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Abstract 

Drug repurposing offers a promising alternative to dramatically shorten the process of traditional de novo develop‑
ment of a drug. These efforts leverage the fact that a single molecule can act on multiple targets and could be ben‑
eficial to indications where the additional targets are relevant. Hence, extensive research efforts have been directed 
toward developing drug based computational approaches. However, many drug based approaches are known to 
incur low successful rates, due to incomplete modeling of drug-target interactions. There are also many technical 
limitations to transform theoretical computational models into practical use. Drug based approaches may, thus, still 
face challenges for drug repurposing task. Upon this challenge, we developed a consensus inverse docking (CID) 
workflow, which has a ~ 10% enhancement in success rate compared with current best method. Besides, an easily 
accessible web server named auto in silico consensus inverse docking (ACID) was designed based on this workflow 
(http://chemy​ang.ccnu.edu.cn/ccb/serve​r/ACID).
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Introduction
In recent years, the productivity challenge facing the 
pharmaceutical industry has become particularly diffi‑
cult to overcome [1]. By many estimates, the number of 
new molecular entity approved to market per billion US 
dollars spent on (research and development) R&D has 
halved roughly every one decade, falling around 80‑fold 
in inflation-adjusted terms [2]. To increase drug-dis‑
covery productivity, more and more attention has been 
paid to exploring the relationship between drug and 
disease, which can advance our knowledge of molecular 
mechanism of disease indication and lead to new strat‑
egies to treat productivity challenge [3, 4]. Nevertheless, 

traditional strategies which typically oriented on a search 
for a novel therapeutic compound combined with dis‑
covery of a new therapeutic target are time consuming, 
expensive and risky because of the necessity for multiple 
experimental and clinical validation [5].

Drug repurposing/repositioning/rescue, the application 
of an existing drug to a new disease indication, is a prom‑
ising approach to address the ‘productivity gap’, especially 
the demand of rapid clinical impact at a lower cost by the 
‘starting-from-scratch’ drug development [6]. Compared 
with brand new drug discovery for a given disease indica‑
tion, this method has several advantages. First, due to the 
existing drug has already been proved to be sufficiently 
safe in humans, the safety risk of clinical failure is much 
lower at least from a safety point of view. Second, due to 
the safety assessment and most of formulation task have 
already been completed, the development cycle should be 
largely reduced. Third, the investment is always less [7]. 
These advantages have made the development of repur‑
posed drugs into a task of low risk investments with 
faster and higher returns. Hence, Drug repurposing is 
drowning widespread attention from the pharmaceutical 
industry, government agencies and academic institutes, 
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such as ‘Discovering New Therapeutic Uses for Existing 
Molecules Plan’ by NIH (USA). However, drug repurpos‑
ing is vastly more complicated than typically imagined 
and to date there has not been a systematic approach to 
identify repurposing opportunities.

In order to reduce the number of “wet” experiments and 
thereby reduce cost, extensive research efforts have been 
directed toward developing computational (virtual or in 
silico) approaches, which have been proved extremely valu‑
able in identifying potential opportunities in these fields. Of 
the several techniques for generating computational repo‑
sitioning hypotheses, inverse/reverse docking, involved 
docking an existing drug in the potential binding cavities of 
a set of clinically relevant disease targets, is proving to be a 
powerful tool for drug repositioning [8, 9]. Inverse docking 
is ‘one ligand-many targets’ scenario, representing a struc‑
ture-based computational strategy. Different with the con‑
ventional drug virtual screening, inverse virtual screening 
was performed for a small-molecule against a large collec‑
tion of binding-sites of clinically relevant macromolecular 
targets. The top-ranking targets based on the binding com‑
plementarity (shape and electrostatics) with the drug are 
likely to result in potential drug repositioning. Hence, effi‑
cient tools were developed for inverse docking, for example, 
INVDOCK [10], TarFisDock [11], PDTD [12], and idTar‑
get [13]. Moreover, successful drug repurposing examples 
along with these tools are steadily grows, such as sildenafil 
and thalidomide [14]. Since the basic philosophy behind 
reverse docking is the same with docking and the critical 
parameters of the docking programs were always optimized 
based on some of the specific ligand and target systems, the 
performance in docking pose search itself and scoring of 
the docked poses may, thus, still face challenges for reverse 
docking methods. Up to date, many studies have proved 
that the consensus strategy that combining several types of 
docking algorithm can achieve higher success rates in pose 
prediction than single docking algorithm [15]. Hence, devel‑
opment of consensus inverse docking algorithms to address 
the inherent difficulties involved in the molecular docking, 
is extremely valuable in identifying potential opportunities 
of drug repurposing [9]. In addition, due to that almost all 
current docking tools are designed for ‘one ligand-many 
targets’ scenario, the usability of tools for inverse virtual 
screening task is occasionally restricted by code-writing 
dependencies and tedious operation steps, which bring 
challenges for non-expert users. Therefore, there is still a 
strong demand for a new free server of inverse docking.

