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Abstract 

The chemfp project has had four main goals: (1) promote the FPS format as a text-based exchange format for dense 
binary cheminformatics fingerprints, (2) develop a high-performance implementation of the BitBound algorithm 
that could be used as an effective baseline to benchmark new similarity search implementations, (3) experiment 
with funding a pure open source software project through commercial sales, and (4) publish the results and lessons 
learned as a guide for future implementors. The FPS format has had only minor success, though it did influence devel-
opment of the FPB binary format, which is faster to load but more complex. Both are summarized. The chemfp bench-
mark and the no-cost/open source version of chemfp are proposed as a reference baseline to evaluate the effective-
ness of other similarity search tools. They are used to evaluate the faster commercial version of chemfp, which can test 
130 million 1024-bit fingerprint Tanimotos per second on a single core of a standard x86-64 server machine. When 
combined with the BitBound algorithm, a k = 1000 nearest-neighbor search of the 1.8 million 2048-bit Morgan finger-
prints of ChEMBL 24 averages 27 ms/query. The same search of 970 million PubChem fingerprints averages 220 ms/
query, making chemfp one of the fastest CPU-based similarity search implementations. Modern CPUs are fast enough 
that memory bandwidth and latency are now important factors. Single-threaded search uses most of the available 
memory bandwidth. Sorting the fingerprints by popcount improves memory coherency, which when combined with 
4 OpenMP threads makes it possible to construct an N × N similarity matrix for 1 million fingerprints in about 30 min. 
These observations may affect the interpretation of previous publications which assumed that search was strongly 
CPU bound. The chemfp project funding came from selling a purely open-source software product. Several product 
business models were tried, but none proved sustainable. Some of the experiences are discussed, in order to contrib-
ute to the ongoing conversation on the role of open source software in cheminformatics.
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Introduction
Molecular similarity search is a fundamental concept in 
cheminformatics. The most common form is almost cer-
tainly a Tanimoto similarity search of bitstring finger-
prints. Complete search systems are available from many 
vendors, or a good programmer can implement a basic 
system with reasonable search performance in only a few 
hours. High-performance search systems, which com-
bine fast popcount evaluation and pruning algorithms, 
require significantly more development effort. This paper 
starts with a review of those approaches, many of which 
are either described in the cheminformatics literature in 
an incrementalist fashion which make them difficult to 

discover, or only published in the specialist literature of 
other fields.

The chemfp project started in order to develop a de 
facto file format for chemical fingerprints. This requires 
some consideration of why such a format did not already 
exist, in order to understand which factors to focus on 
during format development. Two formats were devel-
oped; the text-based FPS exchange format, which is sim-
ple to read and write, easily compressed, and appropriate 
for streaming workflows, and the binary FPB application 
format which is more complex and requires random-
access reads, but has significantly shorter load times.

The chemfp package for Python includes optimized 
threshold and k-nearest implementations FPS file scan 
search implementations, highly-optimized implemen-
tations of the BitBound pruning method to search data 
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sets either loaded into memory or memory-mapped 
from an FPB file, and OpenMP parallelized BitBound 
methods for N × M and N × M similarity matrix gen-
eration. The file formats and search performance are 
evaluated using datasets from ChEMBL and PubChem, 
with fingerprints generated by the Open Babel, 
RDKit, OpenEye, and CACTVS toolkits. While these 
datasets were not designed for direct scientific util-
ity, it is hoped that they, along with a set of common 
search tasks, may be a common benchmark for simi-
larity search performance. Preliminary results suggest 
that two of the datasets may be too sparse to provide 
useful comparisons between dense and sparse search 
algorithms.

One of the key results is that modern CPUs are 
extremely fast. The popcount intersection calculation, 
which was the limiting factor on older hardware, now 
requires only a few nanoseconds. This is significantly 
faster than the memory latency time for reading from 
main memory, which means that memory access issues 
like cache coherency have become an important lim-
iting factor. For example, sorting the queries by pop-
count increases multiquery search scalability, likely 
because the search threads have better temporal local-
ity. Most previous work on improved pruning methods 
did not consider these factors. The machine models 
used in older publications are discussed, along with 
the reasons for why their conclusions may need to be 
re-assessed.

Floating-point precision appears to be a subtle 
though common source of errors in similarity search 
systems, even for software written by expert develop-
ers. Examples are given as advice to future implemen-
tors, along with recommendations for how to avoid 
floating point calculations.

Free and open source software (“FOSS”) is popular, 
in part because it is typically available at no cost as 
the funding often comes either from volunteer con-
tributions or indirect research funding. This paper 
discusses the growing understanding that this sort 
of funding model often has long-term sustainabil-
ity problems. The chemfp project experimented with 
several approaches for funding the project by sell-
ing commercial software under a FOSS license. These 
approaches are discussed, as well as the conflicts 
between the economic requirements of FOSS soft-
ware development and the expectations of customers 
used to proprietary software licensing. Chemfp is now 
available with cheaper proprietary licensing options as 
the pure FOSS funding model does not appear viable. 
Other funding models which may be more viable for 
future projects are discussed.

Background
A fingerprint for chemical similarity is a description of a 
molecule such that the similarity between two descrip-
tions give some idea of the similarity between two mol-
ecules. Willett [1], influenced by earlier work [2] showed 
how the Tanimoto similarity between two bitstring fin-
gerprints is a useful mechanism to characterize molecu-
lar similarity. The Tanimoto similarity is identical to the 
older Jaccard similarity. The continued use of the term 
reflects the impact of that early work at Sheffield. The 
term “fingerprint” first appeared in the literature in 1992 
[3] to distinguish the then-new enumeration-based Day-
light fingerprints from the older substructure dictionary 
approach.

The late 1980s and 1990s brought an incredible growth 
of research as people explored ways to generate, com-
pare, and cluster fingerprints, to extend the concept to 
sparse and count fingerprints, and to extend fingerprints 
beyond 2D substructures [4].

The most widely used fingerprints are variants of the 
166-bit MACCS keys [5], Daylight linear fingerprints [6], 
ECFP circular fingerprints [7], and the 881-bit PubChem/
CACTVS keys [8]. These are fixed-length binary finger-
prints, typically with 166, 881, 1024, or 2048  bits, and 
with a sufficiently high bit density that they are most effi-
ciently represented as an uncompressed bitstring instead 
of sparse encoding methods like an inverted index. 
Implementations of these fingerprints are available from 
a large number of tools [9].

While there are a many ways to compare two finger-
prints, the vast majority use the Tanimoto similarity:

often simply referred to as “the Tanimoto”.
For binary fingerprints represented as bit strings the 

Tanimoto calculation can be expressed as:

where “&” and “|” denote bitwise binary-and and -or 
and “popcount()” is the number of 1 bits in the resulting 
subexpressions, often called the “population count”. In 
chemfp, two fingerprints with 0 bits set have a Tanimoto 
of 0, while some other toolkits have different behaviors.

Similarity search performance can be critical. Humans 
typically regard response times of under 0.1 s as “instan-
taneous”, and start to lose focus if a search takes more 
a few seconds [10]. Fast search times are important not 
only for user-directed similarity queries, but also for sec-
ondary queries. For example, a web interface for a com-
pound database might display a page for each compound 
record along with links to its 10 most similar neighbors 
in the database. This information can be pre-computed, 
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which typically requires some infrastructure to compute 
and update the neighbor lists when the database has 
changed enough. On the other hand, if the search finishes 
within the response time budget then it can be done on-
demand, which may simplify the system design.

Many algorithms are built on top of similarity search, 
and often the overall algorithm performance depends on 
the similarity search performance. For example, most of 
the time for the Taylor–Butina clustering algorithm [11, 
12] is spent computing a sparse similarity matrix. The 
matrix computation is quadratic in the number of finger-
prints, so a fourfold performance improvement makes it 
possible to work with a data set which is twice as large 
in the same amount of time. Performance improvements 
may also allow more efficient system architectures; a ten-
fold improvement may be fast enough that a task which 
required a compute cluster can now be run on a single 
machine, with additional savings from reducing the over-
head for task partitioning and network communication.

Approximate methods for search [13] and clustering 
[14] with controllable error levels and better theoreti-
cal scalability for large data sets are feasible alternatives 
when the minimum required similarity is high enough. 
This paper focuses on exact methods for binary 
fingerprints.

Faster Tanimoto calculations
Many people have developed techniques to improve 
Tanimoto similarity search performance for dense fin-
gerprints. While many of these techniques are well-
known, they have not been described in one place in the 
literature, and some previous papers describe inefficient 
implementations.

One approach is to use faster hardware and multiple 
cores or processors [15], or use specialized hardware 
like GPUs [16]. This paper focuses on x86-64 CPUs, 
though many of the techniques are portable to other 
architectures.

If there will be multiple queries against a set of target 
fingerprints then one often-used approach precomputes 
the popcount of each target fingerprint. If the query pop-
count is A and the target popcount is B then Eq. (2) can 
re-written with only the intersection popcount:

which requires only one popcount evaluation per com-
parison instead of two.

Another approach is to improve the Tanimoto calcu-
lation performance through more efficient use of the 
hardware. Many search implementations interpret Eq. 1 

(3)c = popcount
(

fp1 & fp2
)

Tanimoto = c
/

(A+ B− c)

literally, and represent fingerprints using a set data type 
and compute the Tanimoto using set operations. This 
approach often uses a large number of temporary set 
instances. By comparison, an implementation which 
represents a fingerprint as a byte string or sequence of 
machine words uses less memory, has less memory man-
agement overhead, and can implement Eq. 2 with a hand-
ful of fast bit and arithmetic operations.

Many popcount algorithms have been developed over 
the last 70 years [17]. Table 1 compares the relative per-
formance of several implementations. Full details are in 
Additional file 1: Table S1.

Chemfp 1.0 used a lookup table, which may be effective 
if table lookup is fast, but modern hardware has special 
methods which are faster than accessing table data even 
from L2 cache. Fingerprints are typically many machine 
words in length, so fingerprint popcounts can be com-
puted either by summing the popcount of each word or 
extending a tree-of-adders approach to work on multiple 
words [17, 19].

