diversity of the two datasets, will be discussed further in 
section of generalization ability of SchNet models (see 
"Generalization ability of SchNet neural networksmod-
els" and Chemical differences between QM9 and PC9 
sections). The prepared subset of 99,234 molecules is 
composed of two groups, the one comprising molecules 
that also belong to QM9 and the one with the mol-
ecules unique for PubChemQC. The former encompass 
18,357 compounds and the latter contains 80,877 com-
pounds. Hereafter we will only discuss the set of 99,234 
molecules, which is indicated as PC9, but not the whole 
PubChemQC data.

As opposed to QM9, where all the molecules are 
constrained to be closed-shelled neutral compounds, 
a crucial point of PC9 is the presence of species whose 
multiplicity is > 1 . That represents 5,325 molecules out 
of 99,234. Among which, 4442 are radicals ( ms = 2 ) and 
the remain 883 have a multiplicity of 3 (triplets). The pre-
diction of those compounds has been analyzed separately 
and discussed further below.

Predicted properties
Three key energetic properties have been considered 
in this article: total molecular energy E or U0 (kcal/mol), 
energy of HOMO (eV) and energy of LUMO (eV). In QM9 
dataset those values are readily available. However, the 
U0 incorporates the zero point vibrational energy (zpve), 
when the total (SCF) energies of PubChemQC do not 
include it. Therefore, when speaking of reproducibility of 
the reported QM9 modeling results ( "Reproducibility of 
QM9" section) we refer to the original U0 values, while the 
part of generalization ability of SchNet models ("Generali-
zation ability of SchNet Neural Networksmodels" section) 
implies recalculation of E from U0 in QM9 by subtraction 
of zpve, E = U0 − zpve . Thus, both QM9 and PC9 data-
sets were attributed with a property of the same type.

It is important to mention that during modeling proce-
dure, the atomization energies were used instead of total 
energies E (or U0 ), for all ML methods. The atomization 
energy is the energy that remains after subtraction of the 
energies of all constituent atoms from the total energy of 
a molecule. Prediction of atomization energies instead of 
total energies is a common practice and is done in order 

to facilitate the training and to lower the magnitude of 
the property. The values of HOMO and LUMO were left 
in its original.

Molecular representation
As stated in the introduction, several molecular repre-
sentation have been used. The most common one is the 
Coulomb Matrix (CM) [12]. CM is a square atom by 
atom matrix constructed from atomic nuclear charges 
(Z) and Cartesian coordinates of each atom (R):

The off-diagonal elements of the CM then correspond 
to Coulomb nuclear repulsion terms whereas the diago-
nal elements approximate the electronic potential ener-
gies of the free atoms. Atom indexes in CM can then be 
sorted. This representation is invariant under translations 
and orthogonal transformations of Cartesian coordi-
nates as well as under permutation of the indexing order 
of atomic numbers. Prior to modeling, CM have been 
standardized, i.e. scaled to zero mean and a standard 
deviation equal to one.

Neural Networks training has been performed with 
SchNet, whose predefined architecture implies row Car-
tesian coordinates as an input. The initial coordinates 
are then transformed by the algorithm in a set of layer-
dependent features [35].

Machine learning techniques
Kernel ridge regression (KRR)
KRR represents a non-parametric form of ridge regres-
sion (linear least squares with L2-norm regularization) 
combined with kernel trick. The goal is thus to find a lin-
ear relationship in a space induced by the corresponding 
kernel by minimizing a squared loss:

where w is the matrix of weights, x is the predicted value, 
y is the reference value. A closed solution form could be 
written as:

where K is the kernel matrix. The parameters of the 
method were set up in accordance with Faber’s work [17]. 
The modeling has been performed with the scikit-learn 
package [41]. The regularization parameter α has been 
set to 10−9 . Two types of kernels, Laplacian and RBF were 
used. Their widths have been chosen by a grid search on 
base-2 logarithmic grid (from 0.25 to 8192 for RBF kernel 
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and from 0.1 to 16,384 for Laplacian kernel) for 10% of 
training set. Prior to learning, the feature vectors were 
normalized by the Euclidean (RBF kernel) or Manhattan 
(Laplacian kernel) norms.