Hence, we developed a computational protocol by 
combining the results of several dissimilar types of free 
docking method into a consensus inverse docking (CID) 
scheme. Here, we selected AutoDock Vina, LEDOCK, 
PLANTS, and PSOVina for binding pose search as they 
represent significantly different docking methodologies 

(i.e., different conformational search algorithm, different 
global and local optimizers, and different scoring func‑
tions) and have employed different collections of crystal 
complexes and binding data to calibrate their optimiza‑
tion algorithms. In addition, we used Molecular Mechan‑
ics/Poisson–Boltzmann Surface Area (MM/PBSA) and 
X-SCORE for final binding energy calculation as they 
are more rigorous than the intrinsic scoring function in 
principle. The intention was to investigate whether inte‑
gration of these to develop a consensus strategy to the 
inverse docking problem would result in improvements 
in posing accuracy and prediction of binding modes. 
Besides, in order to significantly reduce user time for data 
gathering and multi-step analysis for drug repurposing 
task, an comprehensive web platform named Auto in sil‑
ico consensus inverse docking (ACID) (http://chemy​ang.
ccnu.edu.cn/ccb/serve​r/ACID) with a user-friendly inter‑
face was also designed for an easy evaluation and appli‑
cation of this strategy, which consists of the following 
three tools: (i) an automated consensus inverse docking 
workflow program, (ii) a compound database containing 
2086 approved drugs with original therapeutic informa‑
tion, (iii) a known target database containing 831 protein 
structures from PDB covering 30 therapeutic areas.

Methods
Selection of test set
The PDB-bind database is a large collection of protein−
ligand crystal complexes with associated experimentally 
determined binding data [16]. A total of 16,151 protein–
ligand entries are contained in the PDB-bind database. 
In all protein–ligand entries, there are 4463 entries with 
good quality structural and binding data. The experimen‑
tal resolution of any chosen crystal structure should be 
lower than 3.0 Å, because adopting structures with poor 
resolution may generate false predicted conformations 
[17]. No NMR-solved structures were selected in our 
benchmark dataset. Any complexes with ligands contain‑
ing off-standard atom types (like Si or Be) were rejected. 
Finally, we only chose complexes with a single drug like 
molecule bound in the active site. Hence, a subset con‑
tains 195 complex structures of these have been selected 
as the “core set”, aiming to provide high-quality com‑
plexes that represents a broad cross-section of the data‑
base. This is of appropriate size for evaluation studies of 
docking and scoring performance [18].

Preparation of structures for inverse docking
For each complex, the original conformation of ligand 
was extracted from the PDB file; similarly, the 3D struc‑
ture of corresponding protein was generated. As for the 
proteins, water molecules were removed and the program 
PDB2PQR 1.6 21 was used to assign position-optimized 
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hydrogen atoms under the protonation state simulated to 
pH = 7.0. The AMBER ff14SB [19] force field were adopted 
for charge assignment. The MOL2 format representation 
of each receptor was prepared by SPORES tool in Plants 
software package. The Autodock Tools 1.5.4 utility pre‑
pare_receptor4.py was used to assign Gasteiger charges 
to atoms. The Autodock Tools utility prepare_ligand4.py 
was used to assign Gasteiger charges and rotatable bonds. 
The input grid files were prepared by dms and sphgen_cpp 
tools of DOCK software package.

