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Abstract 

Neural Message Passing for graphs is a promising and relatively recent approach for applying Machine Learning to 
networked data. As molecules can be described intrinsically as a molecular graph, it makes sense to apply these 
techniques to improve molecular property prediction in the field of cheminformatics. We introduce Attention and 
Edge Memory schemes to the existing message passing neural network framework, and benchmark our approaches 
against eight different physical–chemical and bioactivity datasets from the literature. We remove the need to intro-
duce a priori knowledge of the task and chemical descriptor calculation by using only fundamental graph-derived 
properties. Our results consistently perform on-par with other state-of-the-art machine learning approaches, and set 
a new standard on sparse multi-task virtual screening targets. We also investigate model performance as a function of 
dataset preprocessing, and make some suggestions regarding hyperparameter selection.
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Introduction
QSAR (Quantitative Structure Activity Relationships) 
have been applied for decades in the development of rela-
tionships between physicochemical properties of chemi-
cal substances and their biological activities to obtain a 
reliable mathematical and statistical model for prediction 
of the activities of new chemical entities. The major aim 
of QSAR study is to reduce the number of compounds 
synthesized during the drug development, a notoriously 
long and costly process, hence the desire to improve 
its efficiency from a drug discovery perspective. After 
Hansch proposed the QSAR concept [1], engineering 
molecular descriptors to build accurate models for the 
prediction of various properties has become the standard 
approach to QSAR modelling. Researchers [2–6] have 

proposed numerous descriptors to represent molecular 
2D and 3D structures, aiming to correlate these descrip-
tors with predicted endpoints. Approaches to generat-
ing representations using the graph representation of 
a molecule include graph kernels [7], and perhaps most 
importantly in the present context, ECFP (Extended 
Connectivity Circular Fingerprints) [8]. Once a descrip-
tor set has been defined, various modelling methods, 
including linear mapping methods like linear regression, 
partial least square and non-linear methods like support 
vector machine, random forest etc., are applied to build-
ing models. Recently, deep neural network methods have 
become the latest weapon in a Cheminformatician’s arse-
nal for doing QSAR.

Over the past decade, deep learning has become a 
staple in the machine learning toolbox of many fields 
and research areas [9, 10]. Notably in the pharmaceuti-
cal area, in recent years AI has shown incredible growth, 
and is being used now not just for bioactivity and physi-
cal–chemical property prediction, but also for de novo 
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design, image analysis, and synthesis prediction, to name 
a few. This rapid growth is due in part to the substantial 
increase in available biochemical data thanks to the rise 
of techniques such as High Throughput Screening (HTS) 
and parallel synthesis, and also to the recent surge in par-
allel computational power that can be feasibly attained by 
harnessing General Purpose computing on Graphics Pro-
cessing Units (GPGPU).

Efforts have also been taken to enable neural networks 
to do representation learning, i.e. the neural network is 
able to learn descriptors itself instead of relying on pre-
defined molecular descriptors. Among these, the graph 
convolution network (GCN) is gaining popularity and 
various architectures have been proposed in data science 
community. The first Graph Neural Networks (GNNs) 
was put forward by Gori et  al. in 2005 [11], presenting 
an architecture for learning node representations using 
recurrent neural networks capable of acting on directed, 
undirected, labelled, and cyclic graphs. This work was 
later expanded upon by Micheli [12] and Scarselli et  al. 
[13] In 2013, the Graph Convolutional Network (GCN) 
was presented by Bruna et al. [14] using the principles of 
spectral graph theory. Many other forms of GNN have 
been presented since then, including, but not limited to, 
Graph Attention Networks [15], Graph Autoencoders 
[16–19], and Graph Spatial–Temporal Networks [20–23].

In GCNs and some other forms of GNNs, information 
is propagated through a graph in a manner similar to 
how conventional convolutional neural networks (CNNs) 
treat grid data (e.g. image data). However, whilst graph-
based deep learning shares some connection with CNNs 
with respect to local connectivity of the component 
data, CNNs exploit the properties of regular connectiv-
ity, shift-invariance, and compositionality to achieve 
their noteworthy performance. In order to cope with the 
irregularity of graph data, alternative approaches must be 
designed, most notably to circumvent the issue of irregu-
lar non-Euclidean data, and to be invariant to the graph 
representation.

Whilst many implementations are designed for use on 
a single large graph, such as social networks or citation 
graphs, approaches designed for use on multiple smaller 
graphs such as graphs of small molecule are also desired 
for their potential use in, amongst other things, drug 
design. Duvenaud [24] proposed the neural fingerprint 
method, describing it as an analogue of ECFP, as one of 
the first efforts in applying graph convolution model on 
chemistry related problems. The notable advancement 
embodied in the neural fingerprint approach with regards 
to predecessing concepts such as graph kernels and 
ECFP, is that the generation of descriptors is adapted—
learned—during training. Other molecular graph convo-
lution methods were reported by Kearnes et al. [25] and 

Coley [26] as extensions to Duvenaud’s method. Recently 
researchers from Google [27] put forward an new NN 
architecture called as message passing neural networks 
(MPNNs) and used the MPNNs to predict quantum 
chemical properties. The MPNN framework contains 
three common steps: (1) message passing step, where, 
for each atom, features (atom or bond features) from its 
neighbours are propagated, based on the graph structure, 
into a so called a message vector; (2) update step, where 
embedded atom features are updated by the message vec-
tor; (3) aggregation step, where the atomic features in the 
molecule are aggregated into the molecule feature vec-
tor. These molecule feature vector can then be used in a 
dense layer to correlate with the endpoint property. It has 
been shown that the MPNN framework has a high gener-
alizability such that several popular graph neural network 
algorithms [24–26, 28, 29] can be translated into the 
MPNN framework. Several research groups have made 
various extensions to the MPNN framework to augment 
it for work on cheminformatic problems [30].

