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Abstract 

MFsim is an open Java all-in-one rich-client computing environment for mesoscopic simulation with Jdpd as its 
default simulation kernel for Molecular Fragment (Dissipative Particle) Dynamics. The new environment comprises the 
complete preparation-simulation–evaluation triad of a mesoscopic simulation task and especially enables biomolecu‑
lar simulation tasks with peptides and proteins. Productive highlights are a SPICES molecular structure editor, a PDB-
to-SPICES parser for particle-based peptide/protein representations, a support of polymer definitions, a compartment 
editor for complex simulation box start configurations, interactive and flexible simulation box views including analyt‑
ics, simulation movie generation or animated diagrams. As an open project, MFsim allows for customized extensions 
for different fields of research. 
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Introduction
A molecular simulation workflow comprises three suc-
cessive steps: The definition of a simulation job with 
all necessary input information (preparation step), the 
approximate numerical integration of the equations of 
motion (the actual simulation step) and the analysis of 
the simulation record with all calculated results (evalu-
ation step). A computational all-in-one rich-client envi-
ronment aims at supporting this triad in a unified and 
comprehensive manner to allow for productive applica-
bility with minimum effort, minimized training periods 
and usability without programming skills. An additional 
goal is the prevention of common problems like inad-
equate or ill-defined parameter settings by extensively 

safeguarding simulation job definitions and operations. 
In general, these desirable features require a highly 
integrated monolithic architecture: Its pre-defined 
optimized workflows are comfortable and fast but inflex-
ible in comparison with scripting or pipelining-workflow 
approaches. For the latter the implementation of a new 
feature may be achieved within minutes whereas its rich-
client realization may involve days and weeks of complex 
software development. Thus, the different approaches 
have their intrinsic strengths and weaknesses.

Particle-based mesoscopic simulation investigates 
supramolecular phenomena at the nanometer length 
and microsecond time scale for large interacting physi-
cal ensembles representing millions of atoms. Dissipa-
tive Particle Dynamics (DPD) is a mesoscopic simulation 
technique for isothermal complex fluids and soft mat-
ter systems which satisfies Galilean invariance and isot-
ropy, conserves mass and momentum and achieves a 
rigorous sampling of the canonical NVT ensemble due 
to soft particle pair potentials that diminish molecular 
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entanglements or caging effects. DPD is expected to 
show correct hydrodynamic behavior and to obey the 
Navier–Stokes equations. DPD particle trajectories are 
guided by Newton’s equation of motion where the total 
force on a particle exerted by other particles consists of a 
conservative, a dissipative (frictional) and a random part. 
The opposing dissipative and random forces depend on 
each other and act as a thermostat conserving the total 
momentum and introducing Brownian motion into the 
system. The conservative forces comprise soft DPD par-
ticle repulsions as well as possible harmonic springs 
between bonded and electrostatic interactions between 
charged particles [1–5]. DPD particles in general may be 
arbitrarily defined as “fluid packets”. Molecular Fragment 
Dynamics (MFD) is a “bottom-up” DPD variant which 
chooses the particles to be small “fragment molecules” 
of molar mass in the order of 100 Da where larger mol-
ecules are composed of adequate smaller “fragment mol-
ecule” particles that are bonded by harmonic springs to 
mimic covalent connectivities and spatial 3D conforma-
tions [5–12].

The new MFsim project provides (to our knowledge) 
the first open Java all-in-one rich-client mesoscopic 
simulation environment and complements the few avail-
able commercial systems [13, 14] with specific support 
for biomolecular applications containing peptides and 
proteins. By default, MFsim is integrated with the Jdpd 
simulation kernel, an open MFD Java code [15, 16]. As 
an open approach, MFsim is not restricted to a specific 
mesoscopic simulation engine but may be customized to 
communicate with any particle-based simulation code 
[17–24]: Appendix 3 outlines the corresponding simula-
tion kernel integration details.

Usage of MFsim does not require programming skills 
and supports the complete preparation-simulation–eval-
uation triad of a mesoscopic simulation task. It comprises 
features like a SPICES line notation [25, 26] based chemi-
cal structure editor, a PDB file parser [27] for particle-
based peptide/protein representations, a peptide and 
protein editor, support of polymer definitions, a compart-
ment editor for complex molecular start configurations 
and interactive simulation box views including analyt-
ics, on-the-fly movie generation and animated diagrams. 
Parameter settings are supported by reusable schemata 
and filtered bulk operations, inter-parameter dependen-
cies are controlled by directed internal update cascades to 
avoid ill-defined settings. MFsim parallelizes operations 
to effectively exploit multi-core processor hardware.

Implementation
The object-oriented Java architecture (see Fig. 1) follows 
a Model-View-Controller (MVC) pattern [28]: Graphi-
cal user interface (GUI) view classes (based on the Swing 

GUI Toolkit [29] of the Java platform [30]) are governed 
by corresponding controller classes (gui packages con-
trol, dialog and main). The controllers communicate with 
a layer of Molecular Fragment Cheminformatics (MFC) 
models (model packages changeNotification, graphics, 
jmolViewer, job, message, particle, particleStructure, pep-
tide, preference, util and valueItem) that provide all core 
functions where the MFC layer itself controls the particle 
simulation kernel (Jdpd as a default).

