
van den Broek et al. J Cheminform (2020) 12:29
https://doi.org/10.1186/s13321-020-00432-9

SOFTWARE

MFsim—an open Java all‑in‑one rich‑client
simulation environment for mesoscopic
simulation
Karina van den Broek1,2  , Mirco Daniel2, Matthias Epple1, Jan‑Mathis Hein2, Hubert Kuhn3, Stefan Neumann4,
Andreas Truszkowski5 and Achim Zielesny2*

Abstract 

MFsim is an open Java all-in-one rich-client computing environment for mesoscopic simulation with Jdpd as its
default simulation kernel for Molecular Fragment (Dissipative Particle) Dynamics. The new environment comprises the
complete preparation-simulation–evaluation triad of a mesoscopic simulation task and especially enables biomolecu‑
lar simulation tasks with peptides and proteins. Productive highlights are a SPICES molecular structure editor, a PDB-
to-SPICES parser for particle-based peptide/protein representations, a support of polymer definitions, a compartment
editor for complex simulation box start configurations, interactive and flexible simulation box views including analyt‑
ics, simulation movie generation or animated diagrams. As an open project, MFsim allows for customized extensions
for different fields of research.

Keywords:  Molecular simulation, Mesoscopic simulation, Rich-client, Model-view-controller, MVC, Pattern, Graphical
user interface, GUI, Dissipative particle dynamics, DPD, Molecular fragment dynamics, MFD, PDB parser

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
A molecular simulation workflow comprises three suc-
cessive steps: The definition of a simulation job with
all necessary input information (preparation step), the
approximate numerical integration of the equations of
motion (the actual simulation step) and the analysis of
the simulation record with all calculated results (evalu-
ation step). A computational all-in-one rich-client envi-
ronment aims at supporting this triad in a unified and
comprehensive manner to allow for productive applica-
bility with minimum effort, minimized training periods
and usability without programming skills. An additional
goal is the prevention of common problems like inad-
equate or ill-defined parameter settings by extensively

safeguarding simulation job definitions and operations.
In general, these desirable features require a highly
integrated monolithic architecture: Its pre-defined
optimized workflows are comfortable and fast but inflex-
ible in comparison with scripting or pipelining-workflow
approaches. For the latter the implementation of a new
feature may be achieved within minutes whereas its rich-
client realization may involve days and weeks of complex
software development. Thus, the different approaches
have their intrinsic strengths and weaknesses.

Particle-based mesoscopic simulation investigates
supramolecular phenomena at the nanometer length
and microsecond time scale for large interacting physi-
cal ensembles representing millions of atoms. Dissipa-
tive Particle Dynamics (DPD) is a mesoscopic simulation
technique for isothermal complex fluids and soft mat-
ter systems which satisfies Galilean invariance and isot-
ropy, conserves mass and momentum and achieves a
rigorous sampling of the canonical NVT ensemble due
to soft particle pair potentials that diminish molecular

Open Access

Journal of Cheminformatics

*Correspondence: achim.zielesny@w‑hs.de
2 Institute for Bioinformatics and Chemoinformatics, Westphalian
University of Applied Sciences, August‑Schmidt‑Ring 10,
45665 Recklinghausen, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0722-4229
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-00432-9&domain=pdf

Page 2 of 15van den Broek et al. J Cheminform (2020) 12:29

entanglements or caging effects. DPD is expected to
show correct hydrodynamic behavior and to obey the
Navier–Stokes equations. DPD particle trajectories are
guided by Newton’s equation of motion where the total
force on a particle exerted by other particles consists of a
conservative, a dissipative (frictional) and a random part.
The opposing dissipative and random forces depend on
each other and act as a thermostat conserving the total
momentum and introducing Brownian motion into the
system. The conservative forces comprise soft DPD par-
ticle repulsions as well as possible harmonic springs
between bonded and electrostatic interactions between
charged particles [1–5]. DPD particles in general may be
arbitrarily defined as “fluid packets”. Molecular Fragment
Dynamics (MFD) is a “bottom-up” DPD variant which
chooses the particles to be small “fragment molecules”
of molar mass in the order of 100 Da where larger mol-
ecules are composed of adequate smaller “fragment mol-
ecule” particles that are bonded by harmonic springs to
mimic covalent connectivities and spatial 3D conforma-
tions [5–12].

The new MFsim project provides (to our knowledge)
the first open Java all-in-one rich-client mesoscopic
simulation environment and complements the few avail-
able commercial systems [13, 14] with specific support
for biomolecular applications containing peptides and
proteins. By default, MFsim is integrated with the Jdpd
simulation kernel, an open MFD Java code [15, 16]. As
an open approach, MFsim is not restricted to a specific
mesoscopic simulation engine but may be customized to
communicate with any particle-based simulation code
[17–24]: Appendix 3 outlines the corresponding simula-
tion kernel integration details.

Usage of MFsim does not require programming skills
and supports the complete preparation-simulation–eval-
uation triad of a mesoscopic simulation task. It comprises
features like a SPICES line notation [25, 26] based chemi-
cal structure editor, a PDB file parser [27] for particle-
based peptide/protein representations, a peptide and
protein editor, support of polymer definitions, a compart-
ment editor for complex molecular start configurations
and interactive simulation box views including analyt-
ics, on-the-fly movie generation and animated diagrams.
Parameter settings are supported by reusable schemata
and filtered bulk operations, inter-parameter dependen-
cies are controlled by directed internal update cascades to
avoid ill-defined settings. MFsim parallelizes operations
to effectively exploit multi-core processor hardware.