Elastic net (EN)
EN [42] could be represented as a combination of lasso 
regression [43] and ridge regression [44]. It is a linear 
model with the penalty being a mix of L1 and L2 terms. 
Similar to modeling with KRR, EN hyperparameters were 
tuned up in a way it has been described in the article of 
Faber [17]. The l1 ratio was left at the default value of 
0.5. A grid search has been performed to find an optimal 
regularization parameter ( α ) on a base-10 logarithmic 
scale from 10−6 to 1.0 on the whole dataset. It is by far, 
the simplest and fastest method. It can serve as a crude 
approach to highlight the added value of more complex 
approaches, like NN.

SchNet neural networks
NN is a class of ML algorithms whose structure is mod-
elled after the paradigm of biological nervous system 
functioning [45–48]. The architecture of NN consists 
of a network of neurons interconnected via weights and 
arranged in layers. The SchNet deep learning architecture 
is a variant of deep tensor neural networks (DTNN) and 
its architecture therefore includes such blocks as atom 
embeddings, interaction refinements and atom-wise 
energy contributions [24, 35]. At each layer, the atomistic 
system is represented atom-wise and refined using pair-
wise interactions with the surrounding atoms. To deal 
with unevenly spaced data such as atom positions, Sch-
Net is provided with the continuous-filter convolutional 
layer (cfconv) that models the interaction term. The 
detailed architecture of SchNet is explained in Ref. [24].

In accordance to the original publications, the follow-
ing parameters have been used while training: initial 
learning rate 10−4 , batch size 32, number of features 256, 
number of interaction blocks 6, learning rate decay 0.5. 
The size of the training set has been set to 110,000 mol-
ecules, 1000 were used for early stopping and the remain 
quantity was assigned to test set.

Results and discussion
Reproducibility of QM9
EN and KRR
Following the original work [17] and with some guid-
ance by Faber, we were able to reproduce the EN and 
KRR results on QM9 using Coulomb Matrix as molecu-
lar descriptors (see Tables 1 and 2). For U0 a MAE of 4.9 
kcal/mol has been obtained instead of 3.0 kcal/mol for 
KRR. Small changes have been made in the grid search 
to estimate the best hyperparameters. It has been done 
once in a 10-fold cross-validation on the whole dataset 
for EN and on 10% of a dataset (randomly chosen) for 
KRR. The best α for EN was always 0.001 and the best γ 
of KRR were 1.0 ( U0 ), 2.0 (HOMO) and 4.0 (LUMO). Like 
for Faber, Laplacian kernel performed best in all three 
cases. The model performance has been evaluated during 
repeated random shuffling [20 times (EN)/5 times (KRR)] 
with 90% data being training set and the remain 10% 
being test. The average statistics is referred in Table  2. 
KRR requires a strict hyperparameter adjustment. Its 
performance is more sensitive toward data selection 
and may lead to different results depending on the train-
ing subset. EN and KRR can be trained to predict E with 
almost the same precision as for U0.

SchNet NN
The reproduction of QM9 predictions with SchNet is 
made easier owing to the recently published SchNetpack 

Table 2  Mean absolute errors for total energies ( U0 and E in kcal/mol), HOMO and LUMO energies (in eV) using different 
ML methods on different training and prediction datasets

(A) corresponds to the subset of molecules that belongs to QM9 and PC9, whereas (B) indicates molecules exclusive to the dataset