While these algorithms can be implemented in stand-
ard, portable C code, faster implementations use proces-
sor-specific hardware instructions. Effectively all modern 
x84-64 hardware supports the POPCNT instruction, 

Table 1 Relative performance of  different popcount 
implementations

Times are scaled relative to an 8-bit lookup table, as measured by the threshold 
searches from the chemfp benchmark suite. In most cases the search algorithm 
uses a function pointer to dispatch to the appropriate popcount function, 
without memory prefetching. The “fully unrolled” variants implement the 
fingerprint popcount without using a loop. The “inline” and “prefetch” variants 
inline the calculation and use memory prefetching, respectively. Timings 
were made with chemfp 3.3. Chemfp 1.5 does not support inlining, AVX2, or 
prefetching

Popcount method Performance relative to 8-bit lookup table

166 bits 881 bits 1024 bits 2048 bits

8-bit lookup table 1× 1× 1× 1×
16-bit lookup table 2.0 2.8 2.9 2.4

Gillies-Miller [18] 1.6 2.9 3.1 3.4

Lauradoux [19] 3.1 3.3 3.7

SSSE3 [15] 5.4 6.1

POPCNT (8 bytes/loop)

 Dispatch 3.6 6.0 6.3 6.4

 Inline 4.9 6.6 6.9 6.6

POPCNT (fully unrolled)

 Dispatch 5.3 7.9 8.2 7.8

 Inline 6.7 8.2 8.4 8.0

AVX2 [20] (fully unrolled)

 Dispatch 8.6 9.2

 Dispatch, prefetch 8.7 9.3

 Inline 9.8 9.9

 Inline, prefetch 11.0 10.6
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which can compute the popcount of a 64-bit word in 
one machine cycle. Other CPU-specific techniques were 
available for older consumer hardware [15]. Perhaps sur-
prisingly, popcount implementations with AVX2 instruc-
tions outperform POPCNT-based implementations for 
1024 and 2048 bit fingerprints, because the AVX2 imple-
mentation of the Harley-Seal algorithm can fetch and 
use 256 bits at a time while making more effective use 
of instruction parallelism [20]. (The POPCNT instruc-
tion on most x84-64 chips is limited to a single execution 
port). The VPOPCNTDQ instruction in the AVX-512 
instruction set computes a 512-bit popcount, which 
should be faster still.

The fingerprint intersection popcount calculation is 
often decomposed into the sum of multiple word inter-
sections. One optimization is to observe that many of the 
query words in relatively sparse fingerprints only contain 
0 s. Its intersection popcount will always be 0 so does not 
need to be evaluated. A query-specific optimizer may 
also be able to merge multiple word evaluations into a 
single popcount, and replace some word popcounts with 
simple boolean expressions [21].

Other factors become important once the popcount 
performance is fast enough. Equation 3 requires an addi-
tion, subtraction, and division. If all targets with the same 
popcount are grouped together then the A + B term is 
constant while processing that group, removing the need 
for an addition.

Division is a relatively expensive operation, and 
might be replaced with a small lookup table [21] if 
table lookup is fast enough, or rewritten to use ration-
als and integer operations. For example, the thresh-
old test c/(A + B − c) ≥ 0.75 may be rewritten as 
c * 4 ≥ 3 * (A + B − c). A further refinement for grouped 
fingerprints is to replace the division test with compari-
son to the minimum required popcount threshold shown 
in Eq. 4:

This can be calculated once for each group, which 
reduces the threshold test to a simple integer comparison.

On some processors, particularly older ones, mis-
aligned data may be significantly slower or cause the pro-
gram to crash, so should be memory-aligned using zero 
padding.

Certain fingerprint lengths are particularly common, 
and specialized intersection popcount functions can 
be written for each one with a fallback to a general pur-
pose implementation. A fully unrolled intersection pop-
count for the 166-bit MACCS, assuming zero padded 
64-bit words and POPCNT instruction, requires at most 
12 assembly instructions and is about 40% faster than a 
generic loop summing the popcount of the 3 words.

(4)popcount
(

fp1 & fp2
)

≥
⌈

T (A+ B)
/

(1+ T )
⌉

The entire search algorithm can also be specialized for 
the most important fingerprints sizes. A threshold search 
for 166-bit fingerprints which inlines the intersection 
popcount instead of calling a function pointer is about 
25% faster because it has no function call overhead and 
because the compiler has more ability to optimize the 
code. A fully-inline AVX2 search algorithm may also ini-
tialize some of the AVX2 registers once, rather than once 
for each intersection popcount.

The “roofline model” [22] highlights how memory 
latency and bandwidth become limiting factors once the 
popcount performance is fast enough. The absolute mini-
mum time for a full linear search of 1 million uncom-
pressed 1024 bit fingerprints on a machine with 20 GiB/s 
memory bandwidth is only 6  ms. This would require 
about 2.7  billion 64-bit POPCNT instructions per sec-
ond, plus the operations to evaluate the Tanimoto, which 
is not quite achievable on a 3  GHz processor without a 
high degree of instruction parallelism. In practice, mem-
ory latency limitations occur before reaching bandwidth 
limitation, so faster AVX2 and VPOPCNTDQ imple-
mentations must use prefetching to reduce this overhead.

Finally, a k-nearest search may use a heap algorithm 
with O(n log k) performance. Tanimoto scores are ratios 
of two small numbers, bounded by the number of bits in 
the fingerprint, resulting in relatively few distinct values. 
For large values of k a counting sort [21] may be used to 
eliminate the O(log k) overhead.

While each optimization may only add a small perfor-
mance improvements, the overall effect is multiplicative.

Pruning methods
The fastest calculations are those which don’t need to be 
done. Duplicate fingerprints may be merged into a single 
record, which can give an appreciable speedup, especially 
for O(n2) tasks like building a similarity matrix.

Many search tools use BitBound [23] to reject obvious 
mismatches. If the goal is to find all target fingerprints 
which are at least t > 0 similar to a query fingerprint with 
a popcount of A, then the target fingerprint must have a 
popcount B between B * t and B/t. A value of B may be 
stored for each fingerprint, or the fingerprints may be 
organized into bins such that all fingerprints with the 
same popcount are in the same bin. The latter requires 
less memory storage and fewer memory accesses. The 
bounds give linear speedup in threshold searches, with 
tighter bounds as the similarity increases, and sub-linear 
speedup for k-nearest neighbors. Empirical testing using 
the chemfp benchmark data sets confirms that k = 1 
nearest neighbor searches of MACCS and FP2 finger-
prints scales as O(n~0.65) and the PubChem/CACTVS 
and Morgan searches scale as O(n~0.8) in the number of 
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fingerprints in the data set (see Additional file 1: Figure 
S1).

Additional pruning methods include sharper M = 2 
bounds [24], xor signatures [25], recursive application 
of the bounds to fingerprint subsets [26–28], trees [27, 
29, 30] and reference points [31, 32]. These papers often 
demonstrate a mathematical reduction in the number of 
popcount operations needed, and empirically measure 
performance improvements over BitBound.

The best improvements occur for high similarities 
(typically 0.8 or above), while the overall reported per-
formance is sometimes worse than BitBound for similar-
ity thresholds which are both chemically reasonable and 
commonly used. It seems impossible to improve upon 
linear search for an exact similarity search of high dimen-
sional space when using a low similarity threshold.

Need for a fingerprint format
The chemfp project started in part to promote the FPS 
format as the common format for exchanging fingerprint 
data. Many software packages are available and in wide 
distribution for working with fingerprint data [9]. These 
in turn represent a small fraction of the fingerprint soft-
ware in use, which includes personal research software 
and in-house tools. Yet very few tools from different 
origins are able to work together without some format 
conversion.

This should be unexpected as the beneficial network 
effect of an interoperable format generally causes a field 
to converge on one or a small number of formats in 
far less than the 30  years of active research on finger-
prints. Nearly every tool which works with small mol-
ecules supports the SDF or SMILES file format, just like 
nearly every sequence analysis tools supports the FASTA 
format.

The success of those three formats was in no small part 
based on the success of respectively the MACCS II [33], 
Daylight [34], and FASTA [35] software, so it was clear 
that providing a fast similarity search tool, along with fin-
gerprint generation tools, would help promote the FPS 
format. It was also clear that fast similarity search tools 
already existed, without resulting in a common format.

This lead to the question “Why not?”, with the hope 
that by identifying the factors which weaken the network 
effect might help improve the chances that a new format 
would be successful. Foremost, of course, is that most 
people do not need a fingerprint file format because they 
work with fingerprints through a database, typically via a 
chemically-aware database extension.

In general there are two types of fingerprint file for-
mats: text and binary. Researchers tend to create text 
formats because they are easy to read and write, and 

to inspect visually. These formats are so simple that it 
is often faster for the researcher to create a new for-
mat and its I/O routines than to find if an appropriate 
format exists and understand someone else’s software 
library. It’s also typically easy—a matter of minutes—to 
write a converter from one format to another.

People with more advanced experience in software 
development tend to store fingerprints in a binary for-
mat, since binary formats are generally faster to read 
and write than text formats. These are also the sorts of 
people who write software libraries for both in-house 
and more general use. These binary formats are typi-
cally considered an implementation detail and subject 
to change as needs change. Instead, file access is medi-
ated through command-line programs, or a library API 
with I/O and search routines.

What happens if a researcher wants to evaluate a new 
clustering algorithm implemented in R, when the fin-
gerprint package library API is only available in C++? 
While R has good support for C++ bindings, it’s more 
likely people will write a C++ program to export the 
fingerprints in a new format and an R function to read 
that format.

Another aspect of fingerprint software is that there 
isn’t that much need for interoperability because essen-
tially all of the widely-used packages as well as most 
in-house packages support the most common needs: 
fingerprint generation using variants of the MACCS, 
Daylight, or ECFP fingerprint types, Tanimoto similar-
ity search for k-nearest neighbors and for finding all 
neighbors at or above a given threshold, and the N × M 
and N × N (symmetric) variants used for clustering and 
diversity selection algorithms. Most people exchange 
structures and treat fingerprints as derived data, to be 
computed when needed.

What about when there is a need? Consider a project 
to evaluate the relative effectiveness of circular finger-
prints from different vendors. Which tool should be 
used for the evaluation? A surprising number of avail-
able packages and associated formats are not designed 
for interoperability, and cannot easily be used for this 
task. As two examples, the package may generate fin-
gerprints automatically given a structure file or mol-
ecule object, but lack a way to accept an externally 
generated fingerprint value, or the file format may store 
fingerprint type parameters but not have an easy mech-
anism to handle foreign fingerprint types.

These considerations resulted in the working hypoth-
esis that any format could not become a de facto 
exchange format unless (1) it was a text format that was 
as easy to read and write as the ones that researchers 
are used to, (2) it could demonstrate support for diverse 
fingerprint types, and (3) it came with a set of tools and 
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library API which could handle most of what people 
needed from a fingerprint toolkit.