Implementation
The object-oriented Java architecture (see Fig. 1) follows
a Model-View-Controller (MVC) pattern [28]: Graphi-
cal user interface (GUI) view classes (based on the Swing

GUI Toolkit [29] of the Java platform [30]) are governed
by corresponding controller classes (gui packages con-
trol, dialog and main). The controllers communicate with
a layer of Molecular Fragment Cheminformatics (MFC)
models (model packages changeNotification, graphics,
jmolViewer, job, message, particle, particleStructure, pep-
tide, preference, util and valueItem) that provide all core
functions where the MFC layer itself controls the particle
simulation kernel (Jdpd as a default).

The basic GUI frame is organized by three manage-
ment tabs for simulation job Design, job Execution and
job Results evaluation that operate on a defined work-
space directory of the file system (see Fig. 2): This work-
space directory contains a JobInputs folder (where each
subfolder corresponds to a single Job Input definition)
and a JobResults folder (with subfolders corresponding to
Job Result instances). During job execution a temporary
directory is used for file storage which may be located on
an fast hardware/memory device for maximum perfor-
mance. All specific GUI functions are provided by suc-
cessive levels of modal dialogs that can be opened above
the basic GUI frame.

MFsim automatically logs internal problems to support
the detection of possibly subtle errors which are likely to
occur in complex architectures with hundred thousands
of code lines. The log file entries may be viewed via menu
entry Help/MFsim log/Browse of the basic GUI frame.

Details about internal data objects, preferences and
convenient re-usable settings are comprised in Appendix
2.

MFsim supports concurrent calculations to exploit
the capabilities of multi-core processors for perfor-
mance improvements that (almost) linearly scale with
the number of available processor cores (and addition-
ally benefit from technologies like Hyper-Threading).
To arrive at an overall optimum balance the global pref-
erence section Parallel computing provides options for
fine-tuning of concurrent operations. As an example the
number of parallel calculation threads for force calcu-
lations of the (default Jdpd) particle simulation engine
may be specified in combination with the number of
concurrent jobs in simulation to achieve an adequate
workload of an octa-core processor with 2 concurrent
simulations and 4 force calculation threads each—
whereas for a maximum single-job performance the
number of force calculation threads could be increased
to 8 with the number of parallel simulations decreased
to 1. Additional parallel computing options address the
number of concurrent particle position writers for out-
put file creation, the minimum number of simulation
box cells and particle–particle bonds for parallelization
(to avoid ineffective parallelization efforts due to the
necessary computational overhead) and the number of

Page 3 of 15van den Broek et al. J Cheminform (2020) 12:29 	

concurrent graphical simulation box slice and diagram
generators (abbreviated slicers – their number should
at best correspond to the number of available processor
threads including Hyper-Threading).

Another performance related feature is global caching:
SPICES line notations (class SpicesPool of package model.
particleStructure) and PDB file related protein definitions
(class PdbToDpdPool of package model.peptide) are kept
in memory to speed-up chemical structure related opera-
tions by avoidance of expensive reevaluations during cal-
culations. The size of the SPICES and protein cache may
be inspected via menu entry Application/Cache/Show of
the basic GUI frame. In-memory caching also improves
the performance of simulation box slice image related
operations: Preference/Simulation box/Slicer graph-
ics/Image storage in the global preferences dialog may
be used to activate the Memory uncompressed (fastest)
or compressed (smallest) image cache, otherwise slice
images are stored as image files which is comparably
slow.

MFsim slicer graphics is realized with Java2D [31]. 3D
displays of the simulation box are parallel projections
that allow for versatile through-space measurements
(but appear somewhat distorted compared to central
projections). The spatial 3D impression is additionally
supported by a configurable fog generation. Simulation
movie generation is realized by merging box images into
a movie clip utilizing the open FFmpeg software [32].

Since there is no unique particle set for mesoscopic
simulation, a specific field of research requires a spe-
cific particle set—a situation that is similar to Molecu-
lar Mechanics/Dynamics with different force fields and
specific atom types. All mandatory particle information
and particle–particle interactions must be provided by
a particle set text file where particle definitions are to
be described in mandatory section [Particle descrip-
tion], particle–particle repulsions in mandatory section
[Particle interactions] and peptide/protein decompo-
sition related particle information in optional section
[Amino acids]. MFsim comes with ParticleSet_H2O.txt,
a minimal single-particle set for test purposes, and Par-
ticleSet_AA_V02.txt, a basic biomolecular particle set for
an approximate fragmentation of phospholipids and pep-
tide/proteins. The latter is based on the particle data in
[24] with rescaled molecular volumes and the water mol-
ecule being the smallest particle of volume 30 Å3. MFsim
contains some functions for particle set manipulation
(e.g. particle duplication, see menu Particles of the basic
GUI frame) and supports the automated update of a Job
Input definition for a new particle set.

