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Abstract 

The problem of drug side effects is one of the most crucial issues in pharmacological development. As there are many 
limitations in current experimental and clinical methods for detecting side effects, a lot of computational algorithms 
have been developed to predict side effects with different types of drug information. However, there is still a lack of 
methods which could integrate heterogeneous data to predict side effects and select important features at the same 
time. Here, we propose a novel computational framework based on multi-view and multi-label learning for side effect 
prediction. Four different types of drug features are collected and graph model is constructed from each feature 
profile. After that, all the single view graphs are combined to regularize the linear regression functions which describe 
the relationships between drug features and side effect labels. L1 penalties are imposed on the regression coefficient 
matrices in order to select features relevant to side effects. Additionally, the correlations between side effect labels are 
also incorporated into the model by graph Laplacian regularization. The experimental results show that the proposed 
method could not only provide more accurate prediction for side effects but also select drug features related to side 
effects from heterogeneous data. Some case studies are also supplied to illustrate the utility of our method for predic-
tion of drug side effects.
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Introduction
The safety assessment of candidate chemical compounds 
is essential for drug development. Detection of serious 
adverse effects of drugs in preclinical tests or clinical 
trials is one of the major reasons for the failure of drug 
development [1]. Furthermore, some side effects are only 
reported in postmarket surveillance, in which situation 
serious consequences such as hospitalizations and deaths 
may be caused by adverse drug reactions [2]. As the per-
formance of traditional methods for side effect detection 
is limited and the cost of these methods is expensive, 
there is a great need for developing new approaches that 
can effectively reveal drug side effects.

Computational approaches have been developed to 
study various pharmacological problems such as drug 

repositioning  [3–5]. It is also demonstrated that in sil-
ico methods could be regarded as complementary or 
alternative ways to test drug toxicity and predict side 
effects  [6, 7]. Recently, several computational methods 
utilizing diverse drug related information have been 
proposed for side effect prediction. Chemical structures 
of compounds have been conventionally used to predict 
side effects  [8]. For example, Xu et  al. employed a deep 
learning method to encode the chemical structures of 
drugs and predicted drug-induced liver injury  [9]. Atias 
et  al. systematically predicted multiple side effects with 
chemical structure features by canonical correlation 
analysis (CCA)  [10]. Besides chemical information, bio-
logical knowledge of drugs is also useful for predicting 
side effects. Using drug-protein interactions as input, 
Mizutani et al. proposed a side effect prediction method 
based on sparse CCA (SCCA)  [11]. Fukuzaki et  al. pre-
dicted side effects by mapping the targets of drugs to 
biological pathways [12]. In another work, drug-induced 
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gene expression changes were summarized as biologi-
cal process terms to predict side effects  [13]. Moreover, 
it’s reasonable to presume that integrating chemical and 
biological information will help boost the accuracy of 
side effect prediction. For example, Yamanishi et al. pre-
dicted side effects by integrating chemical structures and 
target protein data of drugs [14]. Wang et al. prioritized 
drug side effects by combining chemical structures and 
gene expression changes [15]. There are also some studies 
that include other information such as phenotypic data of 
drugs to predict side effects [16, 17].

Computational methods are also developed to discover 
the drug features closely related to side effects. SCCA 
based methods were proposed to reveal chemical frag-
ments and target proteins related to side effects [11, 18]. 
Xiao et  al. suggested a latent Dirichlet allocation model 
to learn the relations between drug structures and side 
effects  [19]. Kuhn et  al. related the known drug tar-
get proteins to side effects by enrichment analysis  [20]. 
Iwata et al. associated protein domains with side effects 
by sparse classifiers [21]. Chen et al. inferred the associa-
tions between proteins and side effects by random walk 
on a heterogeneous network [22].

Previous computational approaches have demonstrated 
their ability to predict drug side effects and reveal relevant 
features. However, there are still some limitations of exist-
ing methods. Firstly, although various types of drug features 
have been utilized for side effect prediction, how to effec-
tively retrieve the complementary information from multi-
ple sources of data is still an open problem. Secondly, some 
side effects relate to the same group of drugs, these side 
effects may have a similar molecular basis. How to utilize 
the correlations between side effect labels to promote the 
prediction performance is still not fully explored. Thirdly, 
the dimensions of drug features are usually high. Select-
ing informative drug features could alleviate the negative 
impact of the high dimension features on the predictive 
model and may hint at the molecular basis of side effects. 
Diverse types of drug characteristics could relate to the 
occurrence of side effects [21], but few methods are capa-
ble of selecting useful features from multiple data sources 
collectively. The influence of side effect label correlations 
on feature selection has also not been well considered. This 
will impair the performance of data fusion model.

Multiple types of drug features could be integrated by 
multi-view learning. Multi-view learning aims at incorpo-
rating heterogeneous data in a unified model to retrieve 
complementary information and improve predictive per-
formance  [23]. Multi-view learning has also been applied 
in previous pharmacological studies. Zhang et  al. have 
predicted drug target interactions by integrating multi-
view network data  [24]. In our previous work, a multi-
view learning method was proposed for prediction of 

drug-disease associations  [3]. In the study of Yamanishi 
et al. they used multiple kernel learning to predict drug side 
effects  [14]. On the other hand, the correlations between 
side effect labels could be exploited by multi-label learning. 
Multi-label learning deals with the classification problems 
in which samples are associated with multiple labels. How 
to use the correlations between labels to improve classifi-
cation accuracy is a major task of multi-label learning [25]. 
Multi-label learning has been applied to various problems, 
such as protein function and subcellular localization pre-
diction [26, 27]. Besides, for multi-label classification, each 
class label may be discriminated by some special charac-
teristics of its own. These discriminative characteristics are 
denoted as label specific features. Selection of label specific 
features could be of benefit to multi-label classification [28]. 
Multi-view learning and multi-label learning could handle 
different aspects of side effect prediction problem, thus 
combining these two methods could explore feature het-
erogeneity and label correlations simultaneously.

Graph Laplacian regularization is one of the manifold 
learning algorithms and has many applications in machine 
learning  [29]. It looks for a sufficiently smooth distribu-
tion of data in a low-dimensional manifold and encourages 
locality preserving properties of the learning model  [30]. 
For multi-view data, the graph Laplacian based algo-
rithms employ a neighbourhood graph to capture the local 
geometry of each view, then all the graphs are aligned to 
extract the complementary information  [31]. Shi et  al. 
utilized graph Laplacian regularization to integrate multi-
view data and proposed a semi-supervised sparse feature 
selection method [32]. Our previous work on drug-disease 
association prediction also utilized the multi-view Lapla-
cian regularization  [3]. For multi-label classification, the 
correlations among labels can also be encoded as a graph. 
For example, in the work of Mojoo et al. they introduced 
graph Laplacian regularization to represent the co-occur-
rence dependency between image tags [33].