Selection of docking softwares
Seven docking softwares were carefully evaluated to build 
consensus strategy, including AUTODOCK [20], VINA 
[21], DOCK [22], PLANTS [23], PSOVINA [24], LEDOCK 
(http://www.lepha​r.com) and GOLD [25]. This selection 
covers a wide variety of conformation search algorithm and 
scoring function (Additional file  1: Table  S1), thus repre‑
senting an abundant source for optimizing the consensus 
protocol. The docking calculation was performed on the 
prepared dataset of 195 receptors and ligands by using 
these seven docking softwares based on default param‑
eters. The box within the surrounding 12.5 Å of the bound 
ligand was defined as active site. 100 conformations for 
each ligand versus its corresponding active site were pro‑
duced by each software. The one with highest score were 
selected as the final pose.

Binding free energy calculation
Before binding free energy calculation, the Sander module 
in Amber16 [26] program was used to perform the three-
step optimization of the ligand-receptor complex. Firstly, 
only waters, ions and hydrogens were allowed to move. 
Secondly, the backbone atoms of the protein were fixed 
while others were allowed to move. Thirdly, all the atoms 
of the system were free to move. In the three optimization 
process, 2000 steps steepest descent method followed by 
2000 steps conjugated gradient method were used for each 
ligand-receptor binding system. Finally, the binding free 
enegy (ΔGbind) is calculated by using the MM/PBSA [27, 
28] and X-score methods [29, 30].

As for the X-score method, it is assumed that the over‑
all binding free energy in a protein-ligand binding process 
can be divided into several terms (shown in Eq.  1) [31]. 
Here, ΔGvdw represents the van der Waals interaction 
between the receptor and the ligand; ΔGH-bond represents 
the hydrogen bonding between the receptor and the ligand; 
ΔGdeformation represents the deformation effect; ΔGhydrophobic 
represents the hydrophobic effect; ΔG0 represents a regres‑
sion constant. ΔGbind value between the receptor and 
ligand could be calculated simply by the X-score software 
package.

In the MM/PBSA method [32], the free energy of 
the receptor/protein-inhibitor binding, ∆Gbind, is 
obtained from the difference between the free energies 
of the receptor/protein-ligand complex (Gcpx) and the 
unbound receptor/protein (Grec) and ligand (Glig). The 
binding free energy (ΔGbind) was evaluated as a sum 
of the changes in the binding energy (ΔEbind), solva‑
tion entropy (−TΔSsol), and conformational entropy 
(−TΔSconf) (shown in Eq.  2) [33]. Where ∆Ebind is 
interaction energies between a ligand and a protein, 
which were computed using the Sander modules of the 
Amber16 program. The entropy contribution to the 
binding free energy (−T∆S) was obtained by using a 
local program developed in our own laboratory [33].

Server implementation
As shown in Additional file  1: Figure S1, ACID web 
server mainly consists of three parts: Model (M), View 
(V) and Controller(C). Model is an object, which can 
provide a series of convenient APIs to access data‑
base. View represents the web service available for 
users. Controller is a Perl script program to control 
the whole consensus inverse docking protocol. A dedi‑
cated Linux machine in the high-performance com‑
puter cluster is used to run ACID web server. PHP 
(version 5.6), Apache (version 2.0.51), HTML5 and 
Javascript are used in the web application to provide 
online web service. The web server was established 
in the ‘Linux + Apache + MySQL + PHP + Javascript’ 
framework. The web interface is written in JavaScript 
using the React.js (input page, output page, and dataset 
visualization) and Ember.js (results and analysis pages) 
frameworks. The server side is written as a Python Cor‑
nice Web Framework with a GO component for rapid 
searching. A Torque management system is used to 
queue submitted jobs. The database which stores cor‑
responding messages and results of each task is imple‑
mented by using MySQL (version 5.1.73). Results are 
stored for one month before deletion. The JSmol inter‑
active molecular viewer plugin (http://www.jmol.org/) 
is applied in structure visualization. Firefox or Chrome 
explorer is recommended for browsing the server. Com‑
puter Screen with resolution higher than 1440 × 900 is 
recommended for displaying the web pages.