Like GCN methods, MPNN model learns task specific 
molecule features from the graph structure and avoid 
feature engineering in the pre-processing stage. This 
type of method also presents an approach for the secure 
sharing of chemical data, i.e. it is possible to disseminate 
trained models for activity predictions without the risk of 
reverse-engineering IP-sensitive structural information 
[31–33].

We introduce a selection of augmentations to known 
MPNN architectures, which we refer to as Attention 
MPNN (AMPNN) and Edge Memory Neural Network 
(EMNN) [34], and evaluate them against published 
benchmark results with a range of metrics. The EMNN 
network shares architectural similarities to the D-MPNN 
model published by Yang et  al. [35] that was developed 
concurrently to this work [36], but the D-MPNN includes 
additional chemical descriptor information. We applied 
these two types of neural network to eight datasets 
from the MoleculeNet [30] benchmark and analyse the 
performances and offer chemical justification for these 
results with respect to both architecture and parameter 
selection.

Method
Concepts of graphs
A graph G = (V, E) is a set V of nodes and a set E of 
edges, which are pairs of elements of V . If the members 
of E are ordered pairs, the graph is said to be directed. In 
the graph representation of a molecule, atoms are viewed 
as nodes and (v,w) ∈ E indicates there is a bond between 
atoms v and w . This representation is an undirected 
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graph: we do not consider a bond to have a direction, so 
we do not distinguish between (v,w) and (w, v).

In the given context, a graph comes together with a fea-
ture vector xv corresponding to each node v and an edge 
feature vector evw corresponding to each edge (v,w).

Message passing neural network
The Message Passing Neural Network [27] is a deep learn-
ing architecture designed for implementation in chemical, 
pharmaceutical and material science contexts. They were 
introduced as a framework to generalise several proposed 
techniques [14, 24, 25, 28, 29, 37, 38], and have demon-
strated state-of-the-art results on multiple related bench-
marks. For the specific MPNN implementations used for 
experiments in this paper, the most important predecessor 
is the Gated Graph Sequence Neural Network (GGNN) 
[28].

In simplistic terms, MPNNs operate by the following 
mechanism: An initial set of states is constructed, one 
for each node in the graph. Then, each node is allowed to 
exchange information, to “message”, with its neighbours. 
After one such step, each node state will contain an aware-
ness of its immediate neighbourhood. Repeating the step 
makes each node aware of its second order neighbourhood, 
and so forth. After a chosen number of “messaging rounds”, 
all these context-aware node states are collected and con-
verted to a summary representing the whole graph. All the 
transformations in the steps above are carried out with 
neural networks, yielding a model that can be trained with 
known techniques to optimise the summary representation 
for the task at hand.

More formally, MPNNs contain three major operations: 
message passing, node update, and readout. Using a mes-
sage passing neural network entails iteratively updating a 
hidden state hv ∈ RD of each node v . This is done according 
to the following formulas:

(1)m(t)
v =

∑

w∈N (v)

Mt

(

h(t)v , h(t)w , evw

)

(2)h(t+1)
v = Ut

(

h(t)v ,m(t)
v

)

where Mt is the message function, Ut is the node update 
function, N (v) is the set of neighbours of node v in graph 
G , h(t)v  is the hidden state of node v at time t , and m(t)

v  is 
a corresponding message vector. For each atom v , mes-
sages will be passed from its neighbours and aggregated 
as the message vector m(t)

v  from its surrounding environ-
ment. Then the atom hidden state hv is updated by the 
message vector.

The formula for the readout function is shown in 
formula 3:

where ŷ is a resulting fixed-length feature vector gen-
erated for the graph, and R is a readout function that is 
invariant to node ordering, an important feature that 
allows the MPNN framework to be invariant to graph 
isomorphism. The graph feature vector ŷ then is passed 
to a fully connected layer to give prediction. All func-
tions Mt , Ut and R are neural networks and their weights 
are learned during training. While details are given in 
the following sections, we provide summary differences 
between our presented architectures in Tables 1, 2, 3 and 
4.

SELU message passing neural network (SELU‑MPNN)
Our first architecture involved the basic MPNN frame-
work, but with the use of the SELU activation function 
[39] instead of more traditional batch or layer norm 
functions. The SELU activation function is parameter-
ised to converge towards a zero mean and unit variance, 
and removed the need to experiment with different nor-
malisation approaches (batch, layer, tensor, etc.) explic-
itly. All other architectures we propose also use SELU 
as their activation functions. Whilst many of the graph 
neural network approaches presented by MolNet can be 
cast into the MPNN framework, we chose to use SELU-
MPNN as our baseline for our implementation of the 
framework due to the increased convergence speed that 
SELU offers [40]. This affords us consistent results within 
our framework for a less biased comparison to more 
basic methods.

(3)ŷ = R
({

h(K )
v |v ∈ G

})

Table 1  Core differences between model architectures

Model Hidden states Denotion of neighbourhood Message aggregation scheme

MPNN h
(t)
v

N(v) m
(t)
v =

∑

w∈N(v)

Mt

(

h
(t)
v , h

(t)
w , evw

)

AMPNN h
(t)
v

N(v) m
(t)
v = At

(

h
(t)
v , S

(t)
v

)

 , where
S
(t)
v =

{(

h
(t)
w , evw

)

|w ∈ N(v)
}

EMNN h
(t)
vw

{(k, v)|k ∈ N(v), k �= w} m
(t)
vw = At

(

evw , S
(t)
vw

)

 , where
S
(t)
vw = {hkv |k ∈ N(v), k �= w}
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Apart from the different choice of activation function 
and hidden layers in the message function, the model we 
in our experiments denote SELU-MPNN shares great 
similarity with the original GGNN.