Last but not least—as an open project itself, MFsim
uses several other open libraries: Apache Commons IO
[33] /Lang [34] /RNG [35], BioJava [36, 37], FFmpeg

(currently with the Windows OS only), GraphStream
[38], Jama [39], JCommon [40], Jdpd, JDOM [41],
JFreeChart [42], Jmol [43], PCG [44, 45], SPICES [26] and
Vecmath [46].

Results and discussion
The MFsim simulation system aims at supporting the
complete preparation-simulation–evaluation triad in
form of an integrated all-in-one workflow which is
sketched step-by-step in the following paragraphs.

Simulation job design
The simulation Design tab of the basic GUI frame man-
ages all Job Input related operations. It comprises an
optionally filtered list of all available Job Input definitions
of the specified workspace where a single Job Input defi-
nition may be viewed, edited, re-used (as a start for a new
definition), removed, imported from an archive file or
itself archived to a file (e.g. for exchange purposes). For a
new Job Input definition, a corresponding modal dialog is
opened above the basic GUI frame.

A new Job Input definition is already a complete and
valid simulation job definition with a single particle
type (the water particle). The Job Input features have to
be defined in a top-down manner where a change in a
higher-level feature leads to an immediate update of sub-
ordinate features in an adequate manner—e.g. a change
in the number of particles via the Quantity feature auto-
matically changes the subordinate Box size feature to
be consistent with the new higher-level Quantity set-
tings according to the even higher DPD density setting.
These successive top-down updates (which are real-
ized by directed ValueItem update cascades, see class

Fig. 1  MFsim architecture with underlying MVC pattern: Graphical
user interface (GUI) views/controllers communicate with a layer of
Molecular Fragment Cheminformatics (MFC) models that provide all
core functions where the MFC layer itself controls the DPD simulation
kernel layer

Page 4 of 15van den Broek et al. J Cheminform (2020) 12:29

UtilityJobUpdate in package model.job as well as Appen-
dix 2) alleviate error-free Job Input definitions with an
overall logical integrity. A complete Job Input definition
is organized in form of a feature tree that consists of four
main sections (see Fig. 3): The General job description, the
Chemical system description, the Interaction description
and the Simulation description. Every single Job Input
feature contains a local Description, a Hint and an Error
tab: The Description tab provides a descriptive outline of
the feature in question and summarizes its possible set-
tings. The Hint tab informs about possible shortcomings
of the current setting (e.g. possibly unwanted identical
colors for different molecules so that the molecules can-
not be distinguished in a simulation box display) whereas
an activated Error tab signals a severe problem which
has to be resolved (an erroneous Job Input definition is
not allowed to be executed). Since the list of Job Input
features should exploit the range of capabilities of the
underlying particle simulation kernel the current MFsim
Job Input feature set especially addresses the default Jdpd
simulation kernel (see class JdpdValueItemDefinition in
package model.job). For other particle simulation kernels
the feature set would have to be customized accordingly
(see Appendix 3).

The General job description comprises job related infor-
mation like a Description line or a creation Timestamp.

The Chemical system description addresses all features
that characterize the chemical ensemble to be simulated.
Monomer definition and Molecule definition are realized
with chemical structure editors plus specific editors for
peptides and proteins. The editor for monomers and
molecular structures is based on the SPICES and Graph-
Stream libraries [25] and supports the input of a SPICES
line notation. A SPICES string can be manually coded
(or composed by clicking on available structure elements
like particles, brackets or tags) and is immediately parsed
with its manipulative topological structure displayed
below (for a valid definition)—thus the input of an illegal
SPICES line notation is (hopefully) impossible. If a par-
ticle set with amino acids definition is chosen the PDB
structure tab and the Peptide button are activated. The
additional modal peptide dialog allows for the input of a
one-letter-code peptide sequence (manually or by click-
ing on the available amino acids and structure elements
like disulfide bridges, charges etc.) that is afterwards con-
verted to a SPICES line notation in the structure editor
(see Fig. 4).

Fig. 2  Basic MFsim GUI frame with three management tabs for simulation job Design, job Execution and job Results evaluation operating on a
defined workspace directory (see status line at the bottom). The displayed Home tab depicts graphical project information and links to the MFsim
GitHub repository

Page 5 of 15van den Broek et al. J Cheminform (2020) 12:29 	

For biomolecular simulations MFsim provides a PDB-
to-SPICES parser which is available via the PDB structure
tab (see Fig. 5). An opened PDB file is rendered with the
Jmol library and internally evaluated with the BioJava
library to create a corresponding SPICES line notation.
Different biological assemblies may be chosen from the
PDB definition via a drop-down box. The modal Chain
dialog may be used to exclude protein chains and to a
priori assign a segment to an amino acid according to its
protein chain. The modal Mutant dialog allows the spe-
cific change of amino acids to create in silico mutants
(with the same 3D structure of the backbone chain). A
pH value may be set with the modal pH dialog to charge
corresponding particles. The modal Property dialog offers
a number of settings for the amino acids of all chains:
Protein backbone particles may be replaced by probe
particles with identical physical properties but different
labels for e.g. selective display of specific amino acids
of a chain. In addition, a status and a segment may be
defined for each amino acid backbone particle which can
be used for intra-protein force assignments in order to
achieve specific control concerning the flexibility or stiff-
ness of the protein backbone (whereas amino acid side
chain particles are always flexible). The complete protein
information is encapsulated in a PdbToDpd object (pack-
age model.peptide) which is globally stored in the protein
cache for inexpensive reuse in protein related calcula-
tions. A PdbToDpd object also comprises an automated
mapping of the 3D protein structure to the relative posi-
tions of its DPD backbone particles which supports real-
istic 3D protein start geometries in the simulation box.