Methods
Hardware
All timings in this paper were made on a machine with 
a 3700  MHz i7-4770 CPU. Each core has 32  KiB each 
of L1d and L1i cache and 256 KiB of L2 cache. The four 
physical cores share 8 MiB of shared L3 cache and 32 GiB 
of RAM (DDR3-1600 with double channel). The single 
channel theoretical peak transfer rate is 12,800 MiB/s or 
12.5  GiB/s. Measurements with pmbw 0.6 [36] using a 
single thread show a 54 GiB/s read bandwidth from L1, 
35 GiB/s, from L2, 30 GiB/s from L3, and 13.3 GiB/s from 
RAM. The measured latencies are 1.1 ns from L1, 2.7 ns 
from L2, 9.6 ns from L3, and 87 ns from RAM. Chemfp 
was compiled with gcc 5.5.0.

Data sets
The fingerprint data sets used in this paper are the 2048-
bit RDKit Morgan fingerprints distributed as part of 
ChEMBL 24 [37], the 881-bit PubChem [38] fingerprints 
extracted from the PUBCHEM_CACTVS_SUBSKEYS 
tag of a PubChem mirror from 2018-12-07, and the four 
data sets in the chemfp benchmark. The latter contain 
four ~ 1  million fingerprint subsets. Three were gener-
ated from ChEMBL 23 using respectively the 166-bit 
OpenEye MACCS implementation, the 1021-bit Open 
Babel FP2 implementation, and the 2048-bit RDKit Mor-
gan fingerprint with radius 2. The fourth contains the 
881-bit PubChem fingerprints extracted from a mirror 
made on 2017-07-12. Table 2 summarizes the content of 
the search target data sets.

These fingerprint types were chosen because they are 
relatively popular and well-understood, and to give rep-
resentation from each of the underlying toolkits that 

chemfp supports. They were not selected for any specific 
scientific appropriateness, and should only be used for 
timing purposes.

FPS format
Figure 1 shows an example of the FPS format. It is a line-
oriented text format containing an optional header sec-
tion followed by zero or more fingerprint records. The 
header contains an optional version line, followed by 
zero or more metadata lines. Each header line starts with 
a ‘#’. Each fingerprint record contains two or more tab-
separated fields. The first is the hex-encoded fingerprint 
and the second is the record id. The remaining fields are 
unspecified and may be used to store a SMILES string, 
activity, or other values, though the chemfp toolkit does 
not yet support these fields.

The most important metadata line, though optional, 
is “type”. It describes how the fingerprints were gener-
ated. While it can be an arbitrary text string, it should 
follow the format of the examples shown in Fig. 2, with 
one or more terms separated by a single space. The first 
term contains the family name and optional version. 
Any remaining terms are key = value pairs describ-
ing the specific fingerprint generation parameters. By 

Table 2 Fingerprint target data set sizes in FPS format

“Unique” is the number of distinct fingerprints as a percentage of the total number of fingerprints

Data set #Bits Fingerprint type #Fingerprints (in 
millions)

Unique FPS size (in MiB) FPS.gz 
size (in 
MiB)

chemfp benchmark
ChEMBL 23 subset

166 OpenEye MACCS 1.00 83.6% 54 17.7

chemfp benchmark
PubChem subset

881 PubChem/CACTVS 1.00 98.2 222 53.1

chemfp benchmark
ChEMBL 23 subset

1021 Open Babel FP2 1.00 96.0 258 80.5

chemfp benchmark
ChEMBL 23 subset

2048 RDKit Morgan 1.00 90.6 502 59.9

ChEMBL 24 2048 RDKit Morgan 1.82 94.1 914 99.7

PubChem 881 PubChem/CACTVS 96.9 65.3 21,500 2910

#FPS1
#num_bits=166
#type=OpenEye-MACCS166/3
#software=OEGraphSim/2.2.6 (20170208) chemfp/3.0
#source=chembl_23.sdf.gz
#date=2017-08-08T12:10:38
00000009000400000352468809aa9013d4b07a6e1b CHEMBL3759709
000000090000300001f69edf89fafe838d3e7a7e1b CHEMBL440060
000000090000300081f24ecf99f2fed79d3e7a7e1b CHEMBL440245

Fig. 1 Example FPS file for 166-bit MACCS keys generated by 
OpenEye’s GraphSim toolkit. Header lines start with a ‘#’. The three 
record lines start with a hex-encoded fingerprint, followed by a tab 
and the record id
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convention the family name uses a prefix to indicate the 
tool used to generate the fingerprints, which helps dis-
tinguish between, for example, the MACCS implemen-
tations from different vendors.

As a concrete example, the second line of Fig. 2 is a 
type string for OpenEye’s “Path” fingerprints, version 
2. It can be generated by calling OEMakePathFP() with 
the arguments numbits = 4096, minbonds = 0, etc. The 
atype and btype values describe which atom and bond 
properties are encoded in the fingerprint. The spe-
cific syntax is derived from the strings returned from 
OEGetFPAtomType() and OEGetFPBondType().

The type has several purposes. First, it records how 
the fingerprints were generated. It is all too easy to cre-
ate a data set then come back to it a few months later 
and forget how it was generated. Second, it should be 
machine parseable so that software can generate new 
fingerprints of the same type. This might be used in a 
search tool to figure out how to convert a new query 
structure into a compatible query fingerprint. Third, it 
should be in canonical form, such that the type strings 
match if and only if they describe the same fingerprint 
generation options. This makes it possible for even sim-
ple tools to detect if two data sets may have incompat-
ible types.

The optional “software”, “source”, and “date” lines 
are primarily for data provenance. The software line 
records version information for the key fingerprint gen-
eration components. Each source line stores a filename 
or other description of the input to the fingerprint gen-
eration. The date line stores an ISO datetime stamp of 
when the fingerprints were generated.

The optional “num_bits” metadata line records the 
fingerprint length. If not present then the fingerprint 
length is calculated from the number of bytes in the 
fingerprints. Fingerprint types which are not a mul-
tiple of 8 bits long, like the 166-bit MACCS keys and 
the 881-bit PubChem/CACTVS fingerprints, must 
pad the highest bits with zeros, and should record the 
actual size in the num_bits field. The value may be used 

to compute length-dependent similarity coefficients, or 
to determine which bits are appropriate for machine 
learning.

The hex-encoded fingerprint is always a multiple of 2 
characters in length. All fingerprints must have the same 
length, and 0-length fingerprints are not allowed. The 
bytes are ordered so bit 0 is the first bit of the first byte, 
that is, the bytes are in little-endian order. Examples of 
hex-encoded 16-bit fingerprints are: “0100” (bit 0 is set), 
“2000” (bit 5 is set), and “c218” (bits 1, 6, 7, 11, and 12 are 
set). Note that the two hex characters for each byte are in 
big-endian order so the hex representation nibbles are in 
the order “1032”.

Hex encoding was chosen because the primary goal 
was to make a format which was easy for most research-
ers to read and write with a few minutes of work. Hex 
encoding is easier to understand and implement than 
more compact encodings like Base64 and ASCII85, and 
most widely used programming languages have built-
in support for converting between a byte string and its 
hex representation. In any case, gzip compression recov-
ers most of the space overhead. Table 2 shows the com-
pressed and uncompressed sizes of the data sets used in 
this paper.

The tab character is used as the delimiter because 
IUPAC names and even some corporate ids may contain 
a space, comma, or other printable character.

The format may be extended by adding new metadata 
lines so long as they can be ignored without affecting 
how to interpret an FPS file. For example, a “comment” 
line might store some extra information about how the 
fingerprints were generated, and a “stats-24” line might 
store statistics for bit 24. A future version of the specifi-
cation will likely include a way to provide header names 
for the additional fields of a fingerprint record.

FPB format
The time to parse an FPS file is quite large compared to 
the in-memory search time. Sometimes the load time 
adds too much overhead. Consider a web developer fol-
lowing the standard edit/reload cycle to create an appli-
cation which uses several multi-million fingerprint 
data sets. Each reload, which is normally a fraction of 
a second, may take around 10  s as the fingerprints are 
reloaded. The load time can be deferred until first use, 
but that will still add noticeable time to the iterative 
development process.

Chemfp 2.0 added support for the FPB format, which 
is a more complex binary representation of a fingerprint 
arena that is quicker to load while still supporting the 
optimizations for fast similarity search. The structure is 
a variant of the “FourCC” file format. The file starts with 
an 8 byte signature followed by a series of chunks. Each 

OpenEye-MACCS166/3
OpenEye-Path/2 numbits=4096 minbonds=0 maxbonds=5 atype=Arom|
AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral

OpenBabel-MACCS/2
OpenBabel-FP2/1
RDKit-MACCS166/2
RDKit-Morgan/1 radius=2 fpSize=2048 useFeatures=0 useChirality=0
useBondTypes=1
RDKit-Avalon/1 fpSize=512 isQuery=0 bitFlags=15761407

Fig. 2 Seven fingerprint type strings from different toolkits. Each 
type string contains space separated terms. The first term contains 
the fingerprint family name and version. Remaining terms encode 
fingerprint parameters as key = value pairs. The OpenEye-Path and 
RDKit-Morgan types are wrapped over two lines for presentation
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chunk contains an 8 byte length field, followed by a four 
byte chunk type name, followed by type-specific data.

There are six defined chunk types. The META chunk 
contains the metadata lines from the header of the FPS 
format, including the leading ‘#’ and newlines. Processing 
ends with the FEND chunk.

The AREN, POPC, FPID, and HASH chunks contain 
the four distinct parts of a fingerprint arena, which will 
be described in a later section. The AREN chunk stores 
the fingerprints as a contiguous block, along with infor-
mation about the fingerprint length and storage size. It 
also contains an initial spacer to allow the first fingerprint 
to be word or cache-line aligned if the file is memory-
mapped. The POPC chunk stores the popcount indices 
into the AREN chunk for sorted arenas.

The FPID chunk stores the record identifiers as a 
sequence of UTF-8 encoded strings, along with an offset 
table to look up an identifier given its index. The HASH 
chunk contains a modified form of the cdb hash table 
[39], where the values are indices into the FPID chunk. 
Table 3 shows the total size and size of the largest chunks 
for the data files in this paper.

The load time is significantly shorter because the loader 
only needs to read enough data to identify which chunks 
exist and extract basic information like the metadata and 
fingerprint sizes.

The combination of popcount indexed arenas, Bit-
Bound, and memory-mapping work well together. For 
example, a command-line tool which finds all matches 
with at least 0.9 similarity to a given fingerprint can limit 
file access to only the most relevant fingerprints, and 
since the linear access pattern is easy to predict, the file 
system can prefetch the data. Tests show that most of the 
overall time for these sorts of simple tools is spent wait-
ing for Python to start, even for multi-million fingerprint 
data sets.

Memory-mapped files can also be useful when mul-
tiple components use the same FPB file because the 

different components may share one copy of the static, 
read-only memory.