Method Train Test U0 E HOMO LUMO

EN (CM) QM9 QM9 21.1 22.0 0.34 0.64

KRR (CM) QM9 QM9 4.9 5.2 0.18 0.25

SchNet QM9 QM9 0.3 1.0 0.04 0.03

EN (CM) PC9 PC9 – 38.2 0.47 0.66

KRR (CM) PC9 PC9 – 22.8 0.31 0.36

SchNet PC9 PC9 – 1.6 0.06 0.05

SchNet QM9 PC9(A) – 3.0 0.07 0.06

SchNet QM9 PC9(B) – 8.9 0.33 0.27

SchNet PC9 QM9(A) – 3.4 0.05 0.05

SchNet PC9 QM9(B) – 4.2 0.12 0.11
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toolbox [49]. According to the reported results, the accu-
racy of SchNet that could be achieved with a training 
size of 110,000 compounds on QM9 is around 0.3 kcal/
mol for U0 , 0.04 eV for HOMO energies and 0.03 eV for 
LUMO energies. The verification of this result could be 
done following the modeling procedure described in the 
source paper and thanks to indications from K.T.Schütt 
and M.Gastegger [35]. After ≈ 18 hours of calculation 
and passing from 300 to 500 epochs per property, the 
training reached MAE of 0.32 kcal/mol for U0 , 0.04 eV for 
HOMO and 0.03 eV for LUMO (see Table 2). It is worth 
noting that the performance of SchNet on QM9 using 
the total scf energies E correspond to an increased MAE 
of 1.0 kcal/mol keeping the same training parameters 
as for U0 , loosing more precision than the KRR model 
when going from U0 to E. A factor of 3 in the MAE of the 
predictions for similar properties could indicate a gen-
eralization issue. Nevertheless, we confirm here that Sch-
Netpack toolbox can easily and effectively predict within 
chemical accuracy molecular properties of QM9 dataset.

PC9 modeling results
The same three ML algorithms were considered on PC9 
dataset: EN and KRR trained on Coulomb Matrix and 
SchNet NN. The whole set of 99,234 compounds has 
been used. Grid search for best parameters led to γ 2.0, 
8.0 and 8.0 (E/HOMO/LUMO) for KRR (Laplacian ker-
nel) and α value of 0.001 (E/HOMO/LUMO) for EN.

The results of the modeling are given in Table  2. The 
numbers for EN and KRR refer to an average of 20/5 
(EN/KRR) times random shuffling with training/test 
proportion of 90%/10%. The accuracy achieved on PC9 
by all models is lower compared to the one achieved on 
QM9 data. This result could derive from higher chemi-
cal homogeneity of QM9 and a more curated workflow 
of quantum computational calculations (see "Chemical 
differences between QM9 and PC9" section). For KRR, 
the performances are quite disappointing even for the 
Molecular Orbitals energies. In Fig. 2 the learning curves 
for total SCF energies E of SchNet and KRR models with 
Coulomb matrices are reported for both datasets. When 
the training set encompasses more than 10000 com-
pounds the NN models become competitive. The perfor-
mance of SchNet on a new dataset is promising. The PC9 
dataset appears to be a bit more challenging than QM9.

Generalization ability of SchNet neural networks models
Since the QM9 and PC9 are quite comparable in size, 
we were able to test the generalizability of the SchNet 
models.

Predicting PC9 with QM9 models
The SchNet model trained on QM9 data has been used to 
predict two subsets of PC9. The first one (A) is a subset 
which is common for both QM9 and PC9 (see "Repro-
ducibility of QM9") and the second subset (B) consists 
of compounds that did not appear in QM9. However, 
the molecules in subset A are not identical. The differ-
ences in energies and in nuclear repulsion energy (NRE) 
between the corresponding compounds from QM9 and 
from PC9 are shown in Fig.  3a, b. Some compounds 
present a huge NRE difference. That is due to InChI 
comparison that could match different tautomeric or 
conformational forms. Figure 4 demonstrates the exam-
ples with �NRE >10,000 kcal/mol). Due to the slightly 
different level of theory, total energies of QM9 are also 
consistently lower compared to energies of PC9 (Fig. 3b), 
with a maximum at − 20 kcal/mol. But, a linear relation-
ship could compensate the divergence caused by differ-
ent basis sets (B3LYP/6-31G(2df,p) vs. B3LYP/6-31G(d)). 
Once the energetic values of PC9 have been predicted by 
the model, we used an a posteriori linear correction to 
compare them with the original DFT calculated energies. 
The best fit has been obtained with the Huber regression 
linear models [50]. The fitted values were then compared 
with the original values. It is worth noting here that this 
regression is essentially useful for total molecular ener-
gies since the differences in HOMO and LUMO energies 
between QM9 and PC9 are centered at 0 eV (see Fig. 3c).