Attention message passing neural network (AMPNN)
Here we propose a further augmentation to the MPNN 
architecture by considering a more general form of the 
MPNN message summation step (Eq.  1). Using simple 
summation to convert an unknown cardinality set of 
vectors into a single vector is hypothetically an expres-
sive bottleneck. Potential better ways to implement such 
aggregation functions are currently being researched 
[41–44]. In the current study we extend previous 
MPNN models for graph-level prediction by employing 
a straight forward aggregation function with an atten-
tion mechanism. The attention mechanism has been 
proposed on image recognition and language translation 
problems amongst others [41, 45, 46] and have achieved 
better performance compared with normal deep neural 
network algorithms. We denote our specific implemen-
tation of the extended framework an Attention Message 

Passing Neural Network (AMPNN). Its most important 
predecessor is, as for our SELU-MPNN, the GGNN [28].

As mentioned earlier, the non-weighted summation in 
message passing function (Eq.  1) of the original MPNN 
constitutes a potential limitation. In the AMPNN frame-
work, a computationally heavier but potentially more 
expressive attention layer is proposed in the message 
passing stage to aggregate messages (Eq. 4). Equation 1 is 
replaced by the more general formula:

where At is an aggregate function invariant to the order-
ing of set members at step t. Just as for the original 
MPNN, the message to node v is computed based on its 
neighbours {w|w ∈ N (v)} , but the method of aggrega-
tion is not restricted to being a simple summation. The 
At here chosen to be able to investigate the architecture 
is that of the SELU-MPNN augmented with an attention 
mechanism. This is mainly inspired by [41] and essen-
tially eliminates the cardinality dimension of the set of 
neighbours by taking weighted sums. Formally, our layer 
is

Two feed forward neural network (FFNN) f (evw)NN  and 
g
(evw)
NN  are used for each edge type evw and give output 

vectors with the same length. The ⊙ and the fraction 

(4)m(t)
v = At

(

h(t)v ,
{(

h(t)w , evw

)

|w ∈ N (v)
})

(5)

At

(

h(t)v ,
{(

h(t)w , evw

)})

=
∑

w∈N (v)

f
(evw)
NN

(

h(t)w

)

⊙
exp

(

g
(evw)
NN

(

h
(t)
w

))

∑

w′∈N (v) exp
(

g
(evw′)
NN

(

h
(t)
w′

)) .

Table 2  Aggregation function special cases

Model Hidden states Aggregation form

MPNN h
(t)
v Mt

(

h
(t)
v , h

(t)
w , evw

)

= f
(evw )
NN

(

h
(t)
w

)

AMPNN h
(t)
v

At

(

h
(t)
v ,

{(

h
(t)
w , evw

)})

=
∑

w∈N(v)

f
(evw )
NN

(

h
(t)
w

)

⊙
exp

(

g
(evw )
NN

(

h
(t)
w

))

∑

w′∈N(v) exp

(

g
(evw′ )
NN

(

h
(t)

w′

)

)

EMNN h
(t)
vw At

(

e′vw , S
(t)
vw

)

=
∑

x∈S′
(t)
vw

fNN(x)⊙
exp(gNN(x))

∑

x′∈S′
(t)
vw

exp(gNN(x′))

S′
(t)
vw = S

(t)
vw

⋃
{

evw
′
}

Table 3  Other model architecture differences

Model Pre-message passing Update Pre-readout

MPNN
AMPNN

NA h
(t+1)
v = GRU

(

m
(t)
v , h

(t)
v

)

NA

EMNN evw
′ = f emb

NN

((

evw , h
(0)
v , h

(0)
w

))

h
(t+1)
vw = GRU

(

m
(t)
vw , h

(t)
vw

)

h
(K)
v =

∑

w∈N(v)

h
(K)
vw

Table 4  Model readout function and  post-readout 
function

Model Readout function Post-readout

All R
({(

h
(K)
v , h

(0)
v

)})

=
∑

v∈G

pNN

(

h
(K)
v

)

⊙ σ

(

qNN

((

h
(K)
v , h

(0)
v

)))

FFNN
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bar represent Hadamard multiplication and Hadamard 
division, respectively. Note that because of the output 
dimensionality of g

(evw)
NN  , the softmax-like operation 

embodied in the fraction of Eq.  5 uses a multitude of 
weightings rather than just one.

The f (evw)NN  network turns the hidden state of atom into 
an embedding vector, while the g (evw)NN  network embeds 
the atom hidden states into weight vectors which are 
turned into weight coefficients after the softmax opera-
tion. Notably, the softmax operation is done along the 
cardinality dimension of the set of weight vectors. Thus, 
the contribution of one element in the embedding vec-
tor depends on equivalent element of weight vectors in 
the set.

In the node update stage, similar to the GGNN, the 
node hidden states are updated via a gated recurrent 
unit, where the m(t)

v  is treated as the input and the cur-
rent node hidden state h(t)v  is used as the hidden state of 
the GRU​

At the initial state (t = 0), h(0)v  is the predefined atom 
feature vector. After the message passing and node 
updating steps are iterated for K steps, a readout func-
tion is applied to aggregate the hidden state of all the 
nodes in the graph into a graph level feature vector using 
two FFNNs. More precisely we use the GGNN readout 
function,

where pNN and qNN are FFNNs, the ⊙ denotes Hadamard 
multiplication, σ is the sigmoid function and the (,) of the 
right hand side denotes concatenation. The generated 

(6)h(t+1)
v = GRU

(

h(t)v ,m(t)
v

)

.