The biggest negative to using the FPB format directly, 
instead of a fully in-memory representation, is the rela-
tive slowness of working with identifiers. It may take 
several essentially random-access disk reads to get the 
id for a given index, which is particularly slow on hard 
disks. Hash table lookups may require several index 
lookups and so be even slower. In addition, the FPB 
hash table is not as optimized as the Python hash table, 
and each identifier lookup creates a new Python string 
object instead of reusing a previously loaded one. This 
negative is usually only noticeable when a large number 
of identifiers are returned.

The FPB format is designed for fingerprint data sets 
with a few million records, which is typical for most 
corporate compound collections. It has been tested 
with the ~ 100 million fingerprints in PubChem, though 
design consequences of the 32-bit hash table sets an 
upper limit of slightly more than 250  million finger-
prints. The usual way to create an FPB file is to load a 
fingerprint data set into memory then save the result 
in FPB format. This does not work for very large data 
sets; the loader needs more than 30 GiB of RAM for the 
intermediate data structures to load PubChem. Instead, 
chemfp’s FPB writer supports an option to write par-
tial information to the filesystem, typically as smaller 
FPB files, which are collated to create the final file. 
The ~ 10  GiB PubChem FPB file can be created on a 
machine with only a few GiB of memory, and with rea-
sonable performance.

The FPB format allows extensions. New chunks may 
be added so long as they don’t break compatibility. For 
example, the sharper M = 2 bounds might be supported 
by adding a secondary sort to the AREN fingerprints 
based on the popcount of the odd bits for all fingerprints 
with the same popcount, and storing the M = 2 indices 
for the secondary sort in a new chunk.

Table 3 Fingerprint data set sizes in FPB format and largest chunk sizes

The AREN chunk contains the fingerprints, the FPID chunk contains record identifiers indexed by position, and the HASH chunk contains a hash table mapping 
identifiers to index

Data set #Bits #Fingerprints (in 
millions)

FPB size (in MiB) AREN size (in MiB) FPID size (in 
MiB)

HASH 
size (in 
MiB)

chemfp benchmark 166 1.00 54.0 22.9 15.9 15.3

chemfp benchmark 881 1.00 134 107 11.6 15.3

chemfp benchmark 1021 1.00 153 122 15.9 15.3

chemfp benchmark 2048 1.00 275 244 15.9 15.3

ChEMBL 24 2048 1.82 501 444 29.9 27.8

PubChem 881 96.9 13,000 10,300 1130 1480
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While the FPS format supports additional fields for 
each column, there is currently no way to store that 
information in an FPB file.

chemfp package
Essentially no one will use a fingerprint format sim-
ply because a specification exists. The chemfp Python 
package attempts to overcome the chicken-and-egg 
problem by distributing a Python library and a set of 
command-line tools for working with FPS files.

The command-line tools oe2fps, rdkit2fps and ob2fps 
use respectively OpenEye’s OEChem and GraphSim 
toolkits [40], the RDKit toolkit [41], and the Open 
Babel toolkit [42], to parse structure files or records 
and generate fingerprints. Chemfp also adds a mostly 
complete PubChem-like fingerprint generation imple-
mentation for each toolkit.

The sdf2fps tool extracts record identifiers and pre-
computed fingerprints from tags in an SD file. For 
example, the “--pubchem” option extracts the id from 
the title line and the fingerprint from the PUBCHEM_
CACTVS_SUBSKEYS tag of a PubChem file. Other 
supported encodings include hex, Base64, sequences 
of ‘0’ and ‘1’ characters in different bit orders, and the 
fingerprint encoding used in Daylight Thor Data Trees 
(TDTs).

The simsearch tool implements k-nearest and thresh-
old searches of an FPS file, using either Tanimoto or 
Tversky [43] similarity. It supports single query and mul-
tiple query searches, as well as the N × N symmetric case.

The fpcat tool can be used to merge multiple FPS and 
FPB files together. For example, if the sdf2fps tool is used 
to extract fingerprints from each file in a PubChem dis-
tribution, then fpcat can join them together into a single 
file.

Version 2.0 of the package added Tversky similarity 
search and support for the FPB binary file format, as well 
as support for more than 2 GiB of fingerprint data. Each 
of the above tools supports reading and writing from 
FPS, gzip-compressed FPS, and FPB files. Fpcat can con-
vert between all three formats.

The chemfp package also includes a well-documented 
toolkit API for working with fingerprints. All of the fea-
tures of the command-line tools are available to user-
defined programs, along with APIs to help with web 
services development and to integrate with NumPy and 
SciPy. The package is designed to work with static data, 
which is the usual case in research informatics.

The chemfp project also distributes the chemfp_con-
verters package, which converts between the chemfp for-
mats and the fingerprint formats used by several other 
packages.

File scan search
Chemfp supports two similarity search modes: file scan 
and in-memory. The implementations for both modes 
expect that there will be few hits relative to the entire 
data set, so the O(n log k) performance of a priority 
queue is effectively O(n). File scans are only used to 
search an FPS file. While the FPB file is faster to load 
and search, the FPS format is a good fit for workflows 
which do not need the complexity of the FPB format. 
The FPS format can also be used in streaming contexts, 
such as piping the output of sdf2fps to simsearch for 
a one-off query of fingerprints encoded in the SD file 
data tags.

A file scan is the default search mode when there is 
one or a small number of queries. It reads a block of 
text, and for each line finds the location of the finger-
print and id fields. If the fingerprint passes the similar-
ity test, the score and id are saved, either to a list for a 
threshold test, or a bounded priority queue for k-near-
est search.

An important goal when chemfp parses an FPS file is 
to verify that the file is actually in FPS format, and pro-
vide a useful error message if it is not. The exception is 
that k-nearest file scan search terminates early once k 
exact matches are found, instead of verifying the rest of 
the file.

The secondary goal is to demonstrate that good per-
formance is possible using a text file. A general pur-
pose design might have a file parser which produces 
a sequence of record objects, and a search algorithm 
which accepts record objects. This design makes it easy 
to support multiple file formats by replacing the parser 
with a new one. However, the intermediate object 
creation adds unneeded overhead. The similarity can 
instead be computed directly from the input text. If the 
score is too low then there’s no need to create a finger-
print record at all, and if the score is high enough then 
only the identifier and score are needed, not the inter-
mediate fingerprint object.

Chemfp has four different file scan implementa-
tions; one for each combination of {Tanimoto, Tver-
sky} × {threshold, k-nearest} searches. This level of 
specialization is less flexible and has a higher develop-
ment and maintenance cost. On the other hand, if the 
FPS format becomes the de facto standard fingerprint 
exchange format then there is less need for a design 
which can handle multiple formats.

The current file scan implementation processes about 
500–600  MiB/s on the benchmark machine. It is not 
I/O limited as GNU wc 8.25 is able to count newlines 
in the same file at up to 7 GiB/s. (See Additional file 1: 
Table S2).
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In-memory search
If there are more than a few tens of queries against 
an FPS file then it is faster for chemfp to create and 
search an in-memory data structure called a “finger-
print arena”, which contains four parts. The finger-
prints are stored in a contiguous memory block and 
sorted by population count, such that all fingerprints 
with 0 bits set come first, followed by those with 1 bit 
set, and so on. The identifiers are stored in a list in the 
same order as the fingerprints, such that id[i] stores the 
id for fingerprint[i]. The population count index con-
tains a list of fingerprint indices such that the finger-
prints with a population count of b bits have an index 
i where popcount_index[b] ≤ i < popcount_index[b + 1]. 
If no fingerprints have b bits set then popcount_
index[b] = popcount_index[b + 1]. Finally, there is a 
multi-valued hash table mapping each fingerprint id to 
1 or more fingerprint indices. Duplicate ids are allowed.

Each fingerprint is num_bytes bytes long and stored 
in storage_size bytes of memory. Zero padding may be 
added after the fingerprint bytes, typically so the stor-
age size is a multiple of 8 bytes, which lets chemfp use 
the 64-bit POPCNT instruction. The first fingerprint 
is located start_padding bytes into the memory block, 
where the offset is chosen so the fingerprints are word 
or cache-line aligned. Chemfp determines the start pad-
ding based on the fingerprint size: 1024-bit fingerprints 
are 64-byte aligned for possibly better AVX2/AVX512 
performance, while 166-bit fingerprints (which are zero 
padded to 24 bytes), are 8 byte aligned for possibly bet-
ter POPCNT performance. The distribution of 1000 ran-
domly sampled single query search timings for ChEMBL 
24 and PubChem are shown in Fig. 3. The primary reason 
for the search time variability is because the BitBound 
pruning effectiveness depends on the population count of 
the query fingerprint compared to the distribution of fin-
gerprint population counts in the target dataset.

The amount of memory needed for a fingerprint arena 
is a function of the fingerprint size, alignment, identi-
fier size, and number of records. Only a small amount of 
additional memory is needed to use a memory-mapped 
FPB file so see the measured FPB file sizes in Table 3 for 
approximate memory requirements. Additional memory 
is required when constructing an arena from an FPS file.

The popcount index of a sorted arena is a compact way 
to store pre-computed popcounts for all of the target fin-
gerprints, which means that only the intersection pop-
count is needed for each similarity calculation. The index 
is also used to apply the BitBound limits. A threshold 
search only needs to test fingerprints i where popcount_
index[floor(b * t)] ≤ i < popcount_index[ceil(B/t) + 1]. The 
implementation uses a minor variation of the k-near-
est algorithm described in [23]. Instead of sorting an 

auxiliary array to determine the target popcounts to visit, 
it does a merge sort of the two monotonically decreasing 
sides, which can be done in constant memory.

Chemfp also supports unsorted arenas, which are most 
often used to aggregate multiple small fingerprint sets in 
a single file. Unsorted searches require a full linear search 
with both intersection and union popcount calculations.

Chemfp selects the optimal intersection popcount 
algorithm based on the processor instruction set, finger-
print storage size, and alignment. If the AVX2 instruction 
set is available, it will be used if the storage size is a mul-
tiple of 1024 bits. If the POPCNT instruction is available, 
it will be used if the storage size is a multiple of 64 bits. 
Other implementations are available for older hardware 
and other fingerprint sizes.

The fingerprint size is constant for the entire search, 
so chemfp implements fully unrolled versions of the 
AVX2 and POPCNT popcount implementations for 
fingerprints with a storage size of 24, 64, 112, 128, and 
256 bytes. These are used for 166-bit MACCS keys, 512-
bit fingerprints, 881-bit PubChem fingerprints, 1024-bit 
fingerprints, and 2048-bit fingerprints, respectively, when 
the bits are zero-padded to the next multiple of 64 bits.