The basic GUI frame is organized by three manage-
ment tabs for simulation job Design, job Execution and 
job Results evaluation that operate on a defined work-
space directory of the file system (see Fig. 2): This work-
space directory contains a JobInputs folder (where each 
subfolder corresponds to a single Job Input definition) 
and a JobResults folder (with subfolders corresponding to 
Job Result instances). During job execution a temporary 
directory is used for file storage which may be located on 
an fast hardware/memory device for maximum perfor-
mance. All specific GUI functions are provided by suc-
cessive levels of modal dialogs that can be opened above 
the basic GUI frame.

MFsim automatically logs internal problems to support 
the detection of possibly subtle errors which are likely to 
occur in complex architectures with hundred thousands 
of code lines. The log file entries may be viewed via menu 
entry Help/MFsim log/Browse of the basic GUI frame.

Details about internal data objects, preferences and 
convenient re-usable settings are comprised in Appendix 
2.

MFsim supports concurrent calculations to exploit 
the capabilities of multi-core processors for perfor-
mance improvements that (almost) linearly scale with 
the number of available processor cores (and addition-
ally benefit from technologies like Hyper-Threading). 
To arrive at an overall optimum balance the global pref-
erence section Parallel computing provides options for 
fine-tuning of concurrent operations. As an example the 
number of parallel calculation threads for force calcu-
lations of the (default Jdpd) particle simulation engine 
may be specified in combination with the number of 
concurrent jobs in simulation to achieve an adequate 
workload of an octa-core processor with 2 concurrent 
simulations and 4 force calculation threads each—
whereas for a maximum single-job performance the 
number of force calculation threads could be increased 
to 8 with the number of parallel simulations decreased 
to 1. Additional parallel computing options address the 
number of concurrent particle position writers for out-
put file creation, the minimum number of simulation 
box cells and particle–particle bonds for parallelization 
(to avoid ineffective parallelization efforts due to the 
necessary computational overhead) and the number of 
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concurrent graphical simulation box slice and diagram 
generators (abbreviated slicers – their number should 
at best correspond to the number of available processor 
threads including Hyper-Threading).

Another performance related feature is global caching: 
SPICES line notations (class SpicesPool of package model.
particleStructure) and PDB file related protein definitions 
(class PdbToDpdPool of package model.peptide) are kept 
in memory to speed-up chemical structure related opera-
tions by avoidance of expensive reevaluations during cal-
culations. The size of the SPICES and protein cache may 
be inspected via menu entry Application/Cache/Show of 
the basic GUI frame. In-memory caching also improves 
the performance of simulation box slice image related 
operations: Preference/Simulation box/Slicer graph-
ics/Image storage in the global preferences dialog may 
be used to activate the Memory uncompressed  (fastest) 
or compressed (smallest) image cache, otherwise slice 
images are stored as image files which is comparably 
slow.

MFsim slicer graphics is realized with Java2D [31]. 3D 
displays of the simulation box are parallel projections 
that allow for versatile through-space measurements 
(but appear somewhat distorted compared to central 
projections). The spatial 3D impression is additionally 
supported by a configurable fog generation. Simulation 
movie generation is realized by merging box images into 
a movie clip utilizing the open FFmpeg software [32].

Since there is no unique particle set for mesoscopic 
simulation, a specific field of research requires a spe-
cific particle set—a situation that is similar to Molecu-
lar Mechanics/Dynamics with different force fields and 
specific atom types. All mandatory particle information 
and particle–particle interactions must be provided by 
a particle set text file where particle definitions are to 
be described in mandatory section [Particle descrip-
tion], particle–particle repulsions in mandatory section 
[Particle interactions] and peptide/protein decompo-
sition related particle information in optional section 
[Amino acids]. MFsim comes with ParticleSet_H2O.txt, 
a minimal single-particle set for test purposes, and Par-
ticleSet_AA_V02.txt, a basic biomolecular particle set for 
an approximate fragmentation of phospholipids and pep-
tide/proteins. The latter is based on the particle data in 
[24] with rescaled molecular volumes and the water mol-
ecule being the smallest particle of volume 30 Å3. MFsim 
contains some functions for particle set manipulation 
(e.g. particle duplication, see menu Particles of the basic 
GUI frame) and supports the automated update of a Job 
Input definition for a new particle set.

Last but not least—as an open project itself, MFsim 
uses several other open libraries: Apache Commons IO 
[33] /Lang [34] /RNG [35], BioJava [36, 37], FFmpeg 

(currently with the Windows OS only), GraphStream 
[38], Jama [39], JCommon [40], Jdpd, JDOM [41], 
JFreeChart [42], Jmol [43], PCG [44, 45], SPICES [26] and 
Vecmath [46].

Results and discussion
The MFsim simulation system aims at supporting the 
complete preparation-simulation–evaluation triad in 
form of an integrated all-in-one workflow which is 
sketched step-by-step in the following paragraphs.