(7)

R
({(

h(K )
v , h(0)v

)})

=
∑

v∈G

pNN

(

h(K )
v

)

⊙ σ

(

qNN

((

h(K )
v , h(0)v

)))

graph feature vector is then passed into the final FFNN 
layer to make prediction.

Edge Memory Neural Network (EMNN)
The message passing concept in the MPNN framework 
computes the message to a centre atom by aggregating 
information from its neighbourhood atoms in a symmet-
ric fashion. Another MPNN-inspired model in our study 
has a hidden state in each directed edge (every bond has 
two directed edges in the directed graph) instead of in the 
nodes. In the directed graph, each bond (node–node con-
nection) has two directed edges, thus two hidden states. 
The hidden state of a directed edge is updated based on 
hidden states of edges whose heads coincide with its tail 
(Fig. 1). We call this model an Edge Memory Neural Net-
work (EMNN). In the resulting message passing step, the 
update of a hidden state has a corresponding direction.

This model shares underlying principles with the 
D-MPNN architecture proposed by Yang et  al. [35] 
which also uses directed edges to improve MPNN per-
formance. Their proposed model also injects additional 
chemical descriptor information alongside the FFNN 
after the message passing stage. Another notable dif-
ference between these architectures is our implemen-
tation of the afore-mentioned attention mechanism 
in the aggregation function. We include the D-MPNN 
model in our result and discussion to compare imple-
mentations and contrast the performance benefits of 
additional descriptor information, as has been explored 
in other literature [47]. We refer to their manu-
script for further details on their implementation and 
architecture.

One hypothetical advantage compared to MPNN is 
explained in the following. Consider a small graph of 
three nodes A, B and C connected as A–B–C, as illus-
trated on the right-hand side of Fig.  1. If information 
passage from A to C is relevant to the task, two message 
passes are necessary with conventional MPNN. In the 
first pass, information is passed from A to B, as desired. 
However, information is also passed from C to B, so that 
part of B’s memory is being occupied with information 
that C already has. This back-and-forth passing of infor-
mation happening in an MPNN hypothetically dilutes the 
useful information content in the hidden state of node B. 
When hidden states instead reside in the directed edges 
as per EMNN, this cannot happen. The closest thing cor-
responding to a hidden state in B is the hidden states in 
the edges −→AB and 

−→
CB . The update of 

−→
BC uses information 

from −→AB , but not from 
−→
CB.

As shown in Fig. 1, the flow of messages in each edge 
is directional where the message flows from a node (tail 
node) to another node (head node). Formally, the set of 

Fig. 1  The message passing from directed neighbouring edges to 
another edge in EMNN. Blue and green dots represent each directed 
hidden state for edges. Each coloured arrow is used to represent a 
respective message pass within the graph—purple represents the 
transition from one arbitrary direction to the other when the graph 
branches
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edge hidden states taken into account when updating 
edge (v,w) of the directed graph G = (V ,E) is

In the EMNN, before message passing takes place, the 
two node features are embedded into an edge feature by 
feeding a concatenation of the original edge and node 
feature vectors through a FFNN f emb

NN ,

At the initial state (t = 0) , evw , h(0)v  are the raw bond fea-
ture vector and atom feature vector respectively and (,) 
refers to the concatenation operation.

The edge hidden state h(t)vw of (v,w) at time t is updated 
according to Eqs. 8–10:

Note that each directed edge has both a static edge fea-
ture evw ′ and the time-mutated edge state h(t)vw contribut-
ing. h(0)vw is instantiated as a vector of zeros. One choice of 
aggregation function At is

m
(t)
vw is the message for edge (v,w) at iteration t . Ae

t is an 
attention based aggregation function similar to the one 
used in the AMPNN. S′(t)vw means all the edges involving 
node v including the edge (v,w) itself. Equation 10 is the 
update of edge (v,w) using a GRU unit.

After K  message passing iterations, a node hidden state 
for each node is taken as the sum of the edge hidden state 
of edges that the node is end to,

This is done to be able to utilize the same readout func-
tions as seen effective for the MPNNs. The readout func-
tion for EMNN is the same as in AMPNN (Eq. 7).

S(t)vw =
{

hkv|k ∈ N (v), k �= w
}

.

e′vw = f emb
NN

((

evw , h
(0)
v , h(0)w

))

(8)















m
(t)
vw = At

�

evw
′, S

(t)
vw

�

h
(t+1)
vw = Ut

�

h
(t)
vw ,m

(t)
vw

�

.

(9)

Ae
t

(

e′vw , S
(t)
vw

)

=
∑

x∈S′
(t)
vw

fNN (x)⊙
exp

(

gNN (x)
)

∑

x′∈S′
(t)
vw
exp

(

gNN (x′)
)

where S′
(t)
vw = S(t)vw ∪

{

e′vw
}

(10)h(t+1)
vw = GRU

(

h(t)vw ,m
(t)
vw

)

h(K )
v =

∑

w∈N (v)

h(K )
vw

Summary of architectural differences
All models we present are available from our git reposi-
tory as abstract classes, and have been designed from the 
ground-up in the Pytorch [48] framework to allow modi-
fication at all points, and have been tested using CUDA 
libraries for GPU acceleration.