The SPICES related polymer construction exploits the
syntax characteristics of the SPICES definition [25] and
is realized by an interplay of the SPICES monomer editor
(feature Monomer definition) and the SPICES structure
editor (feature Molecule definition) for polymer construc-
tion from monomers.

The Simulation box subsection of the Chemical system
description (see Fig. 3 for the expanded feature tree) pro-
vides detailed setting options for the molecular ensemble.
The Composition sub-subsection allows the definition of
the number of molecules in the box where Concentration
settings in gram, mol, mol-percent or weight-percent are
also possible. Feature Box size may modify the box geom-
etry with a cube as a default. The Colors sub-subsection
defines different color display modes with Molecule-par-
ticle color as the most fine-grained setting where an indi-
vidual color may be chosen for every particle type within
a molecule. The Particles and molecules display sub-
subsection then allows for the corresponding individual
default display settings for all molecules/particles (which
may be arbitrarily changed at a later stage). The gener-
ated default molecular simulation box configuration

consists of randomly-oriented spatial SPICES 3D tubes
(described in [25]) at random box positions (see Fig. 6
which also describes the treatment of PDB-derived 3D
peptide/protein structures). The Compartments and box
view feature (selected in Fig. 3) may be used to set up
specific compartments with specific molecule orienta-
tions and to view the resulting start configuration of the
simulation box. The compartment editor enables various
settings as a combination of sphere, layer or rectangular
cuboid compartments where different molecular orien-
tations may be defined within each compartment (see
Fig. 7). Layers with exclusively single particle molecules
allow for a simple cubic lattice particle positioning which
may generate a solid surface in combination with the
Molecule fixation function (see below). The editor also
supports a correct a priori DPD density of particles inside
a compartment (which may be arbitrarily changed).

The settings of the final Movement sub-subsection of
the Simulation box subsection address molecule move-
ment control capabilities of the Jdpd simulation kernel:
Molecules may be spatially fixed (Molecule fixation) or
their movement restricted to virtual cages surrounded
by “reflective walls” within the simulation box (Molecule
boundary). On the other hand, molecules may possess a
fixed velocity (Molecule fixed velocity) or may be kicked
with a specified frequency (Molecule acceleration).

The final Property calculation subsection of the Chemi-
cal system description offers several calculation options
during simulations like particle-pair radial distribution
functions (RDF) and distances, particle-based molecular
radii of gyration or a detailed particle/molecule nearest-
neighbor analysis to monitor changing particle/mole-
cule vicinities with temporal evolution of the simulated
ensemble.

Interaction description as the third main Job Input sec-
tion addresses the fundamental physics of the DPD par-
ticle–particle interactions like the Temperature setting,
Random DPD force magnitude, electrostatic interac-
tions of charged particles, gravitational acceleration or
the characteristics of bonds between particles and their
neighbor particles within molecules. Since mesoscopic
DPD simulations are based on isotropic particle–parti-
cle repulsions (editable via feature Particle interactions
with the default repulsion parameters taken from the
selected particle set) it may be necessary to impose pref-
erential molecular conformations, e.g. to stabilize the 3D
backbone structure of proteins by adequate spring forces
between backbone particles to prevent a structural col-
lapse. Thus, additional particle–particle spring forces
may be specifically defined between indexed particles in
SPICES line notations (Molecule backbone forces), the
amino acid backbone particles of peptides and proteins
(Protein backbone forces) and the backbone particles of

Page 6 of 15van den Broek et al. J Cheminform (2020) 12:29

peptides and proteins within assigned chain segments
(Protein distance forces).

The final main Simulation description section com-
pletes the Job Input settings with definitions for control
of the simulation itself. The number of Simulation steps
defines the temporal physical period to be simulated by
integration of the equations of motion with a defined
Time step length and a specific Integration type. Out-
put frequency controls the intermediate output (e.g. the
creation of particle position files for specific simulation
steps) for later evaluation of the simulation record. Ini-
tial minimization steps may be defined to improve the
initial simulation box start configuration with Minimiza-
tion step output as a control setting for later inspection.
Remaining definitions address Periodic boundaries along
the box axes, the use of a DPD unit mass, possible Ini-
tial velocity scaling steps for temperature control and the
choice of the Random number generator for the random
DPD force.

A completely defined job may be finally saved (Apply
button of the modal Job Input dialog) with an automated
addition to the list of available Job Input definitions of the
current workspace.