(1)

�Gbind = �Gvdw +�GH−bond +�Gdeformation

+�Ghydrophobic +�G0

(2)�Gbind = �Ebind−T�Ssol−T�Sconf

http://www.lephar.com
http://www.jmol.org/
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Results and discussion
Consensus inverse docking strategy
Consensus strategy may have relatively higher pose pre‑
diction performance than single docking software [34]. 
Hence, to select suitable docking methods to construct 
consensus inverse docking protocol, conformation pre‑
diction performance of these softwares was carefully 
evaluated. The final pose of each software was selected 
according to docking score. The RMSD value between 
each pose and its original conformation in complex 
crystal were calculated. If the RMSD < 2.0  Å, the cor‑
responding pose prediction was success. The testing 
results are shown in Additional file 1: Figure S2. In our 
benchmark, GOLD software with GoldScore showed 
a slightly higher accuracy 66%. Taking the commercial 
copyright restriction into account, four academically 
free softwares, including VINA (63%), PLANTS (62%), 
PSOVINA (64%), and LEDOCK (64%) were selected to 
construct the consensus inverse docking method.

The consensus strategy can simulate a real-life voting 
process, because a wide range of voting processes can 
effectively avoid mistakes in decisions. Hence, a well-
designed conformational cluster-vote strategy was opti‑
mized by using these four softwares (shown in Fig. 1). The 

detailed process of CID is like the following: First, initial 
3D conformations of the given active molecule was gen‑
erated and optimized by using MMFF94 force field [35]. 
Secondly, the optimized conformation was docked into 
the active site of each protein and four subsets of dock‑
ing conformations were produced, which contain the 
poses independently predicted by a certain docking pro‑
gram. Third, the conformational clustering is performed 
in each conformational group. We calculate the RMSD 
value between each pose and create a similarity matrix in 
a conformational group. The conformations with RMSD 
value lower than 2.0  Å can be considered as the same 
conformational cluster. The vote value of each conforma‑
tional cluster is equal to the pose number in this cluster. 
The conformation with best score can be used as a repre‑
sentative of this conformational cluster. Finally, the num‑
ber of conformational cluster of each individual docking 
method could be obtained.

A set of representative conformations from each dock‑
ing algorithm were selected to efficiently inspect different 
guided search algorithms for correct conformation of a 
protein–ligand complex. The representative conforma‑
tion of each conformational cluster from the four dock‑
ing methods was used to make up a new conformational 

Fig. 1  Workflow of consensus inverse docking protocol. The arrows denote the computational process
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ensemble, and then the same clustering method is per‑
formed to select the strongly binding conformations. 
The number of conformation is the number of votes. For 
example, if a conformation cluster from LEDOCK was 
also predicted by PSOVina, Vina, and PLANTS, that has 
the RMSD value lower than the threshold value of 2.0 Å, 
such a conformation cluster is qualified as 4 votes. The 
higher the vote number, the higher the support rate of 
the conformational cluster. In the case of vote dataset, 
the highest quality predicted conformation cluster has 4 
votes. However, if there are two or more top clusters have 
the same votes, the pose number obtained by each dock‑
ing method will be taken into account to judge. Finally, 
the highest vote conformational cluster was used to per‑
form binding affinity calculation with X-score and MM/
PBSA methods [29, 30].

Performance and comparison with existing tools
A collection of target structures with the information of 
approved therapeutic drugs and potential ligand bind‑
ing cavities is the prerequisite of drug repurposing. Since 
this database is used to search the probable binding pro‑
teins for existing drugs by using inverse docking, it only 
contains the proteins with 3D structures. The target pro‑
teins were selected from several online databases such as 
DrugBank [36], Uniprot [37], and PDB [38]. In order to 
integrate with consensus inverse docking protocol, drug 
target structure database should be constructed to store 
each protein in both PDB format and mol2 format with 
basic information, including docking parameters and 
active site information. Finally, we collected a database 
of experimentally confirmed 831 drug targets and 2086 
drug compounds. To evaluate the performance of CID 
protocol, the screening was performed on the 831 experi‑
mentally confirmed drug targets and 51 out of the 2086 
collected commercial drugs were selected to compose a 
test set according to the two criterias. (1) The cocrystal 
structures of the drug and its targets should be available. 
(2) The drugs in the test set should have a wide represen‑
tation of the whole commercial drug dataset. The ligand 
flexibility, which can be assessed by the number of rotat‑
able bond, can have a major impact on the performance 
of docking method. According to number of rotatable 
bonds, the distribution of whole commercial drug data‑
set and 51 sampled drugs were quite similar (shown in 
Additional file 1: Figure S3), which demonstrated that our 
testing samples have a wide representation.