Bayesian optimisation
Bayesian Optimisation is a method for returning the 
next best expected value of an N-dimensional surface 
by utilising all available information, in contrast to local 
gradient or Hessian approximation techniques. Gauss-
ian processes are fit around datapoints as they become 
available, and by using suitable evaluator types, estimates 
of the next datapoints to be evaluated can be obtained, 
and a balance between surface exploration and locality 

Table 5  A list of  hyperparameters optimised for  each 
architecture type, and  the  domains over  which they were 
optimised

Square brackets indicate discrete domains

NA not applicable

Hyperparameter SELU-MPNN AMPNN EMNN

Learn-rate {10−6 − 10−4} {10−6 − 10−4} {10−6 − 10−4}

Message-size [10,16,25,40] [10,16,25,40] NA

Message-passes [1–10] [1–10] [1–8]

Msg-hidden-dim [50,85,150] [50,85,150] [50,85,150]

Gather-width [30,45,70,100] [30,45,70,100] [30,45,70,100]

Gather-emb-hidden-dim [15,26,45,80] [15,26,45,80] [15, 26, 45]

Gather-att-hidden-dim [15,26,45,80] [15,26,45,80] [15, 26, 45]

Out-hidden-dim [360,450,560] [360,450,560] [360,450,560]

Out-dropout-p {0.0–0.1} {0.0–0.1} {0.0–0.1}

Out-layer-shrinkage {0.2–0.6} {0.2–0.6} {0.2–0.6}

Att-hidden-dim NA [50,85,150] [50,85,150]

Edge-emb-hidden-dim NA NA [60,105,180]

Edge-embedding-size NA NA [30,50,80]

Table 6  The selection of  datasets on  which models were 
trained, and details pertaining to these sets

Dataset Tasks Type Compounds Split Metric

MUV 17 Classification 93,127 Random PRC-AUC​

HIV 1 Classification 41,913 Scaffold ROC-AUC​

BBBP 1 Classification 2053 Scaffold ROC-AUC​

Tox21 12 Classification 8014 Random ROC-AUC​

SIDER 27 Classification 1427 Random ROC-AUC​

QM8 12 Regression 21,786 Random MAE

ESOL 1 Regression 1128 Random RMSE

LIPO 1 Regression 4200 Random RMSE
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optimisation can be struck. We used Expected Improve-
ment as the acquisition function, and Local Penalisation 
[49] as the evaluator type in order to make batch predic-
tions and hence explore our hyperparameter surface in 
parallel. The hyperparameters used in the NN were tuned 
using the Bayesian optimization package GPyOpt [50].

The hyperparameters searched in Bayesian optimiza-
tion and their constrained ranges are listed in Table  5. 
Due to architectural differences and an increased number 
of parameters, the optimisation range for the EMNN was 
slightly tightened.

Datasets
We used a selection of 8 datasets presented in the Mol-
eculeNet (MolNet) [30] benchmarking paper to evalu-
ate the networks. Datasets (shown in Table 6) were split 
according to the methods described in the MolNet paper. 
Datasets were split either randomly, or by Bemis-Murcko 
scaffold [51]. In the case of randomly split sets, three sets 
were produced, split by fixed random seeds. Each data-
set was split into train/test/validation sets in the ratio 
80/10/10 as per the MolNet procedure. Optimal hyper-
parameters were determined based on their performance 
on the validation set of the primary split. Once opti-
mal hyperparameters were selected three models were 
trained, one for each split, and the test scores for the 
best validation set epoch were averaged and the standard 
deviation calculated. In the case of scaffold splitting, test 
runs were still performed three times, and variation in 
the runs is the result of randomly initiated weights and 
biases. Each task in each dataset was normalised prior 
to training, and the results were transformed back after 
being passed through the model. Normalisation was done 
the same way as MolNet, with the notable exception of 
QM8.1 The node features generated from the datasets 
were: Atom Type, Atom Degree, Implicit Valence, Formal 
Charge, Number of Radical Electrons, Hybridization (SP, 
SP2, SP3, SP3D, SP3D2), Aromaticity, and Total Num-
ber of Hydrogens. These features were generated as per 
the MolNet Deepchem functions. For edge features, the 
bond types were limited to single bonds, double bonds, 
triple bonds and aromatic bonds.

The QM8 dataset [52] contains electronic spectra cal-
culated from coupled-cluster (CC2) and TD-DFT data 
on synthetically feasible small organic molecules. The 
ESOL [53] dataset comprises aqueous solubility values 
for small molecules, “medium” pesticide molecules, and 
large proprietary compounds from in-house Syngenta 

measurements. The LIPO dataset comprises lipophilic-
ity data. The MUV dataset [54] contains PubChem bio-
activity data specially selected and arranged by refined 
nearest-neighbour analysis for benchmarking virtual 
screening approaches. The HIV dataset [55] comprises 
classification data for compound anti-HIV activity. The 
BBBP dataset [56] contains data regarding compound 
ability to penetrate the blood–brain barrier. The Tox21 
dataset [57] was released as a data analysis challenge to 
predict compound toxicity against 12 biochemical path-
ways. The SIDER set [58] is a collection of drugs and 
corresponding potential adverse reactions grouped fol-
lowing MedDRA classifications [59] according to previ-
ous usage [60].

Preprocessing
Datasets were used both directly as provided from the 
MolNet repository without any preprocessing, and with 
some preprocessing procedure. Dataset preprocessing 
constituted transformation of the given SMILES string 
to that of the standardised charge-parent molecule, and 
reintroduction of ‘missing value’ labels where appropriate 
in multitask sets, which we refer to as SMD (Standardised 
Missing Data) preprocessing (Fig. 2). Charge-parent frag-
mentation was performed using the MolVS standardizer 
[61], which returned the uncharged version of the largest 
organic covalent unit in the molecule or complex. In the 
original datasets, these values were imputed as inactive 
as per previous literature. The reintroduction of ‘missing 
value’ labels allows the use of a masking loss function that 
operates over the set [Active, Inactive, Missing] and does 
not include missing data in the loss calculation. This pre-
vents backpropagation of molecule-target information in 
multitask datasets when it is not available.