Simulation job execution
The Execution tab of the basic GUI frame manages the
simulation of defined (error-free) Job Input definitions
and a restart of already simulated Job Result instances
(with a defined number of additional simulation steps):
After addition to the Job Execution Queue jobs may
be executed in parallel according to the global settings
defined in Preferences/Parallel computing. For job execu-
tion MFsim must convert a Job Input definition to a Jdpd
command file with corresponding particle position files
(see class JobUtilityMethods in package model.job as
well as Appendix 3). Completed simulations are stored
as new Job Result instances for further evaluation (see
below). Job execution is always performed in background

Fig. 3  Modal dialog for a Job Input definition with main sections General job description (collapsed), Chemical system description (expanded),
Interaction description (collapsed) and Simulation description (collapsed). Feature Compartments and box view of subsection Simulation box in main
section Chemical system description is selected

Page 7 of 15van den Broek et al. J Cheminform (2020) 12:29 	

so it does not interfere with the concurrent usage of any
other MFsim function (with the exception that a cur-
rently simulated Job Input definition is not allowed to
be changed by editing operations or removal). For every
job in simulation its progress in percent and the esti-
mated remaining simulation period is displayed and con-
stantly updated. The Job Execution Queue may be altered
in an arbitrary manner after execution start where a
job in simulation cannot be immediately killed but only
stopped with a delay to guarantee a valid Job Result. All
Job Result evaluation functions are also available for jobs

in execution which allows for a detailed inspection and
analysis of simulation progress.

The Job Result restart feature offers the possibility of
successive simulation pipelines since underlying Job Input
definitions may be changed before a restart. As an exam-
ple, a possible molecule fixation or caging defined in the
Movement sub-subsection (see above) could be removed
before a restart of an initial relaxation simulation to allow
for new modes of interaction between the molecular spe-
cies. Changes of the molecular composition or the spatial
configuration are not possible since they would affect the
overall physical state of a simulation.

Fig. 4  Molecular structure tab of the modal structure editor dialog: The SPICES line notation (upper left) of a cyclic peptide was prepared with the
modal peptide dialog (available via the active Peptide button) thus the line notation is automatically split into several lines for each amino acid
to alleviate comprehension. The notation is valid (confirmed by the Valid molecule label) and its cyclic topological structure is displayed below.
Available structure elements (particles, brackets, tags etc.) are listed on the right

Page 8 of 15van den Broek et al. J Cheminform (2020) 12:29

Simulation job result evaluation
The Results tab of the basic GUI frame comprises a list of
all Job Result instances of the current workspace where
a Job Result may be viewed, removed, imported from or
exported to an archive file.

The View of a Job Result opens a modal dialog that con-
sists of a feature tree which offers substantial simulation
related evaluations (see Fig. 8). The General information
section summarizes general settings and results like sim-
ulation end point and period, number of simulation steps
and corresponding physical time, parallelization settings
or the used particle set file name. The Simulation pro-
gress section provides time-step data and corresponding
graphical 2D diagram charts of relevant physical quanti-
ties like temperature, kinetic and potential energy or sur-
face tension. The 2D diagram charts may be converted to
movies that are in concordance with simulation movies
(see below) to allow for a combined display. If specific
property calculations throughout the simulation were
defined in the Property calculation subsection of the
underlying Job Input definition the corresponding result
evaluations appear as additional sections in the Job Result
feature tree, e.g. the Nearest neighbor section in Fig. 8.
The Distribution movie section (see Fig. 8) provides
movies with animated 2D diagram charts of a particle/

molecule frequency along a selected axis for a defined
simulation period.

The Simulation box section provides (animated) sim-
ulation box views of all (output) steps of the simula-
tion process including the a priori minimization steps
(if defined in the Job Input definition) and the genera-
tion of simulation movies for defined simulation periods
(see Fig. 8). For simulation box view and analysis MFsim
consists of two types of viewers for arbitrarily rotated
or shifted box inspections: The Simulation box viewer
(mis)uses the graphical Jmol capabilities designed for
atom-based molecule representations to display parti-
cle structures whereas the Simulation box slicer gener-
ates successive slice images of the simulation box using
Java2D. Moreover, the Simulation box slicer provides
extensive box analysis features like through-space meas-
urements, (individual) particle selections or the defini-
tion of zoom volumes with a corresponding particle/
molecule frequency analysis (see Fig. 9). Molecular color,
size, visibility or transparency settings may be arbitrarily
changed for alternative views of the molecular ensemble
in question.

Simulation movies for a defined simulation period
are generated with the slicer functionality. Slicer related
animation settings (e.g. box spinning, box slicing or box

Fig. 5  PDB structure tab of the modal structure editor dialog: A PDB file can be loaded with automated conversion to a SPICES line notation.
Different tabs show the rendered protein structure, its amino acid sequence, the corresponding SPICES line notation and the text of the PDB file.
Several additional functions and dialogs are available at the top (see text)

Page 9 of 15van den Broek et al. J Cheminform (2020) 12:29 	

zooming) may be used to contribute to the movie gen-
eration in an additive manner: A simulation movie may
start with a spinning box, then show the minimization
steps, again stop with a spinning box after minimiza-
tion, exclude specific particles/molecules, zoom-in, then
show a defined part of the simulation process within the
zoomed box volume etc. All slicer functions produce
sequences of images which may finally be merged into a
MP4 movie clip with the open FFmpeg software (auto-
mated integration of FFmpeg is currently only available
for the Windows OS).

Last but not least the final Job Input section just shows
all features of the underlying Job Input definition.