After realizing the limitations of existing methods, we 
intend to investigate the problem of side effect prediction 
by fusing the ideas of multi-view and multi-label learn-
ing. For this purpose, graph Laplacian regularization is 
employed to model both the relationships between het-
erogeneous features and the correlations between labels. 
Similar to the previous works  [3, 32], the complemen-
tary information from multiple drug feature profiles is 
explored by combining all view-dependent graph models. 
The correlations between side effect labels are introduced 
as an additional graph Laplacian regularization term. 
Furthermore, linear regression with L1-norm penalty is 
incorporated into the model to get label specific features 
from different feature profiles, which is similar to the 
graph constrained Lasso  [34]. An iterative algorithm is 
proposed to solve the optimization problem of the model. 
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Then, four different feature profiles, including chemical 
substructures of drugs, protein domains and gene ontol-
ogy terms of drug targets and drug-induced gene expres-
sion changes are collected. These heterogeneous features 
are integrated by our method to predict side effects of 
drugs. The performance of our method is compared with 
several existing methods. We also illustrate the predictive 
capability of the proposed method with some case stud-
ies and examine the selected features. The results show 
that our method outperforms the compared methods.

Methods
Data collection
The side effects of drugs were retrieved from SIDER [35]. 
The chemical structures of drugs were derived from 
PubChem [36]. The protein targets of drugs were obtained 
from DrugBank [37], only target proteins related to human 
were kept. The protein domains of the targets were col-
lected from InterPro  [38] and gene ontology information 
(only using biological process terms) was extracted from 
Uniprot  [39]. The gene expression data of drugs in the 
LINCS L1000 project were downloaded  [40]. Finally, 501 
drugs with all above information were kept for the fol-
lowing analysis and model construction. The DrugBank 
identities of these drugs and the count of side effect labels 
for each drug could be found at the (Additional file  2: 
Table  S1). The identifiers and names of the features are 
supplied at (Additional file 2: Table S2). We also obtained 
the off-label side effects recorded in FDA Adverse Event 
Report System (FAERS) from the previous work  [15]. 
There are 106 drugs with all types of features and off-label 
side effects in FAERS but without any records in SIDER. 
294 drugs are present in both SIDER data and FAERS data, 
and these drugs have additional 65873 drug-side effect 
associations in FAERS data. The information of these 
drugs is available at (Additional file 2: Tables S3 and S4).

Data preprocessing and drug feature matrices building
For chemical substructures of drugs, the fingerprints 
defined by PubChem were calculated using PyBi-
oMed  [41]. The chemical substructure matrix is built 
using the binary fingerprints (881 bits in total). With the 
target information of drugs, two binary feature matrices 
are constructed. The target protein domain matrix is a 
binary matrix in which the elements are 1 if the targets of 
drugs have the corresponding protein domains or 0 oth-
erwise. There are 1307 unique protein domain features. In 
the target gene ontology matrix, the elements are set to 1 
if the targets of drugs are annotated with the gene ontol-
ogy terms. There are 3336 unique gene ontology features. 
For drug induced gene expression changes from LINCS 
L1000 project, only the values of the 978 landmark genes 
were kept. If the absolute value of the moderated z-score 

for a gene signature is bigger than 2, the signature value 
is set to 1 or −  1 depending on the original sign of the 
moderated z-score, otherwise the signature value is set to 
0. After that, the elements of the gene expression matrix 
are evaluated as the averages of signature values of each 
gene for each drug. Through above data processing, four 
feature matrices Xp ∈ R

n×dp of drugs are obtained, where 
n is the number of drugs, dp is the number of features in 
the pth feature matrix.

The relationships between drugs and side effects were 
extracted from the ‘meddra_all_se’ file of SIDER and only 
preferred terms for side effects were kept. There are 3260 
side effect labels in total. If there is a record of the rela-
tionship between drug i and side effect j, we set the ele-
ment in the ith row and jth column of the label matrix 
Y ∈ R

n×l to 1, otherwise set the element to 0, where l is 
the number of side effects.

Problem formalization
In this work, we plan to construct a computational model 
which could predict side effects of drugs and select label 
specific features by integrating multiple types of drug 
data {Xp} . Firstly, the formulation of our method, which is 
named as multi-view Laplacian regularized sparse learn-
ing (Multi-LRSL), is introduced. Then an optimization 
algorithm for solving Multi-LRSL is presented.

Multi‑LRSL model
Predicting side effects with special drug features We 
assume that different types of drug features are comple-
mentary to each other and could be exploited to predict 
side effects. Moreover, each side effect should be only 
associated with a subset of features from different fea-
ture profiles. That is, the drug features relevant to side 
effects are sparse. As a result, we model the relationships 
between drug features and side effects by least square loss, 
and use L1-norm to regularize the coefficient matrices:

where � · �F is the Frobenius norm, µ and β are the model 
parameters. Gp represents the regression coefficient 
matrix for the pth feature profile, m is the number of fea-
ture types, F is the predicted side effect label matrix and 
contains continuous values. In the label matrix Y, the ele-
ments are set to 1 for positive labels and 0 for negative 
or unobserved labels. F should be similar but not identi-
cal to Y because Y may contain some missing and noisy 
values. The elements of F could be ranked, and the big-
ger values imply possible positive labels and the smaller 
values imply possible negative labels. In the second term, 
the L1-norm with the parameter β controls the sparsity of 

(1)min
Gp ,F

µ

2

m
∑

p=1

�XpGp − F�2F + β

m
∑

p=1

�Gp�1
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side effect related features. The non-zero elements in the 
jth column of Gp are the relevant features for the jth side 
effect.

Preserving the local structure of different feature space 
in the side effect label space We assume that drugs with 
similar features should have similar side effect labels. This 
is known as the smoothness assumption  [42]. For each 
type of drug features, a pairwise drug similarity matrix is 
calculated, then the k-nearest neighbour (knn) graph Sp is 
constructed:

where Xp(i, :) and Xp(j, :) are the row vectors of the pth 
feature matrix. In this work, we use cosine similarity for 
all feature profiles and set k = ⌊0.01n⌋ . The rows of F are 
the predicted side effect labels for drugs. As the result 
of the smoothness assumption, we get the following 
formula:

This means that drugs with similar features in the pth 
feature profile should have similar predicted labels. The 
local geometry of the feature space is preserved in the 
predicted label space. The above formula could be rewrit-
ten as:

where the Laplacian matrix Lp is defined as Lp = Dp − Sp , 
and Dp(i, i) =

∑n
j Sp(i, j) . To explore the complementary 

information in different types of drug features, multi-
view Laplacian regularization is adopted as in the pre-
vious studies  [3, 32]. The graph Laplacian matrices of 
different feature profiles are combined using a weight 
vector θ ∈ R

m×1 . In addition, the predicted label matrix 
F should not only be smooth on the feature space but also 
be consistent with the original label matrix Y. These con-
siderations give the following formula:

In the above formula, the weights of graph Laplacian 
matrices mean that different types of features have dif-
ferent contributions to side effect prediction. The weight 
vector θ could also be learned by optimization. The 

(2)Sp(i, j) =

{

sim(Xp(i, :),Xp(j, :)) if Xp(j, :) is the k-nearest neighbor of Xp(i, :)
0 otherwise,

(3)min
F

n
∑

i,j

�F(i, :)− F(j, :)�22Sp(i, j)

(4)min
F

Tr(FTLpF)

(5)

min
F ,θ

1

2
Tr

(

m
∑

p=1

θ
γ
p F

TLpF
)

+
1

2
�F − Y �2F

s.t. θ > 0,

m
∑

p=1

θp = 1

parameter γ > 1 is introduced to keep the elements of θ 
from equalling zero. This will prevent the most predictive 
feature profile taking all the weights [43]. In this way, the 
correlated and complementary information from multi-
ple data sources could be combined and transferred to 
predicted label space.

Incorporating side effect label correlations Next, 
under the assumption that strongly correlated side 
effect labels will share more drug features, it is desir-
able to incorporate label correlations into our model. 

According to Eq. (1), the columns of the coefficient 
matrix Gp represent the drug features associated with 
side effects. For highly correlated side effect labels, the 
corresponding column vectors in Gp should have great 
similarity. Similar to the consideration for the relation-
ship between drug similarity and side effect similarity, 
we use Laplacian graph to represent the relationships 
between label correlations and feature sharing. The 
cosine similarity is employed to describe the correla-
tions between side effect labels. A knn graph R0 is con-
structed based on label correlations. As mentioned 
above, the known side effect labels are usually incom-
plete and noisy, we intend to refine the correlation 
graph while learning the feature coefficients. Then the 
graph regularization for label correlations is formulated 
as:

where R is the refined correlation graph, DR 
is degree matrix of R, DR − R is the Lapla-
cian matrix. Tr(Gp(DR − R)GT

p ) is equal to 
∑l

i,j �Gp(:, i)− Gp(:, j)�
2
2R(i, j) . As a result, this term 

encourages a pair of highly correlated side effect labels 
to be associated with similar drug feature coefficients. α 
is a positive parameter which controls the extent of con-
sistency between the refined correlation graph and the 
original correlation graph. The parameter � controls the 
impact of label correlations on the similarities of feature 
coefficients.

The final objective function After integrating the 
above formulae, the final objective function takes the 
following form:

(6)
min
Gp ,R

�

2

m
∑

p=1

Tr(Gp(DR − R)GT
p )+

α

2
�R− R0�

2
F

s.t. Rij = Rji ≥ 0
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The first three terms in above formula give a flexible 
manifold learning framework  [44]. The fourth and fifth 
terms account for label correlations. Together with the 
last L1 penalties, these terms form a graph constrained 
Lasso [34].

Optimization
Here, an alternating approach is proposed for optimiz-
ing the objective function (7).

Update F First, Gp , R and θ are fixed, the derivative 
of objective function with respect to F is set to 0. The 
closed form solution of F is:

where

and

Update R Then F, θ and Gp are fixed, R is optimized by 
multiplicative updates [45]. The Lagrangian function of R 
is:

Ŵ is Lagrangian multiplier. Differentiating the above for-
mula with respect to R:

where

(7)

min
F ,Gp ,R,θ

1

2
�F − Y �2F +

1

2
Tr(FTLF)

+
µ

2

m
∑

p=1

�XpGp − F�2F

+
�

2

m
∑

p=1

Tr(Gp(DR − R)GT
p )+

α

2
�R− R0�

2
F

+ β

m
∑

p=1

�Gp�1

s.t. L =

m
∑

p=1

θ
γ
p Lp,

m
∑

p=1

θp = 1, 0 < θp < 1,Rij = Rji ≥ 0

(8)F = PQ

(9)P =
(

(1+mµ)I + L
)−1

(10)Q = Y + µ

m
∑

p=1

XpGp

(11)

L(R) =
�

2

m
∑

p=1

Tr(Gp(DR − R)GT
p )+

α

2
�R− R0�

2
F − Tr(ŴR)

(12)
∂L

R
=

�

2

m
∑

p=1

Ap −
�

2

m
∑

p=1

Bp + α(R− R0)− Ŵ

Jp is a l × l matrix of all 1’s. Using the KKT condition, 
Ŵ(i, j)R(i, j) = 0 , then:

where (Bp)
+ = (|Bp| + Bp)/2 and (Bp)

− = (|Bp| − Bp)/2

Update Gp Next, fixing the other variables except Gp , 
substituting F with P,  Q and ignoring unrelated terms in 
the objective function (7), we get:

Due to the L1-norm regularization terms, the above Eq. 
(16) is convex but not smooth, so the accelerated proxi-
mal gradient method is utilized to solve it. For a special 
p, Let

and

Next, the proximal gradient algorithm is employed to 
minimize a sequence of quadratic approximations of 
F(Gp):

(13)
Ap = diag(GT

p Gp)J + Jdiag(GT
p Gp)− diag(GT

p Gp)

(14)Bp = 2GT
p Gp − diag(GT

p Gp)

(15)

R(i, j) ← R(i, j)

√

√

√

√

�

2

∑m
p=1 (Bp)+ + αR0

αR+ �

2

∑m
p=1 (Bp)− + �

2

∑m
p=1 Ap

(i, j)

(16)

min
Gp

F(Gp) =
1

2
Tr

(

m
∑

p=1

GT
p X

T
p (µI − µ2PT )XpGp

)

− µTr
(

YTPT
m
∑

p=1

XpGp

)

−
µ2

2
Tr

(

m
∑

p=1

m
∑

q �=p

GT
p X

T
p P

TXqGq

)

+
�

2

m
∑

p=1

Tr(Gp(DR − R)GT
p )+ β

m
∑

p=1

�Gp�1

(17)

f (Gp) =
1

2
Tr

(

GT
p X

T
p (µI − µ2PT )XpGp

)

− µTr
(

YTPTXpGp

)

− µ2Tr
(

m
∑

q �=p

GT
p X

T
p PTXqGq

)

+
�

2
Tr

(

Gp(DR − R)GT
p

)

(18)g(Gp) = β�Gp�1

(19)

min
Gp

f (G̃(k)
p )+ �∇f (G̃(k)

p ),Gp − G̃(k)
p �

+
Lf

2
�Gp − G̃(k)

p �2F + g(Gp)
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In the above formula, Lf  is Lipschitz constant. 
G̃

(k)
p = G

(k)
p +

tk−1−1
tk

(

G
(k)
p − G

(k−1)
p

)

 , and t2k − tk ≤ t2k−1 . 
According to [46] it could improve the convergence rate. 
Let Z(k)

p = G̃
(k)
p − 1

Lf
∇f (G̃

(k)
p ) , (19) could be rewritten as:

then, Gp could be optimized by

(20)min
Gp

Lf

2
�Gp − Z(k)

p �2F + g(Gp)

effects are predicted by 
∑m

p=1 θpX
new
p Gp . The elements of 

F could be considered as the confidence of the predicted 
associations between drugs and side effects. The missing 
side effect labels in the training data could be inferred 
from F. For that, the values corresponding to the known 
drug-side effect associations in F are excluded, then the 
rest values are ranked in descending order. The top-
ranked values suggest the most possible drug-side effect 
associations that are missing in the original data.

where S β
Lf

 is the soft-thresholding operator.