The generic threshold and k-nearest search methods 
use a function pointer to call the appropriate intersection 
popcount implementation. The function call overhead 
becomes noticeable for high-performance implementa-
tions, so there are specialized versions of the AVX2 and 
POPCNT implementations which inline the popcount 
calculation. Inlining may also allow the compiler to apply 

Fig. 3 Single query search times for chemfp 3.3. Boxen plots for 
k = 2, 10, 100, and 1000 nearest-neighbor and threshold = 0.95, 0.80, 
0.70, and 0.40 searches of ChEMBL 24 and PubChem (downloaded 
2018-12-07). Each search samples 1000 fingerprints to use as queries 
so each query is always found in the result. Python’s garbage collector 
was disabled for each timing as it adds a roughly 25 ms delay about 
every 1000 timings. The T = 0.40 PubChem search could not be run 
due to insufficient memory
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more optimizations. The specialized AVX2 versions only 
need to initialize the register with the nibble table once, 
and the versions for exactly 128 and 256 bytes also load 
the query fingerprint into AVX2 registers only once. The 
fully unrolled and inlined AVX2 version is the only ver-
sion which is fast enough for explicit memory prefetching 
instructions to make a noticeable improvement.

Chemfp does not have special support for handling 
duplicate fingerprints. If duplicates are removed by an 
input filter then the k-nearest search becomes a search 
for the k-nearest distinct fingerprints.

Chemfp represents scores as 64-bit floating point val-
ues (“doubles”) because it is designed for Python, which 
uses doubles as the native floating point type. The 64-bit 
division required for Eq.  3 is relatively slow, so chemfp 
includes a fast rejection test using integer mathematics 
on the assumption that most fingerprints will not pass 
the rejection test. At the start of the search, the input 
threshold double is converted into a rational number 
which is equal to or slightly smaller than the threshold 
value, resulting in a very effective rejection test. An alter-
native under development is to compute the minimum 
required popcount given the query and target popcount. 
Preliminary results suggest a 20% speedup for 166-
bit fingerprints but a very minor speedup for 2048-bit 
fingerprints.

chemfp benchmark
As Haque et  al. [15] highlight, it is difficult to deter-
mine if a new search method is effective when the base-
line comparison is not well optimized. Authors have an 
understandable tendency to spend more time optimizing 
a new algorithm than a seemingly simple linear one, and 
few have realized that significant gains were possible in 
linear search.

The authors of some of the published papers com-
mendably also distribute their source code, making a 
head-to-head comparison possible. However, and again 
for understandable reasons, many of these are written 
to demonstrate effectiveness and not as general purpose 
tools. As specific examples, the implementation might 
only handle fingerprints which are a multiple of 512 bits 
long, or require the input files use a specific file-system 
layout, or report timing information but not the match 
identifiers and scores.

The chemfp project started with a different goal in 
mind than most other projects. It distributes general-
purpose command-line tools and a library API to help 
promote the FPS format. The similarity search perfor-
mance has been improved over time in the expectation 
that people would use chemfp because of its perfor-
mance, and thus help popularize the FPS format.

The author of this paper therefore proposes that crea-
tors of new methods use the no-cost/open source version 
of chemfp as a reference for performance comparisons. 
This should provide a more rigorous baseline, and may be 
a useful way to normalize timings across multiple papers.

The chemfp benchmark suite takes that idea one step 
further by providing a collection of fingerprint data 
sets and tasks which can be used to evaluate search 
performance.

In all four cases, 1,002,000 fingerprints were sampled at 
random, without replacement. Of these, 2000 are desig-
nated as queries, and the remaining 1 million are targets. 
Only the first 1000 queries are used during comparison 
timings. The remaining 1000 queries may be used to dou-
ble-check the stability of the timings.

The benchmark suite includes a set of standard tasks: 
count or find all matches at or above a given threshold 
(0.4 for the Morgan fingerprints and 0.7 for the others), 
and find the k-nearest neighbors (for k = 1 and k = 1000). 
The 0.4 threshold task emulates a search to select every-
thing above a background level of similarity for the Mor-
gan similarity. The other threshold levels emulate a more 
typical search for “good” similarity. These tasks are not 
meant to be comprehensive, but only to provide an easily 
interpreted rough estimate of performance.

Table 4 shows the single query search times for chemfp 
1.5 and chemfp 3.3, which are the current versions of the 
no-cost and commercial development tracks. A version 
of chemfp 1.5 was instrumented to record the number 
of intersection calculations needed and thereby estimate 
the effective memory read bandwidth, and to count the 
number of Tanimoto calculations which required a 64-bit 
division (see Additional file 1: Table S3). The chemfp 1.5 
bandwidth of 11 GiB/s approaches the measured pmbw 
RAM read bandwidth of 13.3  GiB/s. These numbers 
show that chemfp 1.5 is likely an effective baseline for 
similarity search comparisons.

Chemfp 3.3 is faster than chemfp 1.5 because of inlin-
ing, AVX2, and the use of explicit memory prefetching 
instructions. The geometric mean of the ratio of their 
search times is 1.35 indicating that chemfp 3.3 is about 
35% faster than chemfp 1.5. Chemfp 3.3 uses 16  GiB/s 
of memory bandwidth, which is over half of the theo-
retical maximum of 25  GiB/s on the test machine and 
higher than the measured pmbw bandwidth. The current 
hypothesis is that the chemfp timings include some L3 
cache reuse.

Multiquery searches
The earlier description focused on single query perfor-
mance. Many common search tasks require multiple 
queries, such as the N × M case of comparing two differ-
ent data sets, or the N × N case of generating a similarity 
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matrix for clustering, where the fingerprints are used as 
both queries and targets. In the N × N case the diagonal 
is not computed.

Chemfp uses the OpenMP “parallel for” pragma to par-
allelize each query on its own thread. The N × N thresh-
old search computes the upper triangle in parallel then 
uses a single thread to fill in the lower triangle, which 
roughly doubles the performance. As a minor complica-
tion, the OpenMP implementation with one thread was 
slightly slower than the non-OpenMP version. Chemfp 
therefore compiles two code paths, and uses the non-
OpenMP version for single-threaded use.

Table 5 shows the scalability in the number of proces-
sors for different search methods using the 2048 bit data 
files from the chemfp benchmark. Several of chemfp cus-
tomers with access to more powerful hardware report 
successful Taylor–Butina clustering of ~ 3 million finger-
prints at a threshold of 0.4 within several hours.

Results and discussion
Popcount performance
Some authors of previous papers on this topic argue 
that if two different algorithms are implemented by the 
same people then the resulting timing comparison of the 
implementations fairly characterizes the relative perfor-
mance of the algorithms. Table 1 suggests this argument 
is not very strong. Several earlier papers characterize an 
8-bit lookup table as a high performance implementa-
tion, but there is a sixfold or larger performance differ-
ence compared to a POPCNT-based solution, and an 
order of magnitude difference compared to an optimized 

AVX2 implementation. This highlights the need to com-
pare a new algorithm implementation to a well-opti-
mized baseline.

The performance difference makes it difficult to assess 
the validity of many published papers in this field. A 
paper might show that the authors’ implementation of 
a new algorithm is twice as fast as their implementation 
of the BitBound algorithm when both implementations 
use a 16-bit lookup table to compute the popcount. Yet 
if the BitBound implementation were replaced with an 
AVX2 version, the result may be twice as fast as the new 
algorithm. It’s tempting to believe that replacing the pop-
count for the new algorithm would also result in a four-
fold speedup, but many of the algorithms perform extra 
work to avoid a slow popcount calculation. The time for 
that extra work does not change, reducing the overall 
speedup, and the extra work might not be as easily opti-
mized as the popcount.

Floating point issues
Testing of chemfp and fingerprint tools from other 
vendors shows that certain floating point issues are 
often overlooked. If the user specifies a threshold of 
0.7 + 1E−17 then most systems will include matches with 
a score of 0.7 because the above number, when input as 
the full string and converted to a double or 32-bit float, 
has the same representation as 0.7. A more realistic ver-
sion of this issue occurs in mixed 32/64-bit systems 
where the similarity search is implemented using 32-bit 
floats instead of doubles to reduce memory and improve 
performance. (32-bit division is significantly faster than 

Table 4 Average performance of 1000 queries against 1 million targets

The timings use three different search methods to search the four different fingerprint types from the chemfp benchmark data set. The total number of Tanimoto 
evaluations is less than 1 billion because of BitBound pruning.  TTanimoto is the average time per Tanimoto evaluation, including storing the hits. The effective read 
bandwidth is calculated as #Tanimotos * storage_size (24, 112, 128, and 256 bytes respectively)/TTanimoto. Note that while shorter fingerprints are faster and more 
compact, longer fingerprints tend to have better scientific usefulness

#bits Method #Tanimotos (M) chemfp 1.5 chemfp 3.3

Avg. time (ms) TTanimoto (ns) Bandwidth 
(GiB/s)

Avg. time (ms) TTanimoto (ns) Bandwidth 
(GiB/s)

166 k = 1 91.8 0.25 2.68 8.34 0.19 2.08 10.7

166 k = 1000 588 2.20 3.74 5.97 1.85 3.15 7.10

166 T = 0.70 688 1.72 2.50 8.93 1.42 2.07 10.8

881 k = 1 146 1.50 10.3 10.2 1.22 8.35 12.5

881 k = 1000 485 5.64 11.6 8.97 4.73 9.75 10.7

881 T = 0.70 554 5.70 10.3 10.2 4.70 8.47 12.3

1021 k = 1 113 1.30 11.5 10.4 0.86 7.56 15.8

1021 k = 1000 743 9.25 12.5 9.58 6.25 8.41 14.2

1021 T = 0.70 489 5.51 11.3 10.6 3.64 7.45 16.0

2048 k = 1 356 7.76 21.8 11.0 5.29 14.8 16.1

2048 k = 1000 939 21.2 22.6 10.6 14.6 15.5 15.4

2048 T = 0.40 920 19.9 21.6 11.1 13.6 14.8 16.1
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64-bit division). The 32-bit value of 0.7, when converted 
to a double, is smaller than the 64-bit value of 0.7. If the 
user specifies a threshold of 0.7 using a double, then a 
32-bit system might end up returning values which, when 
converted to double, are slightly less than the double 
value of 0.7.

It is also possible for valid matches to be excluded, such 
as when the 32-bit value for 0.8 is slightly smaller than 
the 64-bit value used internally for the threshold test. 
While it is a direct consequence of mixed 32/64-bit sys-
tems, and well-known to programmers, it can be quite 
unexpected for non-programmers when one tool finds, 
say, 20 more hits than another due to tiny differences in 
numerical representation.