Performance on E, ǫ(HOMO) and ǫ(LUMO) . The results 
for the predictions of the three properties on subsets A 
and B after linear correction are reported in Table 2. For 

Fig. 2  Mean absolute error assessed by a 10 fold cross validation with 
an increasing training set size for KRR and SchNet models. Training 
and test sets belongs to the same data set, either QM9 or PC9
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E, a MAE of 3.0 kcal/mol is found on the subset A. It is 
more than the 1.0 kcal/mol found on QM9 when trained 
on QM9. But, an increase in MAE was expected since the 
QM9-PC9 energy differences has been found to be quite 

spread (see Fig. 3b). The predictions are above the chemi-
cal accuracy but still much better than a KRR prediction 
on PC9, trained on PC9. However, the prediction of E 
on subset B gives a MAE of 8.9 kcal/mol. Figure 5 shows 
the density plot for subset B predictions. For clarity rea-
sons, we have cut the x-axis range of the graph from −50 
to +100 kcal/mol. Some 231 extreme and spread outli-
ers were omitted by this way (225 of QM9 model and 
6 of PC9 model). The blue color represents the results 
obtained with the model trained on QM9 and applied on 
subset B of PC9. The plot for total energies has a clear 
bias toward overestimated energy of certain part of data. 
An analysis of the outliers follows in the next paragraph. 
Concerning the results for HOMO and LUMO energies 
predictions, the MAE for subset A are almost the same 
as observed on the training set (see Table 2). The density 
plots for subset B correspond to spread and asymmetri-
cal curves (Fig. 5, blue), associated with MAE of 0.33 and 
0.27 eV.

Outliers analysis. To propose a rationale for the 
observed degraded performance, the species with an 
absolute prediction error over 30 kcal/mol for E and 1.5 
eV for HOMO and LUMO energies were extracted and 

Fig. 3  Histogram of distribution of the difference in a total energies E, b in Nuclear Repulsion Energies (NRE), c in HOMO (darker) and LUMO 
energies for 18,357 molecules present in both QM9 and PC9

Fig. 4  Examples of structures with large difference in Nuclear 
Repulsion Energies (NRE) calculated for QM9 and PubChemQC 
geometry

Fig. 5  Generalization ability results: error density plots for the prediction of total energies E (kcal/mol), HOMO and LUMO energies (eV) of set B. The 
blue (pink) curve represents predictions by a model trained on QM9 (PC9) on unknown molecules exclusive to PC9 (QM9)
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analyzed. Out of 80,877 compounds of subset B, 5,305 
(6.5%) present MAE over 30 kcal/mol on E and 1527 
(1.88%) present MAE over 1.5 eV on HOMO energy. 
They can be classified mainly into two main classes: (1) 
outliers with multiplicity different than one and (2) outli-
ers with specific functional groups

As it was mentioned earlier (see "PubChemQC sub-
set: PC9"), PC9 contains compounds with multiplici-
ties ranging from one to three whereas QM9 data are 
strictly closed shelled systems. Radicals and triplets 
possess indeed electronic structures that are usu-
ally more reactive. Out of 5,325 PC9 compounds with 
a multiplicity not equal to one, 2,476 were outliers. 
Among them, there were 883 molecules bearing multi-
plicity of 3, which is 100% of all the triplet compounds. 
35.5% of all monoradicals are outliers in PC9. The histo-
gram of the original and predicted total energies for the 
5,325 molecules with non single multiplicity is shown 
in Fig.  6. It can be observed that the neural network 
always overestimates the stability of such compounds, 
since not provided the information about the multiplic-
ity. For the HOMO energies, out of 1527 outliers, 1200 
were attributed to molecules with the multiplicity> 1.