Update θp Finally, F,  R and Gp are fixed and θp is 
renewed

Through the above updating steps, the objective function 
(7) is solved. The outline of multi-LRSL is shown in Algo-
rithm  1. After training the model, we obtain the coeffi-
cient matrices Gp s and the predicted label matrix F. For 
new drugs, the features Xnew

p are collected, and the side 

(21)
Gp = argmin

Gp

1

2
�Gp − Z(k)

p �2F +
β

Lf
�Gp�1

= S β
Lf

(Z(k)
p )

(22)θp =

(

1
Tr(FTLpF)

)
1

γ−1

∑m
p=1

(

1
Tr(FT LpF)

)
1

γ−1

Performance evaluation and comparison methods
To evaluate the performance of our algorithm for side effect 
prediction, fivefold cross-validation was carried out in this 
work. We used six performance metrics implemented by 
scikit-learn [47]. First, the area under the receiver operat-
ing characteristic curve (AUC) score was employed. The 
receiver operating characteristic (ROC) curve is plotted 
with true positive rate (TPR) against the false positive rate 
(FPR).

where TP is true positive, FN is false negative, FP is false 
positive, TN is true negative. The AUC score is the area 
under the ROC curve. Depending on which type of aver-
aging was performed, three kinds of AUC scores were 

(23)TPR =
TP

TP + FN

(24)FPR =
FP

FP + TN
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calculated. Sample-AUC considers the average AUC 
score for each drug, macro-AUC calculates AUC scores 
for each side effect label and finds the mean, micro-AUC 
takes all known drug-side effect pairs as a positive label.

Second, three metrics special for multi-label classifica-
tion were estimated. Coverage error represents the aver-
age number of side effect labels to be included in order to 
predict all true labels. Given the truth labels of test data 
Ytest ∈ R

ntest×l , the score matrix from prediction method is 
Ŷ  , the coverage error is:

where rank(i, j) = |{k : Ŷ (i, k) ≥ Ŷ (i, j)}| , | · | is the num-
ber of elements in the set. ntest is the number of test 
drugs.

Ranking loss is the average number of label pairs that 
are incorrectly ordered:

where � · �0 is the number of non-zero elements.
Label ranking average precision (LRAP) finds the aver-

age fraction of the true labels in the highly ranked labels 
produced by a predictive method:

For our method, the score matrix Ŷ =
∑m

p=1 θpX
new
p Gp . 

The truth label matrix Ytest was used to calculate the per-
formance metrics in each fold of cross-validation. The 
experiment was repeated 10 times with different division 
of data and the averages of the metrics were calculated. 
We compared our algorithm with the other five com-
putational methods. L1-regularized logistic regression 
(L1LOG) and L1-regularized support vector machine 
(L1SVM) are widely used for feature selection and clas-
sification. These methods were also applied to infer-
ring the relationships between side effects and target 
domains  [21]. L1LOG and L1SVM were implemented 
with Liblinear  [48]. Principal component regression 
(PCR) is based on principal component analysis (PCA). 

(25)

Coverage error =
1

ntest

ntest
∑

i=1

max
j:Ytest (i,j)=1

rank(i, j)− 1

(26)

ranking loss

=
1

ntest

ntest
∑

i=1

1

�Y (i, :)�0(l − �Y (i, :)�0)
∣

∣

∣

{

(k , j) : Ŷ (i, k) ≤ Ŷ (i, j),

Y (i, k) = 1,Y (i, j) = 0

}∣

∣

∣

(27)

LRAP =
1

ntest

ntest
∑

i=1

1

�Y (i, :)�0

∑

j:Y (i,j)=1

|{k : Y (i, k) = 1, Ŷ (i, k) ≥ Ŷ (i, j)}|

rank(i, j)

It firstly computes the principal components of the fea-
ture matrix, then uses some of the components as pre-
dictors to build model for prediction. In this work, PCR 
was implemented to represent another way for dimen-
sionality reduction. SCCA was also demonstrated to be 
effective for discovering drug features related to side 
effects  [11, 18]. As in the previous work, SCCA was 
implemented with PMA package  [49]. Kernel Regres-
sion was used to integrate chemical structures and target 
proteins to predict side effects in  [14]. Here we imple-
mented it with scikit-learn. The parameters of all meth-
ods were determined by cross-validation. More details 
about the implementation of the comparison methods 
could be found in additional material. The algorithm 
complexity analysis and the parameter sensitivity analy-
sis of the proposed method could also be found in the 
additional material.

Results
Drugs with similar features have similar side effect labels
In these work, there are 501 drugs, 3260 side effects and 
62620 associations between them. The distribution of the 
associations is shown in Additional file  1: Figure S1. In 
this section, we validated the basic assumption that the 
drug features collected from different sources were asso-
ciated with the side effect labels of drugs. First, we exam-
ined the features of the drugs with at least one common 
side effect. It is noticed that the average similarity of the 
drugs with common side effects is significantly stronger 
than the same number of randomly selected drugs with-
out any common side effects across all feature profiles 
(rank sum test, p-value < 0.001, Additional file 1: Figure 
S2). This suggests that drugs which cause the same side 
effects share more common features. Next, we calculated 
the side effect similarities between drugs and divided the 
drugs into two groups at the median value of similarities. 
It is showed that drugs with more common side effects 
also display significantly stronger similarity in all types 
of features (rank sum test, p-value < 0.001 , Additional 
file  1: Figure S3). These results imply that similar drugs 
possess similar side effect labels. To further verify this 
assumption, we calculated the inner products between 
the columns of the feature matrix Xp and the columns 
of the side effect matrix Y and utilized these products to 
represent the relationships between drug features and 
side effect labels. Then we computed the cosine simi-
larity between side effects using different types of dug 
features related to them. After that, we built ordinary 
least squares models which took different feature simi-
larities between side effects as explanatory variables and 
side effect label correlations as response variables. It is 
observed that the slopes of these linear models are posi-
tive, which means that the feature similarities positively 
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correlate with the correlations of side effect labels. It is 
also noted that when the values of feature similarity get 
bigger, the slopes become steeper (Additional file 1: Fig-
ure S4). This suggests that the correlations between the 
drug features and the side effect labels are more obvious 
in local feature space. All above results demonstrate that 
the feature profiles employed in this work are associated 
with the side effects labels, so it is possible to predict the 
side effects of drugs with these features.