Simulation job design
The simulation Design tab of the basic GUI frame man-
ages all Job Input related operations. It comprises an 
optionally filtered list of all available Job Input definitions 
of the specified workspace where a single Job Input defi-
nition may be viewed, edited, re-used (as a start for a new 
definition), removed, imported from an archive file or 
itself archived to a file (e.g. for exchange purposes). For a 
new Job Input definition, a corresponding modal dialog is 
opened above the basic GUI frame.

A new Job Input definition is already a complete and 
valid simulation job definition with a single particle 
type (the water particle). The Job Input features have to 
be defined in a top-down manner where a change in a 
higher-level feature leads to an immediate update of sub-
ordinate features in an adequate manner—e.g. a change 
in the number of particles via the Quantity feature auto-
matically changes the subordinate Box size feature to 
be consistent with the new higher-level Quantity set-
tings according to the even higher DPD density setting. 
These successive top-down updates (which are real-
ized by directed ValueItem update cascades, see class 

Fig. 1  MFsim architecture with underlying MVC pattern: Graphical 
user interface (GUI) views/controllers communicate with a layer of 
Molecular Fragment Cheminformatics (MFC) models that provide all 
core functions where the MFC layer itself controls the DPD simulation 
kernel layer
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UtilityJobUpdate in package model.job as well as Appen-
dix 2) alleviate error-free Job Input definitions with an 
overall logical integrity. A complete Job Input definition 
is organized in form of a feature tree that consists of four 
main sections (see Fig. 3): The General job description, the 
Chemical system description, the Interaction description 
and the Simulation description. Every single Job Input 
feature contains a local Description, a Hint and an Error 
tab: The Description tab provides a descriptive outline of 
the feature in question and summarizes its possible set-
tings. The Hint tab informs about possible shortcomings 
of the current setting (e.g. possibly unwanted identical 
colors for different molecules so that the molecules can-
not be distinguished in a simulation box display) whereas 
an activated Error tab signals a severe problem which 
has to be resolved (an erroneous Job Input definition is 
not allowed to be executed). Since the list of Job Input 
features should exploit the range of capabilities of the 
underlying particle simulation kernel the current MFsim 
Job Input feature set especially addresses the default Jdpd 
simulation kernel (see class JdpdValueItemDefinition in 
package model.job). For other particle simulation kernels 
the feature set would have to be customized accordingly 
(see Appendix 3).

The General job description comprises job related infor-
mation like a Description line or a creation Timestamp.

The Chemical system description addresses all features 
that characterize the chemical ensemble to be simulated. 
Monomer definition and Molecule definition are realized 
with chemical structure editors plus specific editors for 
peptides and proteins. The editor for monomers and 
molecular structures is based on the SPICES and Graph-
Stream libraries [25] and supports the input of a SPICES 
line notation. A SPICES string can be manually coded 
(or composed by clicking on available structure elements 
like particles, brackets or tags) and is immediately parsed 
with its manipulative topological structure displayed 
below (for a valid definition)—thus the input of an illegal 
SPICES line notation is (hopefully) impossible. If a par-
ticle set with amino acids definition is chosen the PDB 
structure tab and the Peptide button are activated. The 
additional modal peptide dialog allows for the input of a 
one-letter-code peptide sequence (manually or by click-
ing on the available amino acids and structure elements 
like disulfide bridges, charges etc.) that is afterwards con-
verted to a SPICES line notation in the structure editor 
(see Fig. 4).

Fig. 2  Basic MFsim GUI frame with three management tabs for simulation job Design, job Execution and job Results evaluation operating on a 
defined workspace directory (see status line at the bottom). The displayed Home tab depicts graphical project information and links to the MFsim 
GitHub repository
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For biomolecular simulations MFsim provides a PDB-
to-SPICES parser which is available via the PDB structure 
tab (see Fig. 5). An opened PDB file is rendered with the 
Jmol library and internally evaluated with the BioJava 
library to create a corresponding SPICES line notation. 
Different biological assemblies may be chosen from the 
PDB definition via a drop-down box. The modal Chain 
dialog may be used to exclude protein chains and to a 
priori assign a segment to an amino acid according to its 
protein chain. The modal Mutant dialog allows the spe-
cific change of amino acids to create in silico mutants 
(with the same 3D structure of the backbone chain). A 
pH value may be set with the modal pH dialog to charge 
corresponding particles. The modal Property dialog offers 
a number of settings for the amino acids of all chains: 
Protein backbone particles may be replaced by probe 
particles with identical physical properties but different 
labels for e.g. selective display of specific amino acids 
of a chain. In addition, a status and a segment may be 
defined for each amino acid backbone particle which can 
be used for intra-protein force assignments in order to 
achieve specific control concerning the flexibility or stiff-
ness of the protein backbone (whereas amino acid side 
chain particles are always flexible). The complete protein 
information is encapsulated in a PdbToDpd object (pack-
age model.peptide) which is globally stored in the protein 
cache for inexpensive reuse in protein related calcula-
tions. A PdbToDpd object also comprises an automated 
mapping of the 3D protein structure to the relative posi-
tions of its DPD backbone particles which supports real-
istic 3D protein start geometries in the simulation box.