To analyze of the performance of the prediction, we 
performed the receiver operating curve (ROC) analysis 
[39], which is a graphical plot to illustrate the diagnostic 
ability of a binary classifier system. According to its dis‑
crimination threshold, the area under the ROC (AUC) 
values can be used to evaluate the ability to distinguish 

between target and non-target. The known targets of 
each drug were considered as positive samples, the other 
proteins in our screening dataset were considered as 
negative set. Although it does not eliminate the possi‑
bility that some of them may interact with these drugs, 
the number of this kinds of protein is less. In our per‑
formance test, ROC analysis was used to compare the 
performance of the prediction between MM/PBSA and 
Xscore. The AUC was computed based on the follow‑
ing: If the true targets are ranked in the top 10%, it was 
considered as true positive. If the true targets are ranked 
out side of the top 10%, it was considered as false nega‑
tive. If the non-targets are ranked in the top 10%, it was 
considered as false positive. If the non-targets are ranked 
out side of the top 10%, it was considered as true nega‑
tive. Figure 2 shows the ROC curves and the AUC, which 
is used to assess the discriminative performance of MM/
PBSA (AUC = 0.842) and XScore (AUC = 0.713). It 
shows that MM/PBSA outperforms XScore in our per‑
formance test, which could be due to the nature of the 
general applicability and the universal physical scale of 
the energy calculation methods [40]. In addition, we also 
retain a higher false positive rate for MM/PBSA (21.4%) 
and Xscore (40.9%). It may probably due to that the num‑
ber of negative sample is much larger, hence even a low 
error rate of negative samples may cause many false posi‑
tive predictions.

The binding free energies calculated by MM/PBSA 
method were further analyzed to examine the bind‑
ing of a variety of proteins to drug (listed in Additional 
file  1: Table  S2). The “TRUE” value under “2%, 5%, and 

Fig. 2  The specificity and sensitivity of ACID performance on 
distinguishing target and non-target of drugs based on MM/PBSA 
and X-Score
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10%” column means that the known targets of the test‑
ing drug are identified in the top 2%, 5%, and 10% of the 
corresponding results. While “FALSE” means the known 
targets are identified out of the top 10%. As shown in 
Additional file  1: Table  S3, 35 assessed drugs showed 
significant enrichment of their known targets in the top 
10%. In addition, 18 assessed drugs were identified in the 
top 2%. Therefore, the top 2%, top 5% and top 10% predic‑
tion success rate were 35.29%, 52.94% and 68.63% respec‑
tively. Taking the tricyclic antidepressants Amitriptyline 
as an example, 9 known targets out of 11 extracted from 
literatures and other databases was identified in top 10%. 
5J03 appeared among top 11% ranked proteins. 4PMP is 
a false negative as it did not appear among the 100 best 
ranked structures.

In order to evaluate if there is an improvement, the con‑
formation prediction performance of CID protocol was 
compared with individual docking method. According 

to the criterion of top 10%, CID protocol showed signifi‑
cant higher pose prediction performance (74.4%), which 
is around 10% improvement in comparison with the best 
result obtained from LEDOCK (64%). The prediction 
performance of other individual docking method is 64% 
(PSOVina), 63% (Vina), 42% (PLANTS), which are statis‑
tically analyzed according to the successfully predicted 
drugs of 30 in LEDOCK, 30 in PSOVina、29 in Vina, 20 
in PLANTS. In addition, it is important to evaluate that 
if the docking accuracy can be improved on ligands with 
more rotatable bonds. The novel CID protocol showed a 
higher successful rate in a wider range of rotatable bonds 
compared with any individual docking method. The dis‑
tribution of the docking results according to the number 
of rotatable bonds are shown in Fig. 3. Therefore, it was 
proved that CID protocol may have relatively higher pre‑
diction performance than these single docking methods.