The next class of structures with large prediction 
errors includes molecules with specific functional 
groups. Even with the same atom list (H, C, N, O and 
F), the chemical diversity of QM9 and PC9 are different 
(see Table  3 and "Chemical differences between QM9 
and PC9" section). Three chemical functions, deter-
mined by Checkmol software, have been constantly 
spotted among outliers [51]. These were diaryl ethers 
(0.01% of PC9 and absent in QM9), peroxydes (0.17% 

of PC9 and absent in QM9) and dyarilamines (very few 
cases in PC9 and absent in QM9). Out of 5,305 outli-
ers, 1,320 belong to one of these three classes. Finally, 
it could be noted that 568 structures of the outliers pre-
sent rare functional groups that were not detected by 
Checkmol (such as peroxyacetylnitrates, diflouroam-
ines, perfluoroallenes, nitramines, tetraenes...).

Predicting QM9 with PC9 model
In a reciprocal approach, the SchNet NN trained on 
PC9 data has been used for the prediction of QM9. 
Two subsets of QM9 have been prepared, subset A with 
the molecules common for both databases (18,357) 
and subset B (110,286) with the molecules exclusive to 
QM9. Subset A is therefore the same for QM9 and PC9, 
but their modeled values and their geometries are dif-
ferent with regard to the basis set. To compensate the 
basis set effect and to fit the predicted vs original values 
of QM9, the best correction was also found with an a 
posteriori Huber linear regression models [52].

Table  2 shows the results of the prediction for the 
two subsets. For subset A, the results obtained by 
PC9 model are similar to the subset A results with the 
QM9 model. With 3.0 compared to 3.4 kcal/mol for E 
and 0.07/0.06 compared to 0.05/0.05 for HOMO and 
LUMO energies, the two models can therefore transfer 
their training on familiar data. But the most interesting 
result is the ability of PC9 model to predict unfamiliar 
data with a minimal loss of precision (4.2 compared to 
3.4 kcal/mol for E in contrast to QM9 model with 8.9 
and 3.0 kcal/mol). The accuracy for the HOMO and 
LUMO energies is almost at the 0.1 eV goal. Figure  5 
demonstrates the generalization ability of the model 
trained on PC9 over the subset B of QM9 (in pink) 
compared with the performance of QM9 model on 
subset B of PC9 (in blue). Indeed, error density plots of 
PC9 model are much narrower than their QM9 coun-
terparts, indicating that there is not much of QM9 
that is unfamiliar to PC9. This fact could speak for bet-
ter generalization ability of PC9 models due to higher 
chemical diversity or even fewer purity or organization 
of data, which to a certain limit could make the model 
more stable toward noise and over-fitting.

Chemical differences between QM9 and PC9
Bond distances analysis
A way of looking at chemical diversity could be a pair-
wise analysis of bond length distributions over the two 
datasets. It has been done for the following pairs: C–C, 
C–H, C–N, C–O, C–F, N–N, N–H, O–N and O–H. Den-
sity distributions of those pairs is represented in Fig.  7. 
There are clearly more alkynes (CC distance around 120 

Fig. 6  Original vs predicted by QM9 SchNet model total molecular 
energies (E, kcal/mol) of PC9 molecules with multiplicity equal to two 
or three
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pm) in QM9. The distribution of C–H bonds is identical 
for both datasets and the slight shift can be assigned to 
the difference in the basis sets. An interesting observa-
tion could be found for the C–F and N–N bond distri-
butions. In both cases the density of QM9 is located to 
the left. The fact that PC9 shows a much broader range 
of interactions designates that PC9 encompasses a more 
diverse chemistry.