The SPICES related polymer construction exploits the 
syntax characteristics of the SPICES definition [25] and 
is realized by an interplay of the SPICES monomer editor 
(feature Monomer definition) and the SPICES structure 
editor (feature Molecule definition) for polymer construc-
tion from monomers.

The Simulation box subsection of the Chemical system 
description (see Fig. 3 for the expanded feature tree) pro-
vides detailed setting options for the molecular ensemble. 
The Composition sub-subsection allows the definition of 
the number of molecules in the box where Concentration 
settings in gram, mol, mol-percent or weight-percent are 
also possible. Feature Box size may modify the box geom-
etry with a cube as a default. The Colors sub-subsection 
defines different color display modes with Molecule-par-
ticle color as the most fine-grained setting where an indi-
vidual color may be chosen for every particle type within 
a molecule. The Particles and molecules display sub-
subsection then allows for the corresponding individual 
default display settings for all molecules/particles (which 
may be arbitrarily changed at a later stage). The gener-
ated default molecular simulation box configuration 

consists of randomly-oriented spatial SPICES 3D tubes 
(described in [25]) at random box positions (see Fig.  6 
which also describes the treatment of PDB-derived 3D 
peptide/protein structures). The Compartments and box 
view feature (selected in Fig.  3) may be used to set up 
specific compartments with specific molecule orienta-
tions and to view the resulting start configuration of the 
simulation box. The compartment editor enables various 
settings as a combination of sphere, layer or rectangular 
cuboid compartments where different molecular orien-
tations may be defined within each compartment (see 
Fig.  7). Layers with exclusively single particle molecules 
allow for a simple cubic lattice particle positioning which 
may generate a solid surface in combination with the 
Molecule fixation function (see below). The editor also 
supports a correct a priori DPD density of particles inside 
a compartment (which may be arbitrarily changed).

The settings of the final Movement sub-subsection of 
the Simulation box subsection address molecule move-
ment control capabilities of the Jdpd simulation kernel: 
Molecules may be spatially fixed (Molecule fixation) or 
their movement restricted to virtual cages surrounded 
by “reflective walls” within the simulation box (Molecule 
boundary). On the other hand, molecules may possess a 
fixed velocity (Molecule fixed velocity) or may be kicked 
with a specified frequency (Molecule acceleration).

The final Property calculation subsection of the Chemi-
cal system description offers several calculation options 
during simulations like particle-pair radial distribution 
functions (RDF) and distances, particle-based molecular 
radii of gyration or a detailed particle/molecule nearest-
neighbor analysis to monitor changing particle/mole-
cule vicinities with temporal evolution of the simulated 
ensemble.

Interaction description as the third main Job Input sec-
tion addresses the fundamental physics of the DPD par-
ticle–particle interactions like the Temperature setting, 
Random DPD force magnitude, electrostatic interac-
tions of charged particles, gravitational acceleration or 
the characteristics of bonds between particles and their 
neighbor particles within molecules. Since mesoscopic 
DPD simulations are based on isotropic particle–parti-
cle repulsions (editable via feature Particle interactions 
with the default repulsion parameters taken from the 
selected particle set) it may be necessary to impose pref-
erential molecular conformations, e.g. to stabilize the 3D 
backbone structure of proteins by adequate spring forces 
between backbone particles to prevent a structural col-
lapse. Thus, additional particle–particle spring forces 
may be specifically defined between indexed particles in 
SPICES line notations (Molecule backbone forces), the 
amino acid backbone particles of peptides and proteins 
(Protein backbone forces) and the backbone particles of 
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peptides and proteins within assigned chain segments 
(Protein distance forces).

The final main Simulation description section com-
pletes the Job Input settings with definitions for control 
of the simulation itself. The number of Simulation steps 
defines the temporal physical period to be simulated by 
integration of the equations of motion with a defined 
Time step length and a specific Integration type. Out-
put frequency controls the intermediate output (e.g. the 
creation of particle position files for specific simulation 
steps) for later evaluation of the simulation record. Ini-
tial minimization steps may be defined to improve the 
initial simulation box start configuration with Minimiza-
tion step output as a control setting for later inspection. 
Remaining definitions address Periodic boundaries along 
the box axes, the use of a DPD unit mass, possible Ini-
tial velocity scaling steps for temperature control and the 
choice of the Random number generator for the random 
DPD force.

A completely defined job may be finally saved (Apply 
button of the modal Job Input dialog) with an automated 
addition to the list of available Job Input definitions of the 
current workspace.