MFsim use cases
The new MFsim environment may be beneficial for
different fields of research. Theoretical physicists and
chemists that contribute to the foundations of meso-
scopic simulation with new methods/models/applica-
tions or improved/extended particle parameter sets
may choose the open environment for an exemplifica-
tion of their work so that their new insights and devel-
opments can be more easily adapted and utilized by a
wider scientific community where especially scientific
end-user communities appreciate availability within a
rich-client system.

Fig. 6  Default random simulation box start configuration without compartment definition (compare Fig. 7) of a chemical ensemble that comprises
800.000 (bulk) water particles (excluded from display), 40.000 water particles (to be located inside a vesicle, colored cyan), 2.200 (oriented
outer-vesicle) DMPC molecules (with SPICES line notation: TriMeNP[START]-DMPN(MeAc-6Et)(MeAc-6Et[END]) [25]), 1.800 (oriented inner-vesicle)
DMPC molecules (with SPICES line notation: TriMeNP[END]-DMPN(MeAc-6Et)(MeAc-6Et[START]) [25]) and 500 Kalata B1 cyclotides. All molecules—
except the Kalata B1 cyclotides which are derived from PDB file 1NB1 [47]–are generated as randomly-oriented spatial SPICES 3D tubes at random
positions in the box. The 500 Kalata B1 cyclotides are also randomly distributed throughout the box but their individual amino acid backbone
particle positions are set according to their spatial 3D structure (with the side chain particles collapsed onto their neighboring backbone particles).
In addition, each Kalata B1 cyclotide is overall shrunk into a virtual sphere (with a volume that corresponds to its particles’ DPD volume) from which
all other particles are excluded–thus a Kalata B1 cyclotide start size is somewhat smaller than its actual size during simulation. DMPC particle colors:
DMPN (red), Et (olive), MeAc (orange), TriMeNP (blue). Kalata B1 backbone particles are shown in beige (all amino acid side chain particles are
excluded from display) with the backbone particles that correspond to the characteristic hydrophobic spot of these peptides displayed in yellow

Page 10 of 15van den Broek et al. J Cheminform (2020) 12:29

Chemo- and bioinformaticians may likewise be inter-
ested in the extended possibilities to popularize their new
and improved algorithmic solutions by offering a versa-
tile usage in a convenient environment with only com-
paratively small additional development efforts.

As an open all-in-one rich-client system with (mod-
est) hardware requirements that are commonly available
in scientific institutions, MFsim especially targets scien-
tific end-users without programming skills. Presumed,
a theoretically sound simulation model is available, spe-
cific alterations and extensions can be performed by
end-users themselves. Tutorials Simulation of a DMPC

bilayer membrane model [48, 49] and Cyclotide-mem-
brane sandwich interaction model [50, 51] illustrate
details of biomolecular simulation setups in a step-by-
step fashion (with the corresponding MFsim Job Inputs
being available in the MFsim GitHub repository tutorials
subfolder) to show that the inevitable training hurdle for
productive usage is manageable with tolerable effort. The
MFsim GitHub repository also contains links to MFsim
generated simulation clips (see README in subfolder
2020 Cyclotide-membrane interaction study) which dem-
onstrate an especially attractive feature for visual com-
munication of research findings (the convenient MFsim

Fig. 7  Definition of compartments for a 30 nm DMPC phospholipid double-layer vesicle and view of the resulting simulation box start
configuration of the chemical ensemble described in Fig. 6. Upper left: Modal compartment editor dialog with detailed settings of the bulk phase
(with all Kalata B1 cyclotides and the 800.000 bulk water particles) outside any compartment and the 3 sphere compartments for oriented spatial
positioning of the inner/outer DMPC phospholipids and the inner vesicle water particles. Upper right: Graphical display of size and spatial position
of the 3 overlaid sphere compartments. Lower left: Corresponding Simulation box slicer view of the simulation box start configuration. Lower right:
Cross-section through the simulation box for a more detailed view of the DMPC molecule orientation inside the vesicle

Page 11 of 15van den Broek et al. J Cheminform (2020) 12:29 	

support for simulation movie generation is to be outlined
in detail in an upcoming tutorial).

In summary, MFsim may broaden the applicability of
mesoscopic approaches (at best in close collaboration
with experimental research) and stimulate the collabora-
tion between the different disciplines from theory over
computing to end-user application.

Conclusions
With the MFsim project an open simulation environment
for mesoscopic simulation is provided with the default
Jdpd simulation kernel for Dissipative Particle Dynam-
ics. MFsim supports polymer and especially biomolecular
simulations containing peptides and proteins aiming at
pushing the mesoscopic simulation frontiers towards these
areas of research which often require the study of large
systems on the microsecond scale. As an open rich-client

Fig. 8  Feature tree of the modal View dialog of a Job Result with selected Distribution Movie feature (left) and Simulation Movie feature (right)

Fig. 9  Simulation box slicer display of ethanol molecules (SPICES line notation: Me-MeOH) in a simulations box. The diagram on the right quantifies
the ethanol frequencies along the z-axis with two distinct layers and corresponds to the ethanol distribution in the simulation box on the left.
Ethanol particle colors: Me (plum), MeOH (red). All other molecules of the ensemble are discarded from display except water particles (blue)
between the layers

Page 12 of 15van den Broek et al. J Cheminform (2020) 12:29

all-in-one approach MFsim targets theoretical, compu-
tational as well as end-user scientists (without program-
ming skills) thus it contributes to making computational
tools more widespread in the scientific community. For
the chemo- or bioinformatician the project may serve as a
starting point for specific customizations where the reus-
able functionality may outweigh the initial training hurdle.