Results
We present our results as a comparison against the Mol-
eculeNet paper [30], showing test set performances and 
relative test set errors to the best reported graph-based 
MoleculeNet architecture, as well as other classical 
machine learning models. We show our architectures 
(SELU-MPNN, AMPNN and EMNN models) for both 
the unaltered and for the SMD preprocessed data, com-
pared against the literature values for the original data-
sets to allow for fair benchmarking comparison for both 
the methods and for the preprocessing approaches. Com-
plete tables are available in Additional file  1, alongside 
model performance information and statistical tests. 
The results from the literature for other machine learn-
ing methods were also reported to have hyperparameters 
optimised by the authors, using Bayesian Optimisation 
where applicable, so should present a fair comparison. 
Some techniques are missing for some larger datasets; 

1  In other regression datasets, the dataset was normalised, and then split into 
train/test/validation splits, whereas QM8 was split and then each split nor-
malised. We chose to normalise QM8 in the same manner as the other regres-
sion sets, splitting after normalising over the whole set.



Page 8 of 18Withnall et al. J Cheminform            (2020) 12:1 

this is because they were not reported in the original 
publications, presumably due to computational limits. 
Our runs were performed only for the models we pre-
sent, and these are compared against values taken from 
literature benchmark studies for other models.

Performance in terms of AUC in classification on the 
original dataset was on par with state of the art for the 

majority of models, with the exception of the MUV set 
(Fig.  3), where a modest increase in performance was 
observed relative to MolNet. However, this increase was 
not significant compared to Support-Vector Machines, 
which had the highest performance by a large margin. 
The AMPNN architecture was the best of our presented 
approaches, with the third highest overall performance 

Fig. 2  Examples of ionic complexes found in the datasets, and their charge-parent standardized counterparts, as used in the SMD datasets

Fig. 3  Predictive performances of machine-learning approaches relative to the best MolNet graph model. With the exception of MUV, the metric 
used is ROC-AUC. The higher the y-axis is, the better the model performs
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on the MUV dataset. The D-MPNN showed a mild per-
formance increase over our architectures for sets other 
than MUV.

In terms of regression on the original datasets (Fig. 4), 
the AMPNN was also one of the best performing archi-
tectures we present, achieving the lowest error with 
smallest variance on two of the three sets, covering single 
and multi-task problems. Performance on the QM8 and 
ESOL datasets over our three presented architectures 
was more-or-less on par with MolNet, performing bet-
ter than Random Forest and XGBoost models, and being 
beaten by the D-MPNN consistently. However, on the 
lipophilicity set, all our presented architectures achieved 
a lower error than all other presented approaches except-
ing the D-MPNN, which was rivalled by the AMPNN 
implementation. The Random Forest and XGBoost 
results are to be expected, as these approaches are much 
more suited to classification than regression.

Performance in classification on the SMD preprocessed 
dataset was also on par with state of the art for the major-
ity of models, again with the exception of the MUV set 
(Fig. 5). Little change was observed between the preproc-
essing techniques for the rest of the datasets, with minor 
improvement observed in the Tox21 models, a couple 
of the SIDER and HIV models, and one BBBP model. 

However, the MUV performance was considerably 
increased, with two of our architectures (SELU-MPNN 
and AMPNN) performing as well as SVM model, at three 
times the predictive power of the presented MolNet 
architecture. The EMNN network was the best perform-
ing architecture, beating SVM models and presenting a 
predictive power on average over four times higher than 
MoleculeNet original performance, with only a slightly 
higher variance.

Regression on the SMD datasets (Fig.  6) also showed 
a little improvement overall versus the original data-
sets. The AMPNN was again one of the best performing 
architectures we present, achieving the lowest error with 
the smallest variance of the SMD models on the same 
two of the three sets as before, and showing a marked 
improvement on the ESOL dataset with this preproc-
essing approach. The lipophilicity set also showed lower 
overall error with these approaches, though the improve-
ment is minor compared to the improved performance in 
classification.

Overall, we have demonstrated increased predictive 
power for some of our architectures dependent on task 
modelled. We have also demonstrated an improved 
dataset preprocessing technique that can increase the 

Fig. 4  Regression errors of machine-learning approaches relative to the best MolNet graph model. Metrics are specified for each dataset. The lower 
the y-axis is, the better the model performs
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modelling capabilities of our networks under certain 
circumstances.

Discussion
Datasets
Classification
The reintroduction of missing data labels is likely the 
cause of the increased MUV performance over other 
methods. As shown in Table 7 and Fig. 7, approximately 
84% of the data points in the MUV multitask set are unla-
belled. In the original datasets, these points are imputed 
as inactives, which may introduce a large erroneous class 
imbalance to the dataset and affect performance.

When treating missing data as inactive in the origi-
nal datasets, actives represent only 0.03% of the data-
set, whereas ignoring missing data as with SMD sets 
the actives represent approximately 0.2% of the dataset, 
nearly an order of magnitude more. Heavily unbalanced 
datasets are notoriously tricky to train models on, and 
a reduction of this bias may explain the performance 
improvements of SMD processed data over the original 
MUV dataset.

As the SMD MUV dataset greatly outperformed other 
deep-learning approaches, we present a deeper analy-
sis on this set. Per-task results (Fig.  8) ranged between 
minimal learned knowledge and well-learned knowl-
edge when averaged across the three runs, and were on 
the whole very consistent between architectures. Tasks 
548 and 644, and tasks 832, 846 and 852 are of particular 
note: These correspond to Kinase Inhibitors and Protease 
Inhibitors respectively, and are our highest-performing 
tasks with the exception of task 712.