Simulation job execution
The Execution tab of the basic GUI frame manages the 
simulation of defined (error-free) Job Input definitions 
and a restart of already simulated Job Result instances 
(with a defined number of additional simulation steps): 
After addition to the Job Execution Queue jobs may 
be executed in parallel according to the global settings 
defined in Preferences/Parallel computing. For job execu-
tion MFsim must convert a Job Input definition to a Jdpd 
command file with corresponding particle position files 
(see class JobUtilityMethods in package model.job as 
well as Appendix 3). Completed simulations are stored 
as new Job Result instances for further evaluation (see 
below). Job execution is always performed in background 

Fig. 3  Modal dialog for a Job Input definition with main sections General job description (collapsed), Chemical system description (expanded), 
Interaction description (collapsed) and Simulation description (collapsed). Feature Compartments and box view of subsection Simulation box in main 
section Chemical system description is selected
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so it does not interfere with the concurrent usage of any 
other MFsim function (with the exception that a cur-
rently simulated Job Input definition is not allowed to 
be changed by editing operations or removal). For every 
job in simulation its progress in percent and the esti-
mated remaining simulation period is displayed and con-
stantly updated. The Job Execution Queue may be altered 
in an arbitrary manner after execution start where a 
job in simulation cannot be immediately killed but only 
stopped with a delay to guarantee a valid Job Result. All 
Job Result evaluation functions are also available for jobs 

in execution which allows for a detailed inspection and 
analysis of simulation progress.

The Job Result restart feature offers the possibility of 
successive simulation pipelines since underlying Job Input 
definitions may be changed before a restart. As an exam-
ple, a possible molecule fixation or caging defined in the 
Movement sub-subsection (see above) could be removed 
before a restart of an initial relaxation simulation to allow 
for new modes of interaction between the molecular spe-
cies. Changes of the molecular composition or the spatial 
configuration are not possible since they would affect the 
overall physical state of a simulation.

Fig. 4  Molecular structure tab of the modal structure editor dialog: The SPICES line notation (upper left) of a cyclic peptide was prepared with the 
modal peptide dialog (available via the active Peptide button) thus the line notation is automatically split into several lines for each amino acid 
to alleviate comprehension. The notation is valid (confirmed by the Valid molecule label) and its cyclic topological structure is displayed below. 
Available structure elements (particles, brackets, tags etc.) are listed on the right
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Simulation job result evaluation
The Results tab of the basic GUI frame comprises a list of 
all Job Result instances of the current workspace where 
a Job Result may be viewed, removed, imported from or 
exported to an archive file.

The View of a Job Result opens a modal dialog that con-
sists of a feature tree which offers substantial simulation 
related evaluations (see Fig. 8). The General information 
section summarizes general settings and results like sim-
ulation end point and period, number of simulation steps 
and corresponding physical time, parallelization settings 
or the used particle set file name. The Simulation pro-
gress section provides time-step data and corresponding 
graphical 2D diagram charts of relevant physical quanti-
ties like temperature, kinetic and potential energy or sur-
face tension. The 2D diagram charts may be converted to 
movies that are in concordance with simulation movies 
(see below) to allow for a combined display. If specific 
property calculations throughout the simulation were 
defined in the Property calculation subsection of the 
underlying Job Input definition the corresponding result 
evaluations appear as additional sections in the Job Result 
feature tree, e.g. the Nearest neighbor section in Fig.  8. 
The Distribution movie section (see Fig.  8) provides 
movies with animated 2D diagram charts of a particle/

molecule frequency along a selected axis for a defined 
simulation period.

The Simulation box section provides (animated) sim-
ulation box views of all (output) steps of the simula-
tion process including the a priori minimization steps 
(if defined in the Job Input definition) and the genera-
tion of simulation movies for defined simulation periods 
(see Fig. 8). For simulation box view and analysis MFsim 
consists of two types of viewers for arbitrarily rotated 
or shifted box inspections: The Simulation box viewer 
(mis)uses the graphical Jmol capabilities designed for 
atom-based molecule representations to display parti-
cle structures whereas the Simulation box slicer gener-
ates successive slice images of the simulation box using 
Java2D. Moreover, the Simulation box slicer provides 
extensive box analysis features like through-space meas-
urements, (individual) particle selections or the defini-
tion of zoom volumes with a corresponding particle/
molecule frequency analysis (see Fig. 9). Molecular color, 
size, visibility or transparency settings may be arbitrarily 
changed for alternative views of the molecular ensemble 
in question.

Simulation movies for a defined simulation period 
are generated with the slicer functionality. Slicer related 
animation settings (e.g. box spinning, box slicing or box 

Fig. 5  PDB structure tab of the modal structure editor dialog: A PDB file can be loaded with automated conversion to a SPICES line notation. 
Different tabs show the rendered protein structure, its amino acid sequence, the corresponding SPICES line notation and the text of the PDB file. 
Several additional functions and dialogs are available at the top (see text)
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zooming) may be used to contribute to the movie gen-
eration in an additive manner: A simulation movie may 
start with a spinning box, then show the minimization 
steps, again stop with a spinning box after minimiza-
tion, exclude specific particles/molecules, zoom-in, then 
show a defined part of the simulation process within the 
zoomed box volume etc. All slicer functions produce 
sequences of images which may finally be merged into a 
MP4 movie clip with the open FFmpeg software (auto-
mated integration of FFmpeg is currently only available 
for the Windows OS).

Last but not least the final Job Input section just shows 
all features of the underlying Job Input definition.