Fig. 3  Pose prediction performance of consensus inverse docking and individual methods
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Meanwhile, we also compared the prediction perfor‑
mance of ACID with other drug repurposing prediction 
tools. Due to the different requirement in drug repurpos‑
ing study, there was not a uniform standard or a same 
dataset to evaluate drug repurposing prediction perfor‑
mance. Hence, we use several criterion like AUC and 
TOP as indicators to evaluate the predictive performance 
of these studies. Compared with other drug repurpos‑
ing prediction tools, the AUC indicator of ACID is 0.84, 
which is a little lower than idTarget. But the sample set 
of ACID is 51 drugs and 91 known targets, which much 
larger than idTarget and TarFisDock. In addition, ACID 
can find 62 known targets in Top 2%, 76 known targets in 
Top 5%, and 91 known targets in Top 10%, which is bet‑
ter than TarFisDock. Compared with similarity compari‑
son based approaches, the prediction accuracy of ACID 
are still dominant. However, due to the nature of struc‑
tural comparison between small molecules, the similar‑
ity comparison based approaches may offer advantages 
such as faster computations and a larger tested sam‑
ple number. While, docking based approaches includes 
three dimentional structures, structural optimization, 
conformational search, and binding energy calculation, 
which would obviously increase the computational cost. 
Thus the test sample set is much smaller than similarity 

approach. However, they can potentially identify novel 
targets for the drug which may be relevant for its mecha‑
nism of action or side effect profile. Based on the above 
analysis, we can infer that ACID keeps better or compar‑
ative predictive ability compared with similar tools. The 
detailed methods, sample sets, and accuracy of compari‑
son were summarized in Table 1 [10, 11, 13, 41–44].

Server usage and case study
In order to make online consensus inverse docking avail‑
able, we build a public web server ACID. The bench-
scientists can take advantage of the consensus inverse 
docking method. Data collection, integration, web inter‑
face, and applications of ACID were shown in Fig. 4. One 
can search a commercial drug automatically by entering 
keywords in the keyword search box, such as drug name, 
CAS no or InChI key. As shown in Fig. 5, the drug repur‑
posing tasks can be submitted either by uploading or 
drawing molecule in the JSME plugin. Then, each ligand 
was converted into the Simplified Molecular Input Line 
Entry Specification (SMILES) representation by OpenBa‑
bel [45] tools (http://openb​abel.sourc​eforg​e.net/). The 3D 
input of each ligand was produced from its SMILES using 
Corina (http://www.mol-net.de) [46]. In addition, the 
user need to customize target list from target database. 

Table 1  Several drug repurposing tools compared with ACID

a  The sample set is number of positive/negative interactions for the similarity comparison based approaches, and is number of drugs/known targets/decoys for 
docking algorithm based approaches
b  The AUC (Area Under Curve) is used to represent the prediction performance in the references cited, the closer the AUC value is to 1, the better the prediction 
performance is
c  The TOP is the percentage of the top 2%/5%/10% candidates identified by the tools (except INVDOCK) to represent the prediction performance in the references 
cited, the higher the value of the TOP, the better the performance
d  For HitPick, a sensitivity of 60.94%, a specificity of 99.99% and a precision of 92.11% is indicated in the references cited, normally, we can infer that the AUC of this 
tool is smaller than 0.61
e  For INVDOCK, the TOP is the percentage of candidates identified by the tool, but the top percentage isn’t indicated in the references cited, the maximum value 50 is 
indicated

Name Method Sample seta Prediction performance Date of last update Refs.