Functional groups analysis
Therefore, an analysis of chemical composition and 
chemical diversity of QM9 and PC9 has been carried out. 
The functional group analysis has been achieved with the 
Checkmol software, capable of recognising 200 different 

functional groups [51]. The difference in the number of 
identified functional groups between QM9 and PC9 is 
quite substantial with 97 groups spotted at least once 
in PC9 for 71 groups in QM9. Furthermore, the average 
number of functional groups per molecule is also differ-
ent with 2.0 chemical group per molecule in PC9 com-
pared to 3.1 in QM9. QM9 data therefore presents less 
diversity but also a higher concentration of chemical 
functions in only 9 “heavy” atoms at most. The functional 
groups were explicitly added during the molecular gener-
ation in QM9 to an extend that exceeds a real-life dataset.

A list of the number of molecules in QM9 and PC9 
with specific groups is given in Table  3. The complete 
table is available as an additional file. Different kinds 

Table 3  Selection of  functional groups detected by  Checkmol with  their corresponding number of  molecules in  PC9 
and QM9 datasets and MAE in generalization conditions

The selection italic CF and NN interactions, the most prominent groups in QM9, the largest MAE of the model trained on QM9 and the largest MAE of the model 
trained on PC9

Selection Functional group classes PC9 data QM9 data

Occurrences QM9 model Occurrences PC9 model

CF and NN bonds Azide 358 11.5 0 –

Azo compound 272 5.3 10 4.1

Acyl fluoride 105 6.4 0 –

Aryl fluoride 936 9.4 1562 4.1

Alkyl fluoride 4576 6.8 52 4.3

Abundant in QM9 Carbonitrile 4624 5.4 10315 4.7

Secondary alcohol 6282 6.2 10668 4.3

Trialkylamine 3301 6.4 10687 4.2

Alkyne 3906 6.1 10873 4.5

Tertiary amine 3388 6.4 11057 4.2

Aromatic compound 12728 8.2 15863 4.3

Dialkyl ether 9275 6.2 24012 4.3

Heterocyclic compound 42665 7.0 61904 4.3

QM9 model focus Hydroperoxide 717 45.4 0 –

Diaryl ether 22 39.1 0 –

Peroxide 430 32.7 0 –

Diarylamine 11 32.6 0 –

Carbamic acid halide 16 24.4 0 –

Nitrite 1 22.7 0 –

Hydroxamic acid 46 19.4 0 –

Nitroso compound 48 17.0 0 –

Hydroxylamine 805 16.2 13 3.4

Hemiacetal 819 2.8 0 –

PC9 model focus Enol ether 1977 4.4 2 16.0

Amide acetal 59 14.2 28 7.1

Carboxylci acid 4213 6.6 106 6.2

Hemiaminal 3034 6.5 207 6.0

Acyl cyanide 67 4.0 281 6.0
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of amines, alcohols, heterocycles, ether and aromatic 
compounds form the largest classes for both datasets. 
However, the table emphasizes MAE per functional 
group. 12 of the 16 functional groups with MAE over 
10 kcal/mol on PC9 data for the model trained on 
QM9 are totally absent from QM9. It is the case of 
hydroperoxide, diarylether, peroxide, diaryl amine, 
nitrite, nitroso, cyanate... Keep in mind that small sub-
sets predictions (molecules with specific uncommon 
functional groups) will be also more affected by outli-
ers. Nevertheless, the Table 3 and the Fig. 8 show that 
many unseen functional groups can also be correctly 
predicted by QM9 model like the hemiacetal. There is 

clearly some knowledge transfer. The model trained 
on PC9 shows a much homogeneous description of all 
functional groups. Apart from the 2 molecules with an 
enol ether function in QM9 (MAE > 10 kcal/mol), the 
biggest error is 7.1 kcal/mol for the amide acetal.