MFsim is publicly available as open source published
under the GNU General Public License version 3 [52].
The MFsim GitHub repository contains all Java byte-
code libraries, a Windows OS installer and a corre-
sponding installation tutorial [53, 54], Javadoc HTML
documentations [55] and the Netbeans [56] source
code packages including Unit tests. A growing number
of tutorials that outline more specific features and use-
cases as well as an MFsim based biomolecular research
study concerning the interaction of cyclotides and
bilayer membranes are in preparation.

Acknowledgements
The authors like to thank Marc Hamm and the reviewers for hints and sug‑
gestions as well as the development and project teams that created the open
libraries used by MFsim. The support of CAM-D Technologies, GNWI—Gesells‑
chaft für naturwissenschaftliche Informatik mbH and the Open Access Pub‑
lication Fund of the Westphalian University of Applied Sciences is gratefully
acknowledged.

Authors’ contributions
ME, HK and AZ initiated the MFsim project which is managed by KvdB and
AZ. KvdB designed, tested, applied and validated the application features. MD,
JMH, SN, AT and AZ contributed to the code. ME, HK and AZ lead the project
development. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
MFsim repository at https​://githu​b.com/ziele​sny/MFsim​. Project name: MFsim,
Project home page: MFsim repository at https​://githu​b.com/ziele​sny/MFsim​
, Operating system(s): Platform independent (but automated FFmpeg integra‑
tion currently only on Windows OS), Programming language: Java, Other
requirements: Java 1.8 or higher, open libraries: Apache Commons IO [33] /
Lang [34] /RNG [35], BioJava [36, 37], FFmpeg (currently with the Windows
OS only), GraphStream [38], Jama [39], JCommon [40], Jdpd, JDOM [41],
JFreeChart [42], Jmol [43], PCG [44, 45], SPICES [26] and Vecmath [46]., License:
GNU General Public License version 3.

Ethics approval and consent to participate
Not applicable.

Competing interests
HK is founder and managing director of CAM-D Technologies GmbH, Solingen,
Germany. AZ is co-founder of GNWI–Gesellschaft für naturwissenschaftliche
Informatik mbH, Dortmund, Germany.

Author details
1 Inorganic Chemistry and Center for Nanointegration Duisburg‑Essen
(CeNIDE), University of Duisburg-Essen, Essen, Germany. 2 Institute for Bio‑
informatics and Chemoinformatics, Westphalian University of Applied
Sciences, August‑Schmidt‑Ring 10, 45665 Recklinghausen, Germany. 3 CAM-D
Technologies GmbH, Solingen, Germany. 4 GNWI – Gesellschaft für naturwis‑
senschaftliche Informatik mbH, Dortmund, Germany. 5 Yara Deutschland,
Dülmen, Germany.

Appendix 1—Conversion formulas
The appendix comprises conversion formulas between
physical and DPD units [5, 6, 57] as well as formulas
for molecule concentration related calculations imple-
mented in MFsim.

The conversion between DPD lengths and physical
lengths is based on the conversion radius rc (“radius of
interaction”) in physical units

Vmin, volume of smallest particle in physical units; ρDPD,
DPD (number) density; Nparticles, number of different
particle types; Nparticle,i, number of particles of type i;
Vparticle,i, volume of particle of type i in physical units;
lphys, length in physical units; lDPD, length in DPD units.

with the conversion between DPD time and physical
time being approximated by

tphys, time in physical units; tDPD, time in DPD units; fsoft ,
factor for increased particle diffusivity due to soft poten-
tials ( fsoft ≈ 1000 ); R, gas constant; T , thermodynamic
temperature; Mparticle,i, molar mass of particle of type i.

Molecule concentration calculations are based on the
relations

rc =
3

√

√

√

√

√

√

√

√

√

Vmin ρDPD

Nparticles
∑

i=1

Nparticle,i
Vparticle,i

Vmin

Nparticles
∑

i=1

Nparticle,i

lphys = lDPD rc

tphys = tDPD fsoft rc

√

√

√

√

√

√

√

√

√

1

R T

Nparticles
∑

i=1

Nparticle,i Mparticle,i

Nparticles
∑

i=1

Nparticle,i

Nscaled
molecule,1 =

ρDPDVbox,DPD

Nparticles
∑

k=1

N1k +
Nmolecules
∑

i=2

(

nscaledmolecule,i

nscaledmolecule,1

Nparticles
∑

k=1

Nik

) ;

Nscaled
molecule,i �=1

= Nscaled
molecule,1

nscaledmolecule,i �=1

nscaledmolecule,1

https://github.com/zielesny/MFsim
https://github.com/zielesny/MFsim

Page 13 of 15van den Broek et al. J Cheminform (2020) 12:29 	

Nscaled
molecule,i, Number of molecules of type i in simulation

box; Vbox,DPD, volume of simulation box in DPD units;
Nik , number of particles of type k in single molecule of
type i; Nmolecules, number of different molecule types;
nscaledmolecule,i, volume-scaled relative number of molecules
of type i; nmolecule,i, relative number of molecules of type
i; smolecule,i, volume scaling factor of molecule of type i;
wmolecule,i, relative weight of molecule of type i; Nmolecule,i,
number of molecules of type i.