There are four different types of drug features in this 
work. It is expected that these feature profiles will pro-
vide consistent as well as complementary information 
for side effect prediction. To explore the consistency 
and complementarity of these feature profiles, we per-
formed hierarchical cluster analysis according to the 
drug similarity matrices calculated by the feature pro-
files and the side effect labels. As show in Fig.  1, there 
are many blocks along the diagonals of the similarity 
matrices. These blocks are drugs with strong similarity It 
is observed that the drugs in some blocks of the feature 
similarity matrices significantly overlap with the drugs 
in the blocks of the side effect similarity matrix (Fisher 
exact test, p-value < 0.05 ). The overlapped blocks are 
marked by coloured rectangles in Fig. 1. Furthermore, for 
some blocks in the side effect similarity matrix, there are 
overlapped blocks across more than one feature similar-
ity matrices. It is also found that some blocks in the side 
effect similarity matrix only overlap with the blocks from 
just one of the feature similarity matrices. These results 
indicate that there is both consistent and complementary 
information in different drug feature profiles, and com-
bination of these feature profiles could be beneficial for 
side effect prediction. There are also some blocks in the 
feature similarity matrices which don’t overlap with any 
blocks in the side effect similarity matrix. It is imply that 
there are irrelevant drug features to be excluded or miss-
ing associations between drugs and side effects.

Performance comparison for prediction of side effects
To evaluate the performance of the proposed method, we 
tested if the algorithm could correctly recover the known 
side effects of drugs. Five-fold cross-validation was per-
formed. Drugs with known side effects from SIDER were 
divided into five subsets of roughly equal size. Each time 
one subset of drugs was used as test set while the other 
four sets were combined as training set. The experiment 
was repeated 10 times with different division of drugs. 
In this work, the performance for side effect prediction 
of the proposed method was compared with other algo-
rithms using six different metrics. L1SVM and L1LOG 
are two widely used sparse models that could be applied 
to both classification and feature selection. PCR is a 

regression technique which could reduce dimensionality 
and mitigate overfitting. For the task of side effect pre-
diction, the four drug feature matrices were concatenated 
into a single matrix then this long matrix was used as 
the input to L1SVM , L1LOG and PCR. For SCCA, the 
side effect label matrix, together with each feature matrix 
were used as input. The drug target matrix was also used 
as the input to SCCA following the previous work  [11]. 
For kernel regression, the kernel similarity matrix for 
each feature profile was calculated, then the kernel func-
tions were summed to integrate different feature pro-
files. For the performance metrics used here, larger 
values of sample-AUC, macro-AUC, micro-AUC and 
LRAP mean better performance, while smaller values 
of coverage error and ranking loss denote better perfor-
mance. Table 1 shows the results of the cross-validation 
experiment for the comparison algorithms. Overall, the 
proposed integrative method outperforms all the com-
parison methods significantly. Furthermore, when just 
taking one single type of features as input, our method 
still has better performance in most of the metrics com-
pared to SCCA. It is also observed that the target domain 
and the target gene ontology features generally show bet-
ter performance compared to the chemical substructure 
features and the gene expression features if only one fea-
ture matrix is used as the input to our method. As the 
other information integration method, the kernel regres-
sion model also shows some advantages over SCCA. The 
performance of L1LOG and L1SVM is inferior to the 
other methods except PCR. This may be partially due 
to the lack of consideration for the correlations between 
side effect labels. The performance of PCR is comparable 
to L1LOG and L1SVM. The results imply that L1-regu-
larization has similar effect with principal components 
analysis on the performance of side effect prediction.

To further illustrate the predictive ability of the pro-
pose method, we exploited the drugs and their side 
effect labels from SIDER to train our model, then used 
the records of the off-label side effects from FAERS as 
independent test data. The proposed method still has 
better predictive performance for the drugs which are 
only present in FAERS compared to SCCA and kernel 
regression (Additional file  2: Table  S5). Besides these 
new drugs, FAERS records some novel associations 
between drugs and side effects which are not present in 
SIDER. It is also found that the proposed method could 
better predict these novel drug-side effect associations 
( micro-AUC = 0.6815 ) compared to SCCA and ker-
nel regression model ( micro-AUC = 0.6736 and 0.6768 
respectively). Moreover, because we only use the drugs 
with all four types of features in the above cross-valida-
tion experiment, there are still extra drugs which have 
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Fig. 1  There is both consistent and complementary information related to side effects in different drug feature profiles. Drugs cluster together 
according to the similarities calculated with different features or side effect labels. The blocks of drugs along the diagonals are identified by the R 
package ‘dynamicTreeCut’ [67]. The overlaps between the blocks in each feature similarity matrix of drugs and the blocks in side effect similarity 
matrix of drugs are determined by Fisher’s exact test ( p-value < 0.05 ). The significantly overlapping blocks are marked by coloured rectangles in 
the heat-maps. The purple rectangles indicate that the blocks in the side effect similarity matrix of drugs overlap with blocks in one of the feature 
similarity matrices (for example, block e1 overlaps with block a1 in the chemical similarity matrix). The green rectangles indicate that the blocks in 
the side effect similarity matrix of drugs overlap with blocks in two or three feature similarity matrices (for example, block e2 overlaps with a2 in 
the chemical similarity matrix and block d2 in the gene expression similarity matrix). The red rectangles indicate that the blocks in the side effect 
similarity matrix of drugs overlap with blocks in all feature matrices (for example, block e3 overlaps with block a3, b3, c3, d3). The legend indicates 
the value of similarity, from 0 (blue) to 1 (red)
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side effect labels in SIDER but are not used for model 
training due to lack of target or gene expression informa-
tion. The identities of these drugs are available at (Addi-
tional file 2: Table S6). We predicted side effects of these 
extra drugs with the chemical substructure features and 
calculated the performance metrics. It is noticed that the 
prediction performance of our model on these drugs is 
comparable with the cross-validation result (Additional 
file 2: Table S6). This indicates that the overfitting risk of 
the proposed model is under control and the model could 
be generalized well to unseen data.