An analysis of these tasks gave a greater insight into 
one reason for the performance boost. As shown in 
Fig. 9, these tasks had a much greater activity correlation 
than others, i.e. ligands observed to be active or inac-
tive for these tasks were likely to share similar activity 
with the others. This allows the network to much more 

Fig. 5  Predictive performances of our machine-learning approaches on the SMD sets relative to MolNet and the respective original models. With 
the exception of MUV, the metric used is ROC-AUC. The higher the y-axis is, the better the model performs

Table 7  Number of  Actives, inactives, and  missing 
datapoints in the classification sets used in the study

Classification 
set

Number 
of actives

Missing 
datapoints

Number 
of inactives

MUV 398 1,066,216 199,359

HIV 1232 0 31,669

BBBP 1341 0 290

Tox21 4617 12,821 57,730

SIDER 17,440 0 13,367
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effectively pick up on common structural features and 
learn them as reported in other studies [62, 63]. However, 
in the case where missing data is imputed as inactive, 

these correlations become more difficult to learn, as 
negative counterexamples examples are artificially intro-
duced. Other tasks, such as the PPIc or GPCR tasks, are 

Fig. 6  Regression errors of our machine-learning approaches for the SMD sets relative to MolNet and the respective original models. Metrics are 
specified for each dataset. The lower the y-axis is, the better the model performs

Table 8  Task Information for the MUV dataset

Task label Target Mode of interaction Target class Assay type

MUV-466 S1P1 rec. Agonists GPCR Reporter Gene

MUV-548 PKA Inhibitors Kinase Enzyme

MUV-600 SF1 Inhibitors Nuclear Receptor Reporter Gene

MUV-644 Rho-Kinase2 Inhibitors Kinase Enzyme

MUV-652 HIV RT-RNase Inhibitors RNase Enzyme

MUV-689 Eph rec. A4 Inhibitors Rec. Tyr. Kinase Enzyme

MUV-692 SF1 Agonists Nuclear Receptor Reporter Gene

MUV-712 HSP 90 Inhibitors Chaperone Enzyme

MUV-713 ER-a-coact. bind. Inhibitors PPIc Enzyme

MUV-733 ER-β-coact. bind. Inhibitors PPIc Enzyme

MUV-737 ER-a-coact. bind. Potentiators PPIc Enzyme

MUV-810 FAK Inhibitors Kinase Enzyme

MUV-832 Cathepsin G Inhibitors Protease Enzyme

MUV-846 FXIa Inhibitors Protease Enzyme

MUV-852 FXIIa Inhibitors Protease Enzyme

MUV-858 D1 rec. Allosteric modulators GPCR Reporter Gene

MUV-859 M1 rec. Allosteric inhibitors GPCR Reporter Gene
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Fig. 7  Ratio of actives, inactives, and missing data for each task in the MUV dataset. Actives represent such a small proportion that they are not 
visible in this diagram

Fig. 8  Per-task results for the SMD MUV test set. Translations between task label and target information are available in Table 8
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more challenging to learn; by the nature of the target, 
the structural diversity of the actives compounded with 
the sparsity of the data, the class imbalances and the 
lack of transfer learning examples, results in very low 
performance.

The other tasks display generally poor activity, or occa-
sional performance peaks. Due to the extremely limited 
number of active compounds per task in the test-set, 
these performance peaks are expected to be sporadic 
and not true signal. Indeed, for task MUV-733, there 
were no active compounds in the test set for two of the 
three splits2 as split by MolNet procedure. As a method 
for improving performance, for future work we suggest 
encoding structural features of the target alongside the 
ligand may be one approach that could be used when cor-
related target information is not available.

The imputation of missing data as inactives in smaller 
sets with fewer missing labels has a much smaller impact. 
Tox21, with only approximately 17% missing data, has a 
barely perceptible change in active/inactive ratios when 
missing data is ignored—changing from 6.1% active to 
7.4% (Additional file  1). The performance increase here 
is therefore more likely to be due to false imputation of 
inactives in the dataset disrupting the learning process 
and making learning molecular features harder, than it is 
to be from a confusion of transfer learning examples.

The SIDER (no missing labels) performance demon-
strates our algorithms are remarkably resilient to mul-
tiple unbalanced sets in a multitask setting, performing 
on par with most other contemporary machine learning 
algorithms (Additional file  1). They maintain an advan-
tage even against algorithms that must be trained as mul-
tiple single-task models instead of a singular multitask 
algorithm. The performance increase between the Origi-
nal and SMD datasets was found to be negligible.

The networks perform on-par with other approaches 
for single-task classification—the HIV and BBBP clas-
sification sets. During the dataset analysis we observed 
that some compounds exist in counterionic forms in 
some datasets, which may not be optimal for ADMETox 
modelling: the charge-parent aspect of the SMD pre-
processing was introduced to convert molecules to more 
pharmacologically-relevant forms as they may exist in 
the body. This was naïvely done by removing complexes 
from the datasets, notably ionic complexes such as those 
shown in Fig.  2, under the assumption that the largest 
fragment contributes the effect, and to ensure the con-
sistency of charge representation. Further, there was an 
initial concern that, as ionic bonds are not modelled in 
the models’ edge types, information would not be able to 
propagate between the disjoint components of the com-
plex, and smaller components such as the sodium ions 
would act as artefacts in the graph and introduce noise. 
However, the lack of performance difference between 
the two suggests that the readout function bridged these 
gaps successfully, and the network can be robust against 
multiple fragments. As well as HIV and BBBP, this is 

Fig. 9  Correlation heatmaps between tasks for the training and test sets. These have been averaged across all splits. White indicates no data 
available for correlation (at least one missing datapoint for all pairs)

2  In future work, to mitigate these issues in highly sparse, highly unbalanced 
datasets, we encourage the use of alternative splitting approaches such as 
stratified sampling. Alternatively, if random sampling is preferring, repeat 
selection of seeds until at least one active is available for each task is recom-
mended.
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supported by the negligible performance difference 
between the SIDER models of the two sets.