MFsim use cases
The new MFsim environment may be beneficial for 
different fields of research. Theoretical physicists and 
chemists that contribute to the foundations of meso-
scopic simulation with new methods/models/applica-
tions or improved/extended particle parameter sets 
may choose the open environment for an exemplifica-
tion of their work so that their new insights and devel-
opments can be more easily adapted and utilized by a 
wider scientific community where especially scientific 
end-user communities appreciate availability within a 
rich-client system.

Fig. 6  Default random simulation box start configuration without compartment definition (compare Fig. 7) of a chemical ensemble that comprises 
800.000 (bulk) water particles (excluded from display), 40.000 water particles (to be located inside a vesicle, colored cyan), 2.200 (oriented 
outer-vesicle) DMPC molecules (with SPICES line notation: TriMeNP[START]-DMPN(MeAc-6Et)(MeAc-6Et[END]) [25]), 1.800 (oriented inner-vesicle) 
DMPC molecules (with SPICES line notation: TriMeNP[END]-DMPN(MeAc-6Et)(MeAc-6Et[START]) [25]) and 500 Kalata B1 cyclotides. All molecules—
except the Kalata B1 cyclotides which are derived from PDB file 1NB1 [47]–are generated as randomly-oriented spatial SPICES 3D tubes at random 
positions in the box. The 500 Kalata B1 cyclotides are also randomly distributed throughout the box but their individual amino acid backbone 
particle positions are set according to their spatial 3D structure (with the side chain particles collapsed onto their neighboring backbone particles). 
In addition, each Kalata B1 cyclotide is overall shrunk into a virtual sphere (with a volume that corresponds to its particles’ DPD volume) from which 
all other particles are excluded–thus a Kalata B1 cyclotide start size is somewhat smaller than its actual size during simulation. DMPC particle colors: 
DMPN (red), Et (olive), MeAc (orange), TriMeNP (blue). Kalata B1 backbone particles are shown in beige (all amino acid side chain particles are 
excluded from display) with the backbone particles that correspond to the characteristic hydrophobic spot of these peptides displayed in yellow
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Chemo- and bioinformaticians may likewise be inter-
ested in the extended possibilities to popularize their new 
and improved algorithmic solutions by offering a versa-
tile usage in a convenient environment with only com-
paratively small additional development efforts.

As an open all-in-one rich-client system with (mod-
est) hardware requirements that are commonly available 
in scientific institutions, MFsim especially targets scien-
tific end-users without programming skills. Presumed, 
a theoretically sound simulation model is available, spe-
cific alterations and extensions can be performed by 
end-users themselves. Tutorials Simulation of a DMPC 

bilayer membrane model [48, 49] and Cyclotide-mem-
brane sandwich interaction model [50, 51] illustrate 
details of biomolecular simulation setups in a step-by-
step fashion (with the corresponding MFsim Job Inputs 
being available in the MFsim GitHub repository tutorials 
subfolder) to show that the inevitable training hurdle for 
productive usage is manageable with tolerable effort. The 
MFsim GitHub repository also contains links to MFsim 
generated simulation clips (see README in subfolder 
2020 Cyclotide-membrane interaction study) which dem-
onstrate an especially attractive feature for visual com-
munication of research findings (the convenient MFsim 

Fig. 7  Definition of compartments for a 30 nm DMPC phospholipid double-layer vesicle and view of the resulting simulation box start 
configuration of the chemical ensemble described in Fig. 6. Upper left: Modal compartment editor dialog with detailed settings of the bulk phase 
(with all Kalata B1 cyclotides and the 800.000 bulk water particles) outside any compartment and the 3 sphere compartments for oriented spatial 
positioning of the inner/outer DMPC phospholipids and the inner vesicle water particles. Upper right: Graphical display of size and spatial position 
of the 3 overlaid sphere compartments. Lower left: Corresponding Simulation box slicer view of the simulation box start configuration. Lower right: 
Cross-section through the simulation box for a more detailed view of the DMPC molecule orientation inside the vesicle
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support for simulation movie generation is to be outlined 
in detail in an upcoming tutorial).

In summary, MFsim may broaden the applicability of 
mesoscopic approaches (at best in close collaboration 
with experimental research) and stimulate the collabora-
tion between the different disciplines from theory over 
computing to end-user application.

Conclusions
With the MFsim project an open simulation environment 
for mesoscopic simulation is provided with the default 
Jdpd simulation kernel for Dissipative Particle Dynam-
ics. MFsim supports polymer and especially biomolecular 
simulations containing peptides and proteins aiming at 
pushing the mesoscopic simulation frontiers towards these 
areas of research which often require the study of large 
systems on the microsecond scale. As an open rich-client 

Fig. 8  Feature tree of the modal View dialog of a Job Result with selected Distribution Movie feature (left) and Simulation Movie feature (right)

Fig. 9  Simulation box slicer display of ethanol molecules (SPICES line notation: Me-MeOH) in a simulations box. The diagram on the right quantifies 
the ethanol frequencies along the z-axis with two distinct layers and corresponds to the ethanol distribution in the simulation box on the left. 
Ethanol particle colors: Me (plum), MeOH (red). All other molecules of the ensemble are discarded from display except water particles (blue) 
between the layers
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all-in-one approach MFsim targets theoretical, compu-
tational as well as end-user scientists (without program-
ming skills) thus it contributes to making computational 
tools more widespread in the scientific community. For 
the chemo- or bioinformatician the project may serve as a 
starting point for specific customizations where the reus-
able functionality may outweigh the initial training hurdle.