Selection of side effect related features
In order to get a predictive model for the side effect pre-
diction problem with high-dimension features, the L1 
penalties are added to the model. As a result, our method 
could not only predict the side effects of drugs but also 
select the relevant drug features for each side effect. In 
this section, the feature selection capability of the pro-
posed method was examined and compared with the 
other three L1-regularization methods: L1LOG, L1SVM 
and SCCA. The drug features from all feature pro-
files were selected by different methods. The positively 
weighted features were kept and thought to be closely 
related to the corresponding side effect labels. The num-
ber of the selected features from each feature profile by 
each method is shown in Fig. 2. The median numbers of 
the selected features for each side effect by the proposed 
method are 161 (chemical substructures), 43 (protein 
domain), 193 (gene ontology) and 43 (gene expression). 
All of these L1 regularization methods could get sub-
sets of features from all possible drug features. L1SVM 

selected the smallest number of features from all feature 
profiles, while SCCA extracted the largest number of fea-
tures in total. Multi-LRSL selected more features than 
L1LOG and L1SVM but less features than SCCA except 
for the chemical substructures. From the venn diagrams 
in Fig. 3, it is observed that the most features selected by 
L1LOG and L1SVM overlap with the features selected by 
multi-LRSL and SCCA. There are many features shared 
by SCCA and multi-LRSL as well as lots of features spe-
cifically selected by these two methods. Furthermore, 
the numbers of features selected by L1LOG and L1SVM 
from different feature profiles are quite uneven compared 
to the other two methods. There are much fewer features 
selected by L1LOG and L1SVM from the gene expression 
profile than the other feature types (as shown in Fig.  3 
and Additional file 1: Figure S5).

To further illustrate the feature selection property of 
our algorithm, we calculated the correlations between 
the drug features from both the same and different fea-
ture profiles using the original feature matrices, then 
we computed the correlations between the feature coef-
ficients obtained by multi-LRSL. It is observed that the 
correlations between the drug feature coefficients tend to 
increase as the correlations between the original features 
become larger (Additional file  1: Figures  S6 and S7). It 
is implied that multi-LRSL could select groups of highly 
correlated features both within and between multiple fea-
ture profiles. This property is similar to elastic net  [50]. 
It should be an advantage for the problem of side effect 
prediction as there are many important but highly cor-
related features. Besides, it is realized that strongly cor-
related side effect labels could be associated with similar 

Table 1  Performance comparison of different algorithms for side effect prediction

The metrics are denoted as mean± standard deviation . The method taking different types of features as input is indicated in the form of ’method name-feature type’

The best metric values are in italics, and the difference between the best value and the second best value of each metric is significant (student t-test, p-value < 0.05)

Sample-AUC​ Macro-AUC​ Micro-AUC​ LRAP Coverage error Ranking loss

L1SVM 0.8524 ± 0.0010 0.6196 ± 0.0056 0.8328 ± 0.0010 0.1941 ± 0.0013 2671 ± 11 0.1483 ± 0.0010

L1LOG 0.8612 ± 0.0010 0.6191 ± 0.0059 0.8418 ± 0.0010 0.2018 ± 0.0015 2562 ± 15 0.1394 ± 0.0010

PCR 0.8824 ± 0.0004 0.5034 ± 0.0033 0.8670 ± 0.0006 0.1890 ± 0.0010 2666 ± 16 0.1233 ± 0.0004

SCCA-chem 0.8500 ± 0.0019 0.5731 ± 0.0045 0.8181 ± 0.0019 0.4008 ± 0.0032 2960 ± 23 0.1507 ± 0.0020

SCCA-domain 0.9144 ± 0.0007 0.6260 ± 0.0055 0.8922 ± 0.0007 0.4757 ± 0.0011 2547 ± 13 0.0863 ± 0.0008

SCCA-GO 0.8911 ± 0.0015 0.6160 ± 0.0057 0.8579 ± 0.0015 0.4509 ± 0.0017 2789 ± 25 0.1097 ± 0.0015

SCCA-expression 0.9076 ± 0.0007 0.5159 ± 0.0031 0.8878 ± 0.0007 0.4488 ± 0.0005 2607 ± 9 0.0941 ± 0.0007

SCCA-target 0.9174 ± 0.0005 0.6159 ± 0.0051 0.8968 ± 0.0005 0.4692 ± 0.0007 2490 ± 11 0.0834 ± 0.0005

Kernel regression 0.9185 ± 0.0005 0.6134 ± 0.0053 0.8992 ± 0.0005 0.4766 ± 0.0007 2448 ± 8 0.0821 ± 0.0005

LRSL-chem 0.9179 ± 0.0003 0.5595 ± 0.0034 0.8976 ± 0.0004 0.4614 ± 0.0005 2583 ± 10 0.0867 ± 0.0005

LRSL-domain 0.9285 ± 0.0005 0.6470 ± 0.0050 0.9104 ± 0.0007 0.4821 ± 0.0005 2174 ± 14 0.0719 ± 0.0005

LRSL-GO 0.9290 ± 0.0007 0.6441 ± 0.0043 0.9068 ± 0.0010 0.4924 ± 0.000 2255 ± 15 0.0714 ± 0.0007

LRSL-expression 0.9203 ± 0.0004 0.5131 ± 0.0013 0.9008 ± 0.0005 0.4565 ± 0.0006 2198 ± 11 0.0801 ± 0.0004

Multi-LRSL 0.9295 ± 0.000 0.6568 ± 0.0057 0.9118 ± 0.0009 0.4845 ± 0.0006 2160 ± 13 0.0709 ±0.0006
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drug features. In Additional file 1: Figure S8, the affinity 
matrices of side effect labels calculated from the feature 
coefficients of multi-LRSL are visualized. All of these 
matrices are quite consistent with the affinity matrix of 
side effect labels calculated from the drug-side effect rela-
tion matrix. Thus, the proposed method could capture 
both the associations between drug features and the cor-
relations between side effect labels.