The Tversky similarity is perhaps the second most com-
mon similarity measure in cheminformatics, though it 
is a distant second. The Tversky calculation may cause 
problems even using homogenous floating point types 

because IEEE floating point operations do not exactly 
follow the normal arithmetic distribution rules. Figure 4 
shows an example where two seemingly equivalent ways 
to write the Tversky equation lead to slightly different 
results. Some values of alpha and beta may even cause 
the Tversky similarity of a fingerprint with itself to be 
slightly less than 1.0, which has occurred in both earlier 
versions of chemfp and other vendor libraries.

Chemfp handles this issue by using integer calcula-
tions except for the final division. The values of values of 
alpha and beta, which are limited to a maximum of 10, 
are scaled by 10,000 then rounded to the nearest integer. 
While that introduces a new set of rounding errors, it 
works because there is no chemically justified reason to 
have values of alpha and beta with more than two deci-
mal digits of precision.

A likely better design would use scaled decimals and 
rational values rather than floating point numbers. If the 
fingerprints have no more than  216  bits then the exact 
score can be stored in two 16-bit values, with no need for 
division during search. A post-search step could convert 
those ratios to 32- or 64-bit floats, as desired. If the Tani-
moto threshold is given as a double then it could be con-
verted to a ratio of equal value (which may require 64-bit 
integers for the numerator and denominator), or replaced 
by a ratio of two small integers constructed so a search 

Table 5 Multiquery search performance

Time to search the 1 million 2048-bit Morgan fingerprints from the chemfp benchmark data set, for different numbers of threads. A query size of “1000” indicates that 
the first 1000 benchmark queries were used, “sorted” indicates the same 1000 queries sorted by popcount, and “N × N” generates the full sparse similarity matrix for 
the 1 million target fingerprints

Method Query size 1 thread 2 threads 4 threads

Time (s) Time (s) Scaling Time (s) Scaling

k = 1 1000 5.31 3.93 1.35 3.69 1.44

k = 1 Sorted 5.24 3.84 1.36 3.50 1.50

k = 1 N × N 7130 (= 1 h 58 m) 5200 (= 1 h 26 m) 1.37 4640 (= 1 h 17 m) 1.54

k = 1000 1000 14.6 10.5 1.39 9.54 1.53

k = 1000 Sorted 14.5 8.42 1.72 6.30 2.30

k = 1000 N × N 15,300 (= 4 h 14 m) 8040 (= 2 h 13 m) 1.90 4690 (= 1 h 18 m) 3.26

T = 0.90 1000 2.95 2.19 1.35 2.03 1.45

T = 0.90 Sorted 2.92 1.65 1.77 1.04 2.81

T = 0.90 N × N 1890 (= 31 m 34 s) 999 (= 16 m 39 s) 1.90 550 (= 9 m 9 s) 3.45

T = 0.80 1000 5.52 4.09 1.35 3.77 1.46

T = 0.80 Sorted 5.47 2.96 1.85 2.03 2.69

T = 0.80 N × N 3490 (= 58 m 9 s) 1830 (= 30 m 25 s) 1.91 1010 (= 16 m 47 s) 3.46

T = 0.70 1000 8.09 5.95 1.36 5.43 1.49

T = 0.70 Sorted 8.07 4.37 1.85 2.80 2.88

T = 0.70 N × N 4930 (= 1 h 22 m) 2580 (= 42 m 57 s) 1.91 1430 (= 23 m 49 s) 3.45

T = 0.40 1000 13.6 9.99 1.36 8.28 1.64

T = 0.40 Sorted 13.6 7.39 1.83 4.54 2.99

T = 0.40 N × N 7120 (= 1 h 58 m) 3710 (= 1 h 1 m) 1.92 2100 (= 34 m 55 s) 3.40

double alpha=0.2, beta=0.8;
int a=82, b=92, c=63;

c/(alpha*a + beta*b + c*(1-alpha-beta)) → 0.6999999999999998
c/(c + alpha*(a-c) + beta*(b-c)) → 0.7

Fig. 4 Example of how the non-distributive nature of IEEE 754 
doubles results in different Tversky similarity scores
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with the new ratio gives the same search results as using 
the original double.

Changed cost model
Many papers use an implicit cost model which minimizes 
the number of intersection popcount calculations and 
assumes the data structure overhead is small. One of the 
few explicit cost models in the literature is in Nasr et al. 
[26], where it was used to optimize a two-stage filtering 
process.

This model was reasonable 10  years ago, but mod-
ern hardware changes one of the simplifications in that 
approach. The Tanimoto calculation is now fast enough 
that memory bandwidth and latency are important fac-
tors, so the time to compute a Tanimoto is not a constant 
nor simple distribution, but is a function of the specific 
data organization and access patterns used.

As an illustrative example, suppose each fingerprint 
has an associated value like a BitBound popcount or xor 
signature which is used in a fast filter test to prune obvi-
ous mismatches before doing the fingerprint Tanimoto 
calculation. Chemfp’s AVX2 implementation for 1024-
bit fingerprints takes about 7.4  ns per Tanimoto, but if 
prefetching is disabled it drops to about 8.3 ns. Prefetch-
ing cannot be used with a per-fingerprint filter because 
the fingerprint shouldn’t be fetched until the filter test 
passes, which is exactly when the fingerprint is needed. 
In the most optimistic scenario, a filter must therefore be 
able to remove 10% of the candidates just to break even. 
A more complete analysis must consider the additional 
memory bandwidth overhead for the filter values and the 
higher latency (> 50  ns) of effectively random memory 
accesses once the fingerprint fetches are no longer easily 
predictable by the memory subsystem. A similar analysis 
holds for pruning methods which evaluate a partial fin-
gerprint to determine if the entire fingerprint should be 
evaluated.

These extra costs can be amortized by grouping finger-
prints with the same signature together, which implies 
either short signatures or a very large set of fingerprints. 
This conclusion can be derived from a modified version 
of the Nasr et al. cost model if  TTanimoto is allowed to grow 
as a function of M and starts with a value closer to  TM=2.

These issues didn’t arise during the empirical testing 
in earlier papers because the baseline timings (typically 
brute-force linear search or a simple test like BitBound) 
did not come close to reaching bandwidth limitations. 
Chemfp’s BitBound implementation, for example, is 
roughly 9× faster than the fastest implementation used 
in Kristensen et  al. [27] for a 0.9 threshold search from 
the reference benchmark (see Additional file 1: Table S4), 
in part because the latter depends on the relatively slow 
performance from representing fingerprints as Java set 

types. (The TanimotoQuery benchmark was run with 
OpenJDK 1.8. Additional file 1: Table S5 shows the Kris-
tensen KDGrid is faster than chemfp if the minimum 
threshold is above 0.97). Nasr et al. describe the time to 
compute the Tanimoto similarity as 48.8 ± 20.4 μs, which 
is over 1000× slower than chemfp. That paper uses com-
pressed fingerprints on a machine which did not support 
the POPCNT instruction.

An alternative is to use deeper tree data structures, but 
trees tend to have poor data locality, and the effectively 
random access memory patterns are about an order of 
magnitude slower than linear access patterns. To be cer-
tain, these tree data structures have a finite depth, with 
linear search in the leaves, so they will be more effec-
tive than BitBound for sufficiently large data sets. It’s not 
clear, however, where that transition occurs.

Multiquery scaling
Given that a single thread uses about half of the available 
bandwidth, the prediction is that chemfp’s multiquery 
search would scale by at most a factor of two, but several 
benchmarks in Table  5 shows a scaling factor of nearly 
3.5 for 4 threads.

The key observation is that the query input order 
affects the timing. The query sizes of “1000” and “sorted” 
both use the first 1000 queries from the benchmark 
data set, though the “sorted” queries are further sorted 
by popcount. The unsorted queries never scale beyond 
about 1.6, while the sorted queries often scale beyond 2.0.

The difference can’t simply be due to a more effec-
tive use of cache because the single thread time doesn’t 
change significantly between the sorted and unsorted 
versions, and because the T = 0.4 search shows good 
scaling even though the target space is far larger than the 
~ 32 K fingerprints which would fit into L3 cache.

The estimate of a maximum of 2× scaling assumes the 
threads mostly read data from different parts of memory. 
It appears that some of the search methods have a nat-
ural synchronization which causes the threads to read 
the same memory at nearly the same time. If the query 
fingerprints are unsorted then the BitBound algorithm 
causes neighboring threads to read from different fin-
gerprint ranges. If instead the fingerprints are sorted so 
fingerprints with the same popcount occur together then 
it’s more likely that many search threads will test the 
same target fingerprints and in the same order. When 
one thread is slightly ahead of the other then it will need 
to wait for the fingerprints to be transferred from RAM, 
while the slightly slower threads access their data from 
the significantly faster L3 cache. This temporal coherence 
explains why the threshold searches, which always exam-
ine the same regions of memory for the same popcount, 
have better scaling than k-nearest searches, where the 
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target search space is a function of the kth-nearest sim-
ilarity score. It also explains why the k = 1000 searches, 
which by the law of large numbers will tend to explore 
the same amount of space, scales better than the more 
variable reads of k = 1 searches.

Some other search tools use more sophisticated meth-
ods to handle multiquery searches, for examples by 
making better use of cache by traversing memory in 
Morton/Z-order [15] or by query set indexing [44]. These 
will need to be examined more closely to see if they can 
be applied to chemfp.

Benchmark data set density
The 1024-bit and 2048-bit fingerprints in the chemfp 
benchmark appear to be relatively sparse compared to 
most path fingerprints for the former, and compared to 
most fingerprints in general for the second. Density was 
not considered as part of the selection process because 
most dense search methods are insensitive to density. 
However, those choices may affect performance compari-
sons with sparse methods, which are more sensitive to 
density.

As a recent paper [45] highlights, the 2048-bit Morgan 
fingerprints are sparse enough that the RISC algorithm, 
which uses sparse inverted indices, is faster than chemfp. 
A closer examination [46] shows that the Morgan finger-
print bit density of only 0.024 for the ChEMBL data set 
is quite sparse compared to most other 2048-bit finger-
print types. For example, the standard RDKit fingerprint, 
based on paths and branches up to 7 bonds, has a density 
of 0.425, and many other fingerprint types have densities 
above 0.1.

Earlier work [47] showed that clustering 2048-bit Mor-
gan fingerprints using blocked inverted indices was about 
twice as fast as chemfp 1.1. Together these two papers 
strongly suggest that sparse methods will outperform 
dense ones for Morgan fingerprint search—and likely 
most ECFP-like circular fingerprints. Interestingly, bit 
position correlations also appear to play a role as RISC 
and chemfp have comparable performance for a path fin-
gerprint data set with similar sparsity to the Morgan data 
set.