MFsim is publicly available as open source published 
under the GNU General Public License version 3 [52]. 
The MFsim GitHub repository contains all Java byte-
code libraries, a Windows OS installer and a corre-
sponding installation tutorial [53, 54], Javadoc HTML 
documentations [55] and the Netbeans [56] source 
code packages including Unit tests. A growing number 
of tutorials that outline more specific features and use-
cases as well as an MFsim based biomolecular research 
study concerning the interaction of cyclotides and 
bilayer membranes are in preparation.

Acknowledgements
The authors like to thank Marc Hamm and the reviewers for hints and sug‑
gestions as well as the development and project teams that created the open 
libraries used by MFsim. The support of CAM-D Technologies, GNWI—Gesells‑
chaft für naturwissenschaftliche Informatik mbH and the Open Access Pub‑
lication Fund of the Westphalian University of Applied Sciences is gratefully 
acknowledged.

Authors’ contributions
ME, HK and AZ initiated the MFsim project which is managed by KvdB and 
AZ. KvdB designed, tested, applied and validated the application features. MD, 
JMH, SN, AT and AZ contributed to the code. ME, HK and AZ lead the project 
development. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
MFsim repository at https​://githu​b.com/ziele​sny/MFsim​. Project name: MFsim, 
Project home page: MFsim repository at https​://githu​b.com/ziele​sny/MFsim​
, Operating system(s): Platform independent (but automated FFmpeg integra‑
tion currently only on Windows OS), Programming language: Java, Other 
requirements: Java 1.8 or higher, open libraries: Apache Commons IO [33] /
Lang [34] /RNG [35], BioJava [36, 37], FFmpeg (currently with the Windows 
OS only), GraphStream [38], Jama [39], JCommon [40], Jdpd, JDOM [41], 
JFreeChart [42], Jmol [43], PCG [44, 45], SPICES [26] and Vecmath [46]., License: 
GNU General Public License version 3.

Ethics approval and consent to participate
Not applicable.

Competing interests
HK is founder and managing director of CAM-D Technologies GmbH, Solingen, 
Germany. AZ is co-founder of GNWI–Gesellschaft für naturwissenschaftliche 
Informatik mbH, Dortmund, Germany.

Author details
1 Inorganic Chemistry and Center for Nanointegration Duisburg‑Essen 
(CeNIDE), University of Duisburg-Essen, Essen, Germany. 2 Institute for Bio‑
informatics and Chemoinformatics, Westphalian University of Applied 
Sciences, August‑Schmidt‑Ring 10, 45665 Recklinghausen, Germany. 3 CAM-D 
Technologies GmbH, Solingen, Germany. 4 GNWI – Gesellschaft für naturwis‑
senschaftliche Informatik mbH, Dortmund, Germany. 5 Yara Deutschland, 
Dülmen, Germany. 

Appendix 1—Conversion formulas
The appendix comprises conversion formulas between 
physical and DPD units [5, 6, 57] as well as formulas 
for molecule concentration related calculations imple-
mented in MFsim.

The conversion between DPD lengths and physical 
lengths is based on the conversion radius rc (“radius of 
interaction”) in physical units 

Vmin, volume of smallest particle in physical units; ρDPD, 
DPD (number) density; Nparticles, number of different 
particle types; Nparticle,i, number of particles of type i; 
Vparticle,i, volume of particle of type i in physical units; 
lphys, length in physical units; lDPD, length in DPD units.

with the conversion between DPD time and physical 
time being approximated by

tphys, time in physical units; tDPD, time in DPD units; fsoft , 
factor for increased particle diffusivity due to soft poten-
tials ( fsoft ≈ 1000 ); R, gas constant; T , thermodynamic 
temperature; Mparticle,i, molar mass of particle of type i.

Molecule concentration calculations are based on the 
relations 
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Nscaled
molecule,i, Number of molecules of type i in simulation 

box; Vbox,DPD, volume of simulation box in DPD units; 
Nik , number of particles of type k in single molecule of 
type i; Nmolecules, number of different molecule types; 
nscaledmolecule,i, volume-scaled relative number of molecules 
of type i; nmolecule,i, relative number of molecules of type 
i; smolecule,i, volume scaling factor of molecule of type i; 
wmolecule,i, relative weight of molecule of type i; Nmolecule,i, 
number of molecules of type i.