AUC​b TOP(2%/5%/10%)c

Similarity comparison based approaches

 ChemMapper 3D similarity approach 216/7069 0.7 – Dec 2016 [25]

 ChemProt 3.0 2D similarity approach 248/1700 0.827 – Jan 2015 [26]

 HitPick 1NN similarity search 
approach

3430/3116926 0.61d – May 2013 [27]

 SwissTarget-prediction Combination of 2D and 3D 
similarity approach

346/1730 0.87 – Apr 2014 [28]

Docking algorithm based approaches

 idTarget Divide and conquer based 
docking approach

1/3/1161, 1/4/1161 0.89, 0.91 – Aug 2015 [13]

 INVDOCK Inverse docking approach 2/23/2700 – 50%e May 2001 [10]

 TarFisDock Reverse docking approach 1/10/37, ··· 1/12/371 – 33%/33%/58%, 
30%/20%/50%

Aug 2014 [11]

 ACID Consensus inverse docking 
approach

51/133/831 0.84 47%/57%/68% Dec 2018

http://openbabel.sourceforge.net/
http://www.mol-net.de
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Fig. 4  Schematic diagram describing data collection, integration, web interface, and applications of ACID web server

Fig. 5  A screenshot montage of some usages of ACID. The screenshot of browse, submit, and jobs modules of ACID, including basic target-drug 
information, target classification, job submitting, and task management
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An ID number is generated for the submitted job. The 
user can use the ID to check the status of the job on this 
web server. The binding models (in PDB format) of the 
molecule bound with the candidate targets can be down‑
loaded through the “Download” hyperlink or browsed 
after clicking the “Show” hyperlink.

To evaluate the usage of the ACID web server, two 
examples are presented here. First, we show a test case 
using Citalopram as the query structure to find its poten‑
tial target proteins via ACID server. Table  S3 gives the 
results of predicted binding affinities. The protein tar‑
get of Citalopram, namely sodium-dependent serotonin 
transporter (Rank 1, top 2%) as validated in the scien‑
tific report [47] are identified by ACID. Interestingly, the 
binding pose of Citalopram against sodium-dependent 
serotonin transporter with the rmsd of 0.98 Å compared 
to the crystal pose, indicating the reliability of this server. 
Another example shows that not only the intended tar‑
gets could be identified by ACID, but also other proteins, 
leading to ‘off-target’ effects, which may have pharmaco‑
logical consequences for drug repurposing. Amitriptyline 
is a classic medicine with multiple targets. The primary 
use is to treat a number of mental illnesses. It is particu‑
larly noteworthy that a very novel Amitriptyline repur‑
posing is for treatment of triple-negative breast cancer 
by targeting on Poly (ADP-ribose) polymerase-1 (PARP1) 
[48], which is also predicted in the top 10% (rank 59) 
by ACID server. In addition, other uses include preven‑
tion of migraines, treatment of neuropathic pain such as 
fibromyalgia and postherpetic neuralgia.

Conclusion
At the end of block-buster era for drug discovery, drug 
repurposing is a promising approach to address the ‘pro‑
ductivity gap’ that the global pharmaceutical giants are 
currently facing, which will improve the drug-discovery 
productivity. Inverse docking is proving to be a powerful 
tool for drug repurposing, which involves docking a drug 
in the potential binding cavities of a set of clinically rele‑
vant macromolecular targets. The critical issues related to 
inverse docking part are the prediction of correct binding 
pose and the estimation of some measure of the binding 
affinity. We have evaluated of several docking methods for 
inverse docking applications since the effectiveness of these 
methods in multiple target identification is unclear. A con‑
sensus inverse docking protocol was developed, which has 
a ~ 10% enhancement in success rate compared with the 
best single docking algorithm. Finally, an comprehensive 
web platform with a user-friendly interface was designed 
based on this protocol for drug repurposing to significantly 
reduce user time for data gathering and multi-step analysis 
without human intervention, which consists of the follow‑
ing three tools: (i) an automated consensus inverse docking 

workflow program, (ii) a compound database containing 
2086 approved drugs with original therapeutic informa‑
tion, (iii) a known target database containing 831 protein 
structures from PDB covering 30 therapeutic areas. Differ‑
entiated with other tools, ACID outperforms other stan‑
dalone algorithm in a better accuracy and more efficient 
way in summary.
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