Scaffold analysis
Chemical diversity has also been studied by the mean of 
scaffolds analysis [53–59]. We have used Scaffold net-
work generator to generate the first layer of scaffolds for 
both datasets [56]. Those scaffolds correspond to (poly)
cyclic core. However, there are two issues for such analy-
sis on QM9 and PC9. Firstly, QM9 and PC9 are limited 

Fig. 7  Density distribution of pairwise bond lengths in QM9 and PC9
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up to nine “heavy” atoms. Many graph frameworks are 
missing compared to the ones found in organic chemis-
try by Lipkus et al. or in the PubChem analysis by Velko-
borsky et al. Secondly, the ratio of acyclic compounds is 
radically different in the two datasets. In QM9, 10.5% of 
the molecules are acyclic and 24844 different scaffolds 
are found on the rest . For PC9, 40% of the molecules are 
acyclic and 11883 different scaffolds are found on the 
rest. QM9 does present much more scaffolds than PC9 
with more complex polycyclic architectures. But, as it 

has been observed with the bond length analysis, QM9 
lacks chemical diversity in the acyclic part. To resume 
the scaffold analysis, their cumulative frequency plots are 
represented in Fig.  9. The solid lines correspond to the 
compounds with a cyclic core. Both curves are straight 
lines for the last two thirds of the scaffolds. That means 
that both datasets are mainly composed of singletons 
(unique graph frameworks). In fact, for both datasets the 
most abundant core scaffold is the three member ring 
C1CC1 (4.8% in QM9 and 3.7% in PC9). In Fig. 9, we have 
also tried to put in perspective the missing acyclic chemi-
cal diversity. The dashed and dotted lines represent the 
two limit cases where all the acyclic compounds are con-
sidered in the same scaffold (upper limit) and where all 
the acyclic compounds are considered in unique scaffolds 
(lower limit). It appears that a scaffold analysis seems to 
be quite unreliable with a high ratio of acyclic molecules 
as it is the case for PC9.

Self organizing maps analysis
We have used Self Organizing Maps (SOM) to visually 
represent a chemical space divergence between QM9 and 
PC9. R ’kohonen’ package has been used to produce a 2D 
discrete map with the Coulomb matrices as input [60]. 
Grids were set to 50x50 for QM9 and 48x48 for PC9. 
Default parameters have been used. In Fig.  10, the left 
maps represent the obtained organization with red dots 
corresponding to higher data concentration and grey 
points indicating empty regions. Taking into account 
the scale of nodes occurrence, one can notice that PC9 
SOM has more overpopulated regions compared to QM9 
SOM. Data distribution of the latter is more uniform, 
which speaks for higher consistency in chemical classes 
ratio in QM9. The right maps of Fig. 10 represent the pro-
jection of another data. In the upper right, the projected 
PC9 data is evenly spread onto the QM9 map, whereas 
in the lower right, the QM9 data leaves many nodes of 
PC9 map empty. By this way we can conclude that QM9 
is lacking some chemistry included in PC9. However, that 
does not prove that PC9 possesses the whole chemical 
diversity associated with H, C, N, O and F.

Furthermore, we propose here a formula to quantify 
the affinity of a projected dataset B onto a SOM built on 
the other dataset A. It accounts for two terms. The first 
term captures the similarity of molecular density distri-
bution over the SOM, expressed as e−|pA,i−pB,i| , where pA,i 
(resp. pB,i ) is the proportion of molecules in node i for 
the set A (resp. B). The second term captures the degree 
of similarity in distances between the two sets in a node. 
This term as well reflects a chemical resemblance of mol-
ecules in set A and B since molecules of same chemical 
class/cluster would have analogous distances. This last 
term is expressed as 

e
−(

∣

∣

∣
dA,i−dB,i

∣

∣

∣
/(dmaxA,i−dminA,i)) , where 

Fig. 8  Generalization ability results: Mean absolute error for each 
functional groups subsets vs the number of molecules with the 
functional group on the test set. The blue dots (red triangles) 
represent predictions by a model trained on QM9 (PC9) on the other 
dataset PC9 (QM9)

Fig. 9  Cumulative scaffold frequency plots of Level 1 scaffolds of the 
QM9 and PC9 datasets
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dA,i (resp. dB,i ) is the average distance of molecules in a 
node i for the set A (resp. B) and dmaxA,i (resp. dminA,i ) 
is a maximal (resp. minimal) distance of molecules in the 
node i for the set A. (See Additional files: 1, 2 and 3 for 
more details).