Regression
The models performed in general on-par with existing 
models in regression modelling, with a significant reduc-
tion in error when working on the LIPO dataset. The 
models seem robust against various distributions of val-
ues, with ESOL and LIPO datasets resembling skewed 
normal distributions and QM8 resembling a much more 
atypical distribution, with most values centred in a singu-
lar narrow range close to zero (Fig. 10).

It is not known whether improvement can be further 
gained in some of these modelled tasks. The ESOL sol-
ubility models, for example, are close to the estimated 
experimental error of the original data. The estimated 
experimental error of drug-like compound solubility 
is usually cited as an RMSE around 0.6 logS units [64]. 

Simpler molecules nevertheless can be modelled with 
a much lower error around 0.3–0.4 log units [65]—this 
same study further suggests that the limit of ca. 0.6 log 
units for drug-like compounds may not be due to experi-
mental or data curation issues, but a limit of QSPR mod-
elling as applied to these databases. The creation of large 
datasets suitable for training complex models with lower 
experimental error is a nontrivial task, as solubility is a 
difficult property to measure correctly in a high through-
put scenario: The ‘gold-standard’ measure for solubility—
the shake-flask method, is a comparatively costly and 
time-consuming approach.

In contrast to the estimation of error for experimental 
physical chemical properties, other datasets can be diffi-
cult to give a lower bound of error, for example the QM8 
dataset. DFT is in theory exact, however in practice a 
small but important energy component must be approxi-
mated. Though modern approximations provide useful 

Fig. 10  Distribution of property values from the ESOL, LIPO and QM8 regression datasets after normalisation by mean and standard deviation
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accuracy for practical purposes, errors are not strictly 
variational, so systematic improvement is problematic. 
Compounding this, practical implementations introduce 
other errors (from e.g. choice of basis set, grid resolu-
tion), and as such quantifying the limit of how well neural 
networks can model these properties is difficult.

Hyperparameters
Due to the extensive hyperparameter optimisation that 
was performed during the training process, we analysed 
the distributions of hyperparameters to see if there were 
any tendencies towards optimal configurations for future 
work. Of the optimised hyperparameters (Table  5) we 
found that the shrinkage rate of the output fully-con-
nected layer, the learning rate, the number of message 
passing iterations, and the output layer dropout rate were 
of note (Fig. 11). Other hyperparameters did not display 
any notable trends.

We found that generally a higher output layer shrink-
age rate and a higher learning rate was more optimal for 
network performance. The learning rate was often hitting 
the maximum allowed value of the specified optimisation 
domain, which may indicate that performance could be 
further improved if this limit was expanded, pushing the 
distribution towards a more uniform coverage.

Conversely, dropout was observed to be generally lower 
in optimal hyperparameters across model training. Whilst 
this may generally be undesirable as it can lead to model 
overfitting, the evaluation of the model in a train/test/vali-
dation splitting approach should penalise any tendencies to 
overfit. This would imply that other aspects of the MPNN 
architecture act as feature regularisation and prevent this, 
though this cannot be stated conclusively. Figures supplied 
in the ESI suggest that no notable overfitting was observed 
during training, which may give the approach inherent 
advantages over machine learning methods that are tradi-
tionally more prone to overfitting. The number of message 

Fig. 11  Aggregate distributions of hyperparameters observed over all tasks and architectures on the SMD datasets after optimisation
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passes did not show any clear trend, and can be assumed to 
be heavily dependent on task and other hyperparameters. 
Some tasks such as ESOL and Tox21 however showed a 
small bias towards fewer message passing iterations, which 
makes sense as features such as hydrogen bond donors/
acceptors, toxicophores etc. can be very localised and large 
contributing factors to these properties.

Conclusion
We have introduced two augmentations to the MPNN 
framework that have shown performance on-par or 
greater than existing benchmarking models. One is the 
Attention MPNN, and the other the Edge Memory NN, 
both of which performed competitively with state of the 
art machine learning techniques of both traditional and 
deep learning varieties. The introduction of the attention 
scheme to our baseline MPNN framework added mini-
mal model overhead, and offers no disadvantages for its 
use compared to the baseline model, in situations where 
it is effective. The EMNN had computational cost disad-
vantages, however, its use may be justified in  situations 
where it offers significant performance increases: We 
demonstrate that our algorithms can outperform state-
of-the-art models in virtual screening settings, notably 
demonstrated on sparse multi-task datasets, even without 
the inclusion of target structural information. Further, the 
inclusion of an attention mechanism may aid in model 
interpretability, as explored in other literature [66]. We 
were fairly consistently outperformed by the analogous 
D-MPNN architecture on other tasks, however we noted 
generally comparable performance without the inclusion 
of additional chemical descriptor information, using only 
low-level chemical graph data. We have analysed different 
approaches to multitask modelling and dataset preproc-
essing that have demonstrated increased performance 
under specific conditions, most notably presenting that 
the graceful handling of missing data can contribute sig-
nificantly to model performance in highly sparse datasets. 
Further, we have performed an extensive hyperparameter 
optimisation over many model parameters and provided 
a summary analysis of some more common hyperparam-
eters, indicating potential starting values for future work.
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