The Open Babel FP2 fingerprints, which are based on 
linear fragments of length 1 to 7 atoms, are also unusu-
ally sparse for a path fingerprint. Each FP2 hashed path 
sets only one bit of the fingerprint, while the equivalent 
fingerprint types from RDKit and OpenEye set more than 
one bit.

Thus, the chemfp benchmark data sets may not be 
useful for tasks beyond comparing dense fingerprint 
methods. On the other hand, while they may not be 
representative of most fingerprint types, circular finger-
prints are widely used, so the benchmark may give more 

focus to improving their performance. There may also be 
ways to improve dense approaches to better handle rela-
tively sparse fingerprints. One intriguing possibility is to 
store compressed fingerprints in memory, and decom-
press when needed, which has proven useful in other 
fields when an implementation is memory bandwidth 
limited [48].

Funding open source
Starting around 15  years ago a number of papers dis-
cussed the role of free and open source software (“FOSS”) 
in cheminformatics [49–53]. Most papers argued that 
FOSS was essential for scientific reproducibility and 
economically beneficial to organizations, but said little 
about how FOSS projects could be funded, or the effect 
of the funding model on the project. In practice, most 
projects are developed through direct research funding 
or through indirect funding of employees who contribute 
code to a project. One of the goals of the chemfp project 
was to explore the possibility of “selling free software” 
[54] as an alternative funding source. Originally chemfp 
was only distributed under the MIT license, under the 
principles of free software. This proved to be financially 
unsustainable, with low income and poor income sta-
bility, so the current distribution also includes cheaper 
though proprietary licensing options. The rest of this sec-
tion outlines the issues involved, in hopes of providing 
insights for future FOSS software projects.

Many FOSS projects are directly funded as part of a 
research effort. In academic projects, the funding typi-
cally comes from grants, and industrial funding typically 
comes from the R&D budget. The main goal of these pro-
jects is the scientific result, and often there is no budget 
for effective end-user documentation, maintenance, or 
support, or even portability beyond the developers’ own 
system. Consequently reported bugs do not get fixed, 
user questions remain unanswered, and the software 
often “rots” as it gradually becomes incompatible with 
evolving software development practices. (There are rare 
exceptions, as when an academic group is funded as a 
long-term software resource).

These potential negatives are generally not a problem 
because most projects are not designed for long-term 
sustainability. The authors of a journal paper may include 
an open source implementation as a way for others to 
verify the result, or a developer may release a package 
that solved a specific in-house problem as a gift in case 
others might find it interesting. FOSS software generally 
doesn’t have the existential issues that a proprietary pack-
age may have, in that others can start with the source, 
though at the cost of rebuilding the lost institutional 
knowledge of how the software works.
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Stability is more important for projects which are 
deeper in the cheminformatics software stack [55] 
because users find them more indispensable and harder 
to maintain independently. The Open Babel, CDK [56], 
and RDKit toolkits handle this by developing a “com-
munity”, that is, an association of people willing to share 
the labor costs for better stability, more effective impact, 
esprit de corps, an aversion to proprietary software, a 
form of apprenticeship, and so on.

These sorts of FOSS projects are generally indirectly 
funded. One common example is when an employee 
modifies a project to make it better suited for in-house 
use, and contributes the modifications back to the pri-
mary project maintainers rather than maintain a forked 
project. The employer indirectly funds the FOSS project, 
through the employee’s salary, and benefits economi-
cally from the exchange. Similar arrangements hold for 
students and academics. In general, this funding model 
assumes that participants find a single third party willing 
to pay them to work on the project. This may be a prob-
lem when the needs of the third party are not aligned 
with the needs of the project, such as when academic 
researchers find that their career progression is increas-
ingly based on bibliometric counts, and not on leadership 
or participation in a widely used research software pro-
ject [57].

Experience across many FOSS projects shows that the 
community model is nearly always underfunded with 
respect to the economic and social benefit provided, even 
for successful projects [58]. For example, a company may 
decide to use one of the FOSS toolkits instead of pay-
ing for a commercial toolkit, but not use any of the sav-
ings to help further toolkit development. This is often 
described as the “free rider problem” [59] of FOSS devel-
opment, though it is a problem only to the extent that 
FOSS developers need or expect some sort of compensa-
tion. While it’s true that many do not expect monetary 
payment, many FOSS developers hope for collaborators, 
contributions of patches and improvements, future con-
sulting work, employment offers, or social or scientific 
recognition. Even if the developers regard their contribu-
tion as a pure gift, it would likely help the project if more 
of the cost savings from users could be directed towards 
improving the project. Then again, even if a company 
wants to contribute funding, it can be hard to figure out 
how, such as when most of the developers are employees 
of competing companies.

Many people aren’t even aware that most long-lived, 
widely deployed FOSS packages—some with millions 
of users—have only one or a few core developers, and 
some of these developers get burned out from the emo-
tional stresses involved [58, 60]. Nor is it easy to talk 
about the need for funding when FOSS development is 

so closely coupled to terms like “community” and “vol-
unteer” and the software is nearly always available at no 
cost. Still, these are not completely incompatible top-
ics as some non-software volunteer organizations have 
paid support staff, as do communities like villages. What 
are alternative models to pay for FOSS development in 
cheminformatics?

Chemfp as commercial open source
Customers will pay for commercial proprietary software, 
for a price which includes the costs of long-term stability, 
testing, documentation, and support. Another goal of the 
chemfp project was to see if industry would pay for com-
mercial FOSS software, where customers who have paid 
for a copy of the software are then free to use and redis-
tribute it to others, including those who have not paid. 
Industrial users were the target customer in part because 
pharmaceutical companies rarely distribute software 
[53], which reduces some of the economic risk involved.

The initial version of chemfp, which was subsidized by 
previous consulting income, was not a viable commer-
cial product because it was too slow. It acted as a form of 
advertising, which lead to several development contracts 
with companies interested in improved performance, 
OpenMP parallelism, Tversky search, and the FPB for-
mat. Some of these features went into the no-cost version 
of chemfp, which was meant to promote the use of the 
FPS format and continue to act as an advertisement for 
the project, while others went into the commercial ver-
sion. Both versions were FOSS.

It’s not surprising that the consulting model is one way 
to fund FOSS development, but its success depends on 
getting new work. In essence this model views software 
development as a labor cost, and disregards the capital 
value of the software. This places it at a disadvantage to 
commercial software which is able to sell the same soft-
ware to multiple customers and use the funding to pro-
vide additional project support, including the marketing 
needed to let others know about the project. There is also 
a perverse incentive in the consulting model because if 
the software is ‘too good’ there will be less need for con-
sulting [58].

The consulting model doesn’t work well when a lot 
of work is needed for something which adds little ben-
efit for any one client. Chemfp’s transition from Python 
2 to 3 took nearly two months of effort, though to the 
user the only other difference was support for Unicode 
identifiers—which are rarely needed. This effort could 
be justified under the commercial model because the 
cost was split between customers. An alternative might 
be the consortium model, where the project doesn’t start 
until enough people have agreed to pay for it, though that 
requires additional marketing and sales expertise, and the 
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risk that the effort to build a consortium fails. The con-
sortium model should also be structured to minimize the 
free rider problem.

The patron model is another variant of the consulting 
model, where satisfied and supportive users voluntarily 
contribute to the project, and preferably on a continuing 
basis. This option was available for chemfp, perhaps des-
ignated as a support contract for accounting purposes, 
though the only contribution so far has been a bottle of 
wine. (The InChI project uses the patron model as it is 
funded primarily by membership subscription, though 
there is also considerable in-kind contributions of time 
and facilities from its members and other collaborators).

The original chemfp business plan was to use a delayed-
release distribution model, where older releases of the 
commercial version would become the newest release of 
the no-cost version after, say, 2 years. It was quickly clear 
that this model would not work because chemfp would 
be its own competitor. The improvements after only 
2  years were not enough to justify a commercial price 
that could support the entire project development, and 
many organizations who did not have a pressing need for 
performance could wait until it was available at no cost.

Instead, chemfp development changed to a two track 
model. Most new development goes into the commer-
cial track, while the no-cost/open source track is mostly 
in maintenance mode. This means that chemfp uses a 
closed development model, while many FOSS projects 
use an open development model hosted on public servers 
like GitHub or BitBucket where anyone is free to observe 
or join. While the closed model may inhibit collabora-
tions with those willing to contribute improvements, 
personal experience shows that it’s rare for most FOSS 
projects to get more than occasional patches. The disad-
vantages of the closed model may easily be outweighed 
by possible additional funding. For example, funding 
from chemfp sales was used to pay two people from the 
small community of popcount optimizers to improve 
chemfp performance.

Problems selling free software
It may seem like a contradiction to “sell” free software, 
because one definition of “free” means available at no 
cost. There are differences between the social move-
ment of free software and the development method-
ology of open source [61]. To many they are like the 
doctrinaire differences between the People’s Front of 
Judea and the splitters of the Judean People’s Front 
[62]. For purposes of this paper, the Four Freedoms 
[63] of free software say that anyone who receives 
any software has a right to usable source code of that 
software and is free to use, modify, or redistribute the 

software and source—including for a fee—so long as 
the software remains free software. The open source 
methodology argues that useable source code with few 
restrictions is better than proprietary software because 
it results in better software, but it can be acceptable (if 
the license allows) to include open source software in 
a binary-only package, or in software which prohibits 
redistribution.

For many years chemfp followed the free software 
principles and only distributed under the MIT license, 
along with some third-party components under an 
equally permissive license. These principles made it 
much more difficult to sell chemfp. If a potential cus-
tomer wants to evaluate the software before buying it, 
and the evaluation software is distributed under a free 
software license, then there is little other than a loss of 
good will which prevents the customer from continuing 
to use the software but not going through with the sale.

Commercial proprietary software uses market seg-
mentation so that the sale price is a better match for 
what customers are willing to pay. It is common prac-
tice for academic groups to receive a copy of commer-
cial proprietary software at no cost or a greatly reduced 
cost. However, while a developer at a large pharmaceu-
tical is unlikely to redistribute software, a graduate stu-
dent at a university is much more likely to make a copy 
of open source software available to the public. The 
price for an academic purchase, after factoring in the 
economic risk that the software may be redistributed, 
may be more expensive than an industrial purchase. For 
chemfp this meant that the commercial FOSS version 
was only sold to industrial customers.