Appendix 2—Data objects, preferences 
and re‑usable settings
All data items for GUI display are stored in ValueItem 
objects (package model.valueItem) which can be config-
ured for data structures like scalars, vectors or matrices 
(see enumeration ValueItemEnumBasicType in package 
model.valueItem) that consist of basic data types like 
texts, numbers, directory paths or links to specific dia-
logs (see enumeration ValueItemEnumDataType in pack-
age model.valueItem). A ValueItem object may contain 
default values as well as specific data checks like min/
max boundaries for numeric values, selection texts or 
regular expressions for control of textual input in order 
to prevent input errors. Related ValueItem objects may 
be encapsulated by a ValueItemContainer object (package 
model.valueItem) which itself may be used for a tree view 
of its contents via GUI display. Moreover, a ValueItem-
Container object allows for an interplay of its ValueItem 
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objects like directed update cascades after value changes 
(e.g. see class UtilityJobUpdate in package model.job for 
update cascades concerning Job Input definitions). Value-
Item and ValueItemContainer objects can be made persis-
tent via XML serialization.

Global preferences are realized by a modifiable Prefer-
ences singleton (package model.preference) which pro-
vides adequate ValueItem objects for all settings. The 
global preferences dialog is available via menu entry 
Application/Preferences/Edit of the basic GUI frame.

A particular feature for efficient usage is the imple-
mented table-data schema management. A table-data 
schema is a pattern of values for vectors or matrices of 
ValueItem objects which can be named and internally 
stored for reuse: Schemata alleviate complex setting 
operations e.g. for the graphical display of multiple par-
ticles. A table-data schema manager is available via menu 
entry Application/Schemata/Manage of the basic GUI 
frame and provides view, edit, remove or clear func-
tions with an additional file export of schemata lists for 
exchange. Persistent schemata files may be reloaded or 
merged.

The definition of ValueItem related vectors or matrices 
is supported by bulk functions which can be refined by 
column-based filters. Thus, the tedious input of multiple 
values (e.g. for force constants or colors) may be realized 
by a few manual operations.

Appendix 3—Simulation kernel integration
Jdpd is integrated as a command text file driven simu-
lation kernel: All settings are comprised in an Input.
txt text file with references to compound related Posi-
tionsBonds < index > .txt text files which contain all initial 
particle xyz positions and particle–particle spring-force 
definitions for all molecular species. During simula-
tion Jdpd produces (partly compressed) output text files 
in form of simple xy table data for e.g. relevant physi-
cal quantities versus simulation step (like T.txt for tem-
perature, UpotDpd.txt for conservative DPD energy etc.), 
particle position files which provide all particle posi-
tions at a specific simulation step in the simulation box 
(e.g. PP2400.gz for particle positions of simulation step 
2400) as well as structurally more complex text files like 
M_M_TUPLE.txt for nearest-neighbor data. Thus, an 
integration of Jdpd requires the automated generation 
of the necessary input text files, the programmatic con-
trol of Jdpd during simulation (with intermediate simu-
lation progress inspections or possible exception/error 
handling) and the automated analysis of the simulation 
record contained in the Jdpd generated output text files: 
The code for these tasks is mainly located in package 
model.job for input/output text file generation/analysis 
and in class MainFrameController (section Job execution 
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related command methods) in package gui.main for Jdpd 
control during simulation.

Class JdpdValueItemDefinition (package model.job) 
defines in method initializeJdpdValueItems() the Value-
Item instances for all job input settings (MFsim stores 
data in ValueItem objects, see previous appendix) which 
are collected in a ValueItemContainer instance. This job 
input ValueItemContainer instance is then modified dur-
ing job design with a cascaded top-down interplay of 
the ValueItem instances coded in class JobUpdateUtils 
(package model.job) to prevent later ill-defined settings. 
A completed job design results in a corresponding job 
input ValueItemContainer instance (which is then made 
persistent via XML file output). Before instantiation of a 
Jdpd kernel instance the information of a job input Val-
ueItemContainer instance is parsed to Jdpd input and 
position/bonds text files via method getJdpdInputText() 
of class JobUtilityMethods (package model.job). Then a 
Jdpd kernel instance is created with the generated text 
files as its main input and submitted to a thread-pool for 
concurrent execution (methods startJobsInJobExecution-
Queue() and startRemainingJobExecutionTasks() in class 
MainFrameController, package gui.main). During as well 
as after simulation the Jdpd generated simulation record 
is mapped back to corresponding ValueItem instances 
(collected in a job result ValueItemContainer instance) 
via method getResultValueItemContainerForJobResult() of 
class JobResult (package model.job) which are visualized 
by MFsim for job result analysis.

To integrate an alternative simulation kernel software 
the sketched classes and methods have to be customized 
accordingly. In addition, the kernel control structure has 
to be adjusted for polyglot programming since scien-
tific kernel software is usually written in languages like 
C/C ++ or FORTRAN and ahead-of-time compiled to 
executables. To realize the integration task the elaborated 
capabilities of the Java platform can be utilized. Thus, 
from a software development point of view, the integra-
tion into the MFsim environment allows for an extremely 
flexible response to a wide range of requirements – where 
the existing Jdpd integration code may serve as a produc-
tive blueprint. It can be estimated from experience with 
previous integration tasks that—a skilled software devel-
oper presumed—a simulation kernel integration requires 
at least several weeks (for comparatively simple and less 
demanding solutions) up to several months (for more 
complex, comprehensive and thoroughly safe-guarded 
solutions like the Jdpd integration).
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