Next, we tested the stability of our algorithm for fea-
ture selection by training the model with random divi-
sion of drugs. It is shows that the feature coefficients are 
stable when different subsets of drugs are used for train-
ing (Additional file 1: Figure S9). Furthermore, we intend 
to examine whether the selected features are relevant to 
the side effects. However, there are very few systematic 
records for the relationships between drug features and 
side effects. Thus, we try to verify these predicted asso-
ciations by examining whether they are compatible with 
the information from independent data source. For this 
purpose, the disease terms in CTD [51] which overlapped 
with the side effect terms in this work were gathered. In 
CTD, the disease terms are associated with various chem-
icals and genes. The chemicals and genes labelled with 
‘marker/mechanism’ correlate with the disease or par-
ticipate in the etiology of the disease. We collected these 
chemicals and genes related to the disease terms which 
overlapped with side effect terms. Then, the substruc-
tures and the gene expression changes of these chemi-
cals, the protein domains and the gene ontology terms 
of these genes were extracted. The occurrence frequency 
of chemical substructures, protein domains and gene 
ontology terms were calculated for each disease term 

according to its related chemicals and genes to form the 
corresponding features from CTD. The gene expression 
changes were averaged across the chemicals related to a 
disease term to form the gene expression features from 
CTD. The data from CTD could be considered as the 
additional evidence to support the relationships between 
features and side effects. In our model, we assume that 
a feature with a coefficient that is large in magnitude is 
predictive for the presence of a side effect. We assume 
that the features from CTD will also have large magni-
tude and match the sign of the coefficients. Thus, the cor-
relations between the coefficients and the CTD features 
could be utilized to assess the consistency between the 
predicted feature-side effect association and the informa-
tion in CTD. We calculated the Spearman correlations 
between the coefficients learned by multi-LRSL and the 
features obtained from CTD for each side effect. It is 
found that the average correlation is significantly bigger 
than the correlations of randomly paired coefficients and 
features (Fig.  4, p-value < 0.05 ). Together with the pre-
vious results, it is suggested that the proposed method 
could help select drug features related to side effects.

Predicting new drug‑side effect associations
To illustrate the utility of the proposed method for pre-
dicting side effects, we collected 320 drugs from Drug-
Bank which were not included in the 501 drugs used 
for model construction. The DrugBank identities and 
names of these drugs are available at (Additional file  2: 
Table  S7). We choose these drugs because all types of 
features could be obtained for them but they don’t have 
any side effect records in SIDER. In order to predict the 

Fig. 2  The number of features selected by different methods from different feature profiles
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side effect labels of these drugs, the features of them were 
retrieved as previously described. Then, the feature coef-
ficient matrices Gps were learned by our model with all 
the 501 drugs as the training data. We predicted side 
effects of these new drugs by 

∑m
p=1 θpX

new
p Gp . Xnew

p  is 
the pth feature matrix of these new drugs. Moreover, we 
inferred the missing labels of the training drugs with the 
predicted label matrix F (see methods section for more 
details). To give insights into the prediction results of our 
method, some examples are provided here. Hepatotoxic-
ity is an important clinical adverse event that could cause 
hospitalizations and withdrawal of drugs. In Fig.  5a, 10 
predicted drugs for hepatotoxicity (5 top-ranked new 
drugs, 5 top-ranked drugs in the training data without 
record of hepatotoxicity) are picked. The top-ranked 
features for hepatotoxicity (10 features with the highest 
coefficients of each feature type) are selected. The values 

of the top-ranked features in the original feature vectors 
of the 10 drugs are shown as heat-map. In the predicted 
drugs, dasatinib (DB01254), a selective tyrosine kinase 
receptor inhibitor for treatment of chronic myelogenous 
leukemia, was reported to induce live dysfunction  [52]. 
Nintedanib (DB09079) also showed hepatotoxicity in a 
clinical trail  [53]. It is observed that among the 10 top-
ranked chemical substructures, 9 substructures (except 
sub0: ≥ 4H ) are enriched in the drugs with hepato-
toxicity (Fisher’s exact test, p-value 1e−4). Among the 
selected protein domain features, there are 8 domains 
related to protein kinase, and 6 of them are present in 
the targets of all these drugs. This is in accordance with 
the previous study that many tyrosine kinase inhibitors 
have been found to be hepatotoxic  [54]. The selected 
gene ontology features are mainly involved in apoptosis 
and cell proliferation. These biological processes were 

Fig. 3  The Venn diagrams show the overlaps of features selected by different methods from different feature profiles
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also related to hepatotoxicity by previous studies  [55, 
56]. It is observed that all drugs show a similar pattern 
of disturbance to the expression level of MEF2C. MEF2C 
was reported to regulate the activation of hepatic stellate 
cells and play a key role in hepatic fibrosis, a pathologi-
cal response to live injury [57]. In Fig. 5b, the side effects 
that most frequently co-occur with hepatotoxicity show 
similar patterns of top-ranked feature coefficients. Some 
of these side effect terms are semantically related to 
hepatotoxicity, such as hepatobiliary disease and hepatic 
failure, while the other side effects may be similar to 
hepatotoxicity in production mechanisms. For example, 
drug-related neutropenia could be caused by cytotoxic 
effect on cell replication  [58]. Mucosal inflammation 
could be regulated by tyrosine kinases related signal 
pathways [59]. In Additional file 2: Table S8, the predic-
tion results of another two side effects, renal impair-
ment and acute myocardial infarction are provided as 

additional examples. Alvimopan (DB06274) is ranked 3th 
for acute myocardial infarction. This toxic effect has been 
proved by clinical observation [60]. The selected features 
may also give some hints about these side effects. DAXX 
is ranked 1st for acute myocardial infarction in the gene 
expression features, and a study showed that DAXX may 
participate in myocardial ischemia/reperfusion-induced 
cell death  [61]. The relationship between SRC (ranked 
2th) and renal damage was also implied by previous 
study [62]. The above instances suggest that the proposed 
method could predict novel drug-side effect associations 
and select important drug features.

Discussion
Side effects are unintended impacts of drugs on human 
bodies. It is important to develop efficient methods 
for identifying potential side effects. In this work, we 
propose a novel multi-view and multi-label learning 

Fig. 4  The average Spearman’s correlation between the feature coefficients learned by multi-LRSL and feature data extracted from CTD for 
the same side effect is significantly bigger than random samples. The blue lines represent the density estimates for the averages of correlation 
coefficients of 1000 random samples. For each random sample, the average correlation is calculated with the same number of pairs of randomly 
selected feature coefficients and CTD feature data. The red arrows indicate the positions of the average correlation coefficients between paired 
feature coefficients and feature data (the frequency of features for chemical substructures, protein domains and gene ontology terms and the 
averages of gene expression changes). The p-values are estimated by Monte-Carlo test
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algorithm to predict the side effects of small molecular 
drugs and select relevant features. The advantage of the 
proposed method is demonstrated by systematic com-
parison with other computational methods and some 
examples of application.

The proposed method could integrate multiple types 
of features for side effect prediction. The rationality 
behind integration of multi-view data is that side effects 
are the results of complex interactions between drugs 
and biological systems. Drugs could interact with both 
intended therapeutic targets and unintended off-targets. 
While both types of targets could be associated with 
side effects, the full list of drug targets is still not avail-
able. Furthermore, targets could impact on the activities 
of various biological processes and pathways after bind-
ing with drugs. On the other hand, chemical structures 
determine how drugs interact with targets. Gene expres-
sion changes induced by drug reflect the overall biologi-
cal effects of drug-target interactions. Thus, combination 
of chemical structures, gene expression and target infor-
mation could provide a relatively complete description of 
drug bioactivity for side effect prediction. In this study, 
we show that there is consistent and complementary 

information related to side effects in these heterogeneous 
data. Our results also show that integration of multi-view 
data improves the performance of prediction. Therefore, 
data fusion for side effect prediction is reasonable and 
necessary.