These and similar problems lead to the conclusion 
that it is not possible to develop chemfp as a self-funded 
fully free software project. The latest business model 
assumes that people are mostly interested in FOSS 
because it is available for no cost, and not because of 
moral principles or an improved development method-
ology. All versions of chemfp are still available under 
the MIT license. What’s new are proprietary licensing 
options for those who do not wish to pay the full price, 
and pre-compiled binaries with a time-locked license 
key for evaluation purposes. The change to include pro-
prietary licensing was only possible because chemfp 
does not depend on any components under a free soft-
ware license like the GPL which requires that derived 
distributions always be free software.

This does not mean that self-supported commer-
cial FOSS software for cheminformatics is impossible. 
There might not be enough demand for chemfp, it may 
have the wrong pricing model or insufficient marketing, 
or any of the many reasons which cause a product to 
fail.
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Open core
Chemfp is one of perhaps a handful of self-funded FOSS 
projects in cheminformatics or related fields. The best 
known was the early commercialization of PyMol [64], 
which sought voluntary contributions from users. As an 
incentive, those who paid could download pre-compiled 
binaries (anyone could download and compile the source) 
and have access to features that were not generally avail-
able. PyMol was a very successful project in terms of the 
number of users, but DeLano Scientific never received 
enough funding to hire another full-time employee, and 
augmented its income by providing consulting services 
to produce publication quality structure images [Warren 
DeLano, personal communication]. Chemfp was influ-
enced by PyMol’s model, though focusing on corporate 
sales and not end-users or academics.

Many more successful FOSS projects instead follow 
what is broadly referred to as “open core” [65] where 
one product is available as FOSS, as part of a larger suite 
which includes proprietary software. The proprietary 
software may be a more advanced version of the product 
or plug-in extensions, or there may be easy integration 
between the FOSS product and other vendor products. 
From a business viewpoint, the FOSS product can be jus-
tified as a loss leader or as advertising for the proprietary 
products which fund development. Overall, open core 
seems the most successful alternative funding mecha-
nism for developing FOSS products.

However, this approach requires giving up on the ideals 
of free software and coming up with multiple successful 
products. Since the core is likely funded with the expec-
tation of future income from a proprietary product, there 
is also the economic risk that others will use the open 
core component to develop a competitor to the proprie-
tary version but without taking on the development debt.

Status and future
Chemfp is used at many companies, though most use the 
no-cost version. One of the more unusual examples is 
when one company used it in a comparison between two 
proprietary corporate compound libraries [66]. Chemfp’s 
performance was fast enough that a full nearest-neighbor 
analysis could be done in less than a day on an isolated 
laptop; the hard drive was then reformatted after the 
analysis to preserve confidentiality [Thiery Kogej, private 
communication].

It is hard to get a sense of who uses the no-cost version 
of chemfp or the FPS format, in part because modern 
FOSS distribution is increasingly intermediated by pack-
age managers. There are about 20 anonymous downloads 
per month from the chemfp web server, and another 15 
through BioConda. (The BioConda distribution is not 
maintained by the chemfp project). It’s likely that most 

people download chemfp through PyPI, the Python 
Package Index, which uses its own copy of the source and 
does not provide download statistics. A download may 
correspond to one user, or to a system administrator who 
installs it for an entire organization, or a continuous inte-
gration system which repeatedly downloads the package.

Informal conversations at conferences suggest that 
chemfp is well-known and widely deployed, but the FPS 
format has not started to replace the ad hoc internal for-
mats that it was designed to replace.

Several packages do support the FPS format, including 
CACTVS [67], Open Babel, and the ‘fingerprint’ package 
for R [68]. ChEMBL includes pre-computed RDKit Mor-
gan fingerprints in FPS format as part of the standard 
distribution, starting with version 24 from March 2018. 
The FPB format was not publicly documented until 2018. 
At present only RDKit and the commercial version of 
chemfp support it. The chemfp benchmark has been used 
to evaluate the RISC algorithm, and its implementation 
also supports the FPS format.

While chemfp handles most of the common similarity 
search tasks in cheminformatics, there is still much that 
can be done, like a diversity picker, or plugin support to 
make it easier to add new fingerprint types. Some anal-
ysis methods, like generating a histogram of all N × M 
similarities between two large data sets, are a natural fit 
for Morton/Z-ordering and seem like an excellent candi-
date for future inclusion in chemfp.

Computing hardware continues to improve. Chemfp 
will add support for the 512-bit VPOPCNTDQ instruc-
tion, which should be a good complement to the higher 
bandwidth of DDR4 memory. Future research will likely 
evaluate the effectiveness of other pruning methods, with 
particular attention on M = 2 pruning. This research will 
also inform the changes to the FPB format which are 
needed to effectively support real-world data sets, which 
are approaching 1 billion compounds.

GPU memory bandwidth is an order of magnitude 
higher than CPU bandwidth, so a GPU implementation 
of the Tanimoto search kernel should be about ten times 
faster. Chemfp has avoided GPU support so far because 
it’s not clear that the demand for similarity search justi-
fies dedicated hardware, especially if the time to load the 
data into the GPU is slower than the time to search it on 
the CPU. GPUs are more likely to be appropriate for clus-
tering mid-sized datasets where the fingerprints fit into 
GPU memory.

Those are mostly engineering topics. One of the more 
interesting scientific topics in chemfp’s long-term future 
is support for sparse fingerprints and sparse count finger-
prints. Dense fingerprints are often created by folding a 
sparse fingerprint (typically with a few hundred bits set 
in the range  232 or  264) down to 1024 or 2048 bits. Some 
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authors suggest that significantly larger folded finger-
prints—as long as 16,384 bits—are more appropriate for 
some tasks [69]. While chemfp can handle these longer 
fingerprints, the increased length requires more memory 
and decreases search performance.

It seems that a better solution would be to develop 
tools designed to work directly on sparse count finger-
prints. While such tools already exist, they are not widely 
used. Informal discussions suggest that people aren’t 
using them because the tools don’t have anywhere near 
the same performance or level of maturity as dense fin-
gerprint search tools, which makes it harder to gain the 
experience to judge when sparse count fingerprints are 
useful, which in turn reduces the push to improve the 
tools. This is another chicken-and-egg problem which 
seems a natural fit for the chemfp project.

Conclusions
Tanimoto similarity search on modern hardware is essen-
tially limited by memory bandwidth, which means a 
rough estimate of the maximum search time is roughly 
the number of fingerprints times the number of bits 
divided by the RAM bandwidth. Further improvements 
are possible by pruning the search space, and there many 
publications along these lines. Few of those papers used a 
Tanimoto calculation implementation which approaches 
the bandwidth limits, in part because popcount evalua-
tion on older hardware was not fast enough, and in part 
because many implementations did not use the fastest 
available methods.

That does not mean these more sophisticated methods 
are invalid. Instead, it shows how difficult is is to compare 
two algorithms through specific implementations. Some 
algorithms are a better fit to the hardware, and two peo-
ple of the same skill may produce implementations of the 
same algorithm with a several-fold difference in perfor-
mance. Empirical testing shows that chemfp’s basic Bit-
Bound implementation is around nine times faster than 
an implementation of MultibitTree. It may be that a more 
optimized version of MultibitTree is even faster; at pre-
sent we don’t know.

Chemfp is not the first program to approach memory 
bandwidth bounds, but it is the first one available as a 
general-purpose toolkit. The no-cost, MIT-licensed ver-
sion, while about 25–35% slower than the commercial 
version, should provide a useful reference baseline for 
new work, and the chemfp benchmark should make it 
easier to do head-to-head comparisons. Using chemfp in 
this way will also promote the FPS format, which is the 
main reason for starting the chemfp project.

Chemfp was organized as commercial FOSS project, 
to experiment with an alternative way to fund FOSS soft-
ware development. It was not financially successful so 

proprietary licensing models were added. While some of 
the difficulties are specific to chemfp, others will be true 
for any commercial project with a pure FOSS business 
model. It’s still unclear how FOSS can be funded in a way 
that reflects its importance to a large number of users. 
Without some sort of funding mechanism, the only peo-
ple who will be able to work on FOSS projects are those 
who can convince their employer that it is worthwhile, 
and those who do it as a hobby. This is unlikely to scale as 
more and more people use FOSS in cheminformatics. We 
already see how the lack of funding has lead to problems 
in the larger world of FOSS. The author hopes others are 
able to come up with a better solution for our field.
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Additional file 1: Table S1. Performance of different popcount imple-
mentations, in milliseconds and relative to the 8-bit lookup table time, 
measured using the threshold searches from the chemfp benchmark 
suite (T = 0.4 for 2048 bit searches, otherwise T = 0.7). In most cases the 
search algorithm uses a function pointer to dispatch to the appropriate 
popcount function, without memory prefetching. The POPCNT and AVX2 
versions show times using loops of different sizes and “fully unrolled” 
versions which implement the fingerprint popcount without a loop. 
The ‘inline’ and ‘prefetch’ variants inline the calculation and use memory 
prefetching, respectively. Timings were made with chemfp 3.3. Figure S1. 
Scaling of k = 1 nearest neighbor searches as a function of the number of 
targets, for different fingerprint types. MACCS and FP2 fingerprints scales 
as O(n~0.65) and the PubChem/CACTVS and Morgan searches scale as 
O(n~0.8) in the number of fingerprints in the dataset, which is the sublinear 
scaling expected from using BitBound. Timings made with chemfp 1.5. 
Table S2. Chemfp file scan search performance for 100 queries from each 
of the data sets in the chemfp benchmark. The search time shows chemfp 
processes 500–600 MiB/s. The GNU program “wc” version 8.25 can count 
the number of lines in about 1/10th the time indicating that chemfp is 
not disk I/O bound. Table S3. Number of Tanimotos evaluated for an 
in-memory search of each of the test cases in the chemfp benchmark 
suite. The number of Tanimotos is much less than the expected 1 billion 
(1000 queries * 1 million targets) because of the BitBound limits. The 
number of divisions is the number of tests which passed the fast rational 
rejection test so require a 64-bit division. It shows the effectiveness of the 
rational rejection test. Table S4. Performance comparison as a function 
of the number of fingerprints between the fastest implementation from 
Kristensen et al. [28] and chemfp 3.3, using the Kristensen benchmark 
data set. The benchmark does a threshold = 0.9 search using the first 
100 fingerprints in the data set. Table S5. Performance comparison as a 
function of minimum Tanimoto threshold between the fastest imple-
mentation from Kristensen et al. and chemfp 3.3, using the Kristensen 
benchmark data set. The benchmark uses the first 100 fingerprints in the 
data set to search the first 1,999,998 fingerprints. LinearSearcher is the fast-
est Kristensen method for all Tanimoto thresholds at or below 0.76. Some 
thresholds timings are omitted here as they add little useful information. 
The full table for each threshold step of 0.01 is available from this paper’s 
BitBucket repository.
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