Sa =

Nnodes
∑

i=1

pB,i × e
−

(

|pA,i−pB,i|+
|dA,i−dB,i|

dmaxA,i−dminA,i

)

Fig. 10  Self Organizing Maps based on the Coulomb matrices of the QM9 and PC9 datasets (grey = empty dots, red = most crowded dots) and 
the corresponding projections of the other dataset

Table 4  Affinity score of  PC9 and  QM9 data projected 
onto the other dataset SOM

The affinity score, the density term and the distance term are defined in "Self 
organizing maps analysis" section

Sa Density Distance

PC9 data on QM9 SOM 0.8456 0.9973 0.8480

QM9 data on PC9 SOM 0.9370 0.9989 0.9381
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This score ranges from 0 to 1, where 0 means that the 
affinity of the projected data B to the SOM built on data 
A is very low. According to the calculated affinity scores 
reported in the Table 4, the density term is very similar 
for both projections meaning that both SOMs are pro-
portionally distributed. However, the distance term of 
QM9 SOM is lower compared to PC9 SOM. Fewer diver-
sity of functional groups of QM9 leads to a less univer-
sal SOM, upon which the PC9 molecules of uncommon 
classes would be projected mixed with the known classes. 
That will lead to lower chemical purity per a node and 
decrease the distance term.

Conclusion
Machine Learning models are able to predict molecular 
properties such as total molecular energies and frontier 
molecular orbitals energies in a reproducible way and 
within chemical accuracy. But, those ML models are sen-
sitive to setup of hyperparameters. We have managed 
to tune those correctly in order to reproduce the litera-
ture results for EN, KRR (with Coulomb matrices) and 
SchNet neural networks, albeit with the help from the 
authors of the models. Thus, reproduction of such results 
is time consuming.

We have shown here that an ML model able to be gen-
eralized with enough accuracy on unknown molecules 
requires to be trained on a wide chemical diversity. The 
golden standard dataset QM9 is limited to H, C, N, O and 
F but still lacks chemical functional groups associated 
with this list of atoms. A new dataset, PC9, is presented 
here. It has been extracted from the PubChemQC data, 
and mimic the QM9 limitations (same atom types and 
size limit). Comparable in size, we have found that only 
18% of PC9 is common with QM9. More importantly, we 
managed to study the generalization ability of the built 
SchNet models for each dataset by means of prediction 
of molecules from the other dataset, despite slightly dif-
ferent levels of quantum theory. We found that models 
trained on PC9 demonstrate better generalization ability 
than the models trained on QM9. It is related both to the 
presence of radicals, triplets and more functional groups.

This work highlights the crucial problem of chemical 
diversity in standard datasets. Checking every functional 
groups in every molecules allowed for a list of under rep-
resented functions in QM9. We found that such under 
representation in the training data is indeed a major 
cause of outliers in predictions. Going through all bond-
ing distances pairs in the datasets confirmed a tangible 
chemical divergence between QM9 and PC9, especially 
for C–F, N–N and N–O. A scaffold analysis showed 
a larger collections of graph frameworks in QM9 and 
high ratio of acyclic compounds in PC9. Finally, a visual 

chemical space analysis was preformed with Self Organ-
ising Map, revealing the presence of zones in PC9 chemi-
cal space not occupied by QM9 data, contrary to the 
absence of those in case of the projection of QM9 onto 
PC9 map. To quantify the affinity of a projected data for 
a SOM, we have proposed a novel affinity index. Its value 
for PC9 SOM is higher than for QM9 SOM and driven 
mainly by the difference in distances between projected 
and initial data. SOM is one of the visualization tool but 
a real quantification method of the chemical diversity is 
still an open problem and a key point for an automatic 
generation of a dataset that maximize chemical diversity.
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