In this study, the graph Laplacian regularization of the 
predicted label matrix encourages the preservation of the 
local geometric structures of the feature space and lets 
the drugs with similar features have similar side effect 
labels. The graphs constructed from four types of features 
are combined to explore the complementary informa-
tion from different sources. This strategy for heterogene-
ous data integration is similar to the previous works  [3, 
32]. However, there are also some special improvements 
for the side effect prediction problem. In the work of Shi 
et  al.  [32], different types of features were concatenated 
into a long vectors in the least square loss term. This will 
increase the computational complexity for updating coef-
ficient matrix as the total dimension of features is high 
in the side effect prediction problem (as noted by the 
algorithm complexity analysis in the additional material). 
They also selected the features associated with the larger 
rows in the coefficient matrix by l2,1/2-matrix norm [32]. 
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Fig. 5  The prediction results for hepatotoxicity. a The X axis represents the features with the largest coefficients for hepatotoxicity (10 features from 
each feature profile). The Y axis represents the top-ranked predicted drugs (5 test drugs without any known side effects, and 5 drugs with known 
side effects but without record for hepatotoxicity. The DrugBank IDs of the drugs with known side effects are underlined). Here, the colours on the 
heat-map represent the values of the selected features in the feature vectors of these drugs. b The X axis represents the features with the largest 
coefficients for hepatotoxicity (10 features from each feature profile), and the Y axis represents the side effects most frequently co-occurred with 
hepatotoxicity. The colours on the heat-map represent the values of the coefficients learned by multi-LRSL for each side effect. In both (a) and (b) 
different types of features are separated by grey dash lines
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This will keep a group of features from all feature profiles 
to predict all labels. In this work, the feature matrices 
and the coefficient matrices are separate in both the least 
square loss terms and the graph Laplacian regularization 
terms. The L1 penalties induce the element-wise sparsity 
of the coefficient matrices [63]. Thus, our method could 
select different features from each feature profile simul-
taneously for different labels and reduces the computa-
tional cost. Moreover, in this work, the information of 
the known labels is used differently from our previous 
work for drug-disease association prediction [3]. Instead 
of transforming the label similarity to drug similarity, 
the correlations between side effects labels are explicitly 
encoded by an additional graph Laplacian matrix that 
regularizes the feature coefficient matrices. The regulari-
zation makes the strongly correlated labels share more 
relevant features. Altogether, the proposed model could 
not only fuse multi-view data but also select label specific 
features with the consideration for label correlations.

The dimensions of chemical and biological features 
of drugs are usually high. Feature selection is beneficial 
for side effect prediction, because it could reduce com-
putational cost and prevent overfitting by excluding 
irrelevant features [64]. L1SVM, L1LOG, SCCA and our 
model introduce sparsity by L1-regularization. There is a 
trade-off between the feature sparsity and the prediction 
performance (Additional file  1: Figure S10). Although 
L1SVM and L1LOG selected less features, the correla-
tions between features from multiple feature profiles 
could be missed by these two methods  [50]. The cor-
relations between side effect labels were also not taken 
into consideration. For SCCA, features and side effects 
appeared many times in multiple canonical components, 
which made the relationships between features and side 
effects less obvious. The proposed method fused hetero-
geneous data and considered the correlations between 
side effect labels. Thus, it could select features from 
multi-view data and associate every side effect with spe-
cial drug features. As a result, our method could be uti-
lized just for feature selection, and a separate classifier 
could be constructed with the selected features as the 
input to further improve the prediction performance. In 
that situation, the selection stability analysis should be 
conducted. Furthermore, the linear regression with L1 
regularization in the model could increase the transpar-
ency of the model, that is, users could recognize which 
features are important for the model to make the predic-
tions. However, it should be noticed that the model could 
not reveal the causal relationships between drug fea-
tures and side effects. Users should be cautious about the 
meaning of the selected features. Feature selection some-
times could help researchers generate new hypothesises 

about the relationships between the selected features 
and the class labels. For this purpose, it is important to 
use interpretable features as input variables. The protein 
domain, gene ontology and gene expression features in 
this work could be more interpretable than chemical fin-
gerprints. It is desirable to explore new forms of input in 
order to make the selected chemical features more mean-
ingful in future work.

Although the proposed method shows the advan-
tage of information fusion for side effect prediction, 
there are also some limitations in current work. First, 
the number of samples used for training is crucial for 
prediction and feature selection. But collecting multi-
ple types of data is difficult and some features may not 
be available for some drugs. For example, not all the 
drugs in SIDER have the records of protein targets or 
gene expression data. This leads to a smaller data set for 
training the algorithm. However, our method is scal-
able, it could take either single or multiple feature pro-
files as input. Additionally, like the previous study [32], 
our model is based on graph Laplacian regularization. 
The model could be extended to a semi-supervised 
method  [29]. Semi-supervised learning could uti-
lize unlabelled data to promote the prediction per-
formance. It may alleviate the problem of the limited 
number of labelled samples in side effect prediction. 
Second, there are some discrepancies between multi-
ple data types. For example, some targets of drugs may 
be missed and gene expression data may contain lots of 
noise. The discrepancy could impair the performance 
of prediction. Thus, it needs methods that could handle 
disparity and noise in the future work. Thirdly, the side 
effect labels of drugs may be also missing and noisy. 
For example, FAERS contains a lot of drug-side effect 
associations which are absent in SIDER. There may be 
also some false positive labels in SIDER [20]. Some side 
effects are non-specific and don’t have causal relation-
ships with drug features  [65]. The missing and noisy 
labels could bring negative impact on side effect predic-
tion. Because which side effect labels are missing is not 
known, all unobserved values are set to 0 in the label 
matrix, this could aggravate the bias of the model. The 
missing labels also aggravate the class imbalance and 
make the estimation of label correlations inaccurate. In 
the proposed model, we used the predicted label matrix 
F to approximate the true label matrix, and refined 
the label correlation matrix during optimization. This 
could alleviate the influence of missing label, but more 
sophisticated algorithms are needed to solve this prob-
lem in future study. For example, positive-unlabelled 
learning may alleviate the influence of the noisy nega-
tive labels [66].
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Conclusions
In this work, we develop a novel computational method 
for predicting drug side effects. The proposed method 
could fuse multi-view data and explore the correlations 
between side effects. It could not only improve the per-
formance of prediction but also select multiple types of 
features related to side effects. As a result, our method 
could be potentially used as an effective computational 
tool for recognizing patterns of side effect related features 
from various sources of data. In this way, the method 
could provide instructive information for drug develop-
ment by mining heterogeneous data.
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