Appendix 2—Data objects, preferences
and re‑usable settings
All data items for GUI display are stored in ValueItem
objects (package model.valueItem) which can be config-
ured for data structures like scalars, vectors or matrices
(see enumeration ValueItemEnumBasicType in package
model.valueItem) that consist of basic data types like
texts, numbers, directory paths or links to specific dia-
logs (see enumeration ValueItemEnumDataType in pack-
age model.valueItem). A ValueItem object may contain
default values as well as specific data checks like min/
max boundaries for numeric values, selection texts or
regular expressions for control of textual input in order
to prevent input errors. Related ValueItem objects may
be encapsulated by a ValueItemContainer object (package
model.valueItem) which itself may be used for a tree view
of its contents via GUI display. Moreover, a ValueItem-
Container object allows for an interplay of its ValueItem

nscaledmolecule,i =
nmolecule,i smolecule,i

Nmolecules
∑

j=1

nmolecule,j smolecule,j

smolecule,i =

Nparticles
∑

k=1

Nik
Vparticle,k

Vmin

Nparticles
∑

k=1

Nik

nmolecule,i =

wmolecule,i
Nparticles

�

k=1

Nik Mparticle,k

Nmolecules
�

j=1









wmolecule,j

Nparticles
�

k=1

Nik Mparticle,k









wmolecule,i =

Nmolecule,i

Nparticles
∑

k=1

Nik Mparticle,k

Nmolecules
∑

j=1

(

Nmolecule,j

Nparticles
∑

k=1

Njk Mparticle,k

)

objects like directed update cascades after value changes
(e.g. see class UtilityJobUpdate in package model.job for
update cascades concerning Job Input definitions). Value-
Item and ValueItemContainer objects can be made persis-
tent via XML serialization.

Global preferences are realized by a modifiable Prefer-
ences singleton (package model.preference) which pro-
vides adequate ValueItem objects for all settings. The
global preferences dialog is available via menu entry
Application/Preferences/Edit of the basic GUI frame.

A particular feature for efficient usage is the imple-
mented table-data schema management. A table-data
schema is a pattern of values for vectors or matrices of
ValueItem objects which can be named and internally
stored for reuse: Schemata alleviate complex setting
operations e.g. for the graphical display of multiple par-
ticles. A table-data schema manager is available via menu
entry Application/Schemata/Manage of the basic GUI
frame and provides view, edit, remove or clear func-
tions with an additional file export of schemata lists for
exchange. Persistent schemata files may be reloaded or
merged.

The definition of ValueItem related vectors or matrices
is supported by bulk functions which can be refined by
column-based filters. Thus, the tedious input of multiple
values (e.g. for force constants or colors) may be realized
by a few manual operations.

Appendix 3—Simulation kernel integration
Jdpd is integrated as a command text file driven simu-
lation kernel: All settings are comprised in an Input.
txt text file with references to compound related Posi-
tionsBonds < index > .txt text files which contain all initial
particle xyz positions and particle–particle spring-force
definitions for all molecular species. During simula-
tion Jdpd produces (partly compressed) output text files
in form of simple xy table data for e.g. relevant physi-
cal quantities versus simulation step (like T.txt for tem-
perature, UpotDpd.txt for conservative DPD energy etc.),
particle position files which provide all particle posi-
tions at a specific simulation step in the simulation box
(e.g. PP2400.gz for particle positions of simulation step
2400) as well as structurally more complex text files like
M_M_TUPLE.txt for nearest-neighbor data. Thus, an
integration of Jdpd requires the automated generation
of the necessary input text files, the programmatic con-
trol of Jdpd during simulation (with intermediate simu-
lation progress inspections or possible exception/error
handling) and the automated analysis of the simulation
record contained in the Jdpd generated output text files:
The code for these tasks is mainly located in package
model.job for input/output text file generation/analysis
and in class MainFrameController (section Job execution

Page 14 of 15van den Broek et al. J Cheminform (2020) 12:29

related command methods) in package gui.main for Jdpd
control during simulation.

Class JdpdValueItemDefinition (package model.job)
defines in method initializeJdpdValueItems() the Value-
Item instances for all job input settings (MFsim stores
data in ValueItem objects, see previous appendix) which
are collected in a ValueItemContainer instance. This job
input ValueItemContainer instance is then modified dur-
ing job design with a cascaded top-down interplay of
the ValueItem instances coded in class JobUpdateUtils
(package model.job) to prevent later ill-defined settings.
A completed job design results in a corresponding job
input ValueItemContainer instance (which is then made
persistent via XML file output). Before instantiation of a
Jdpd kernel instance the information of a job input Val-
ueItemContainer instance is parsed to Jdpd input and
position/bonds text files via method getJdpdInputText()
of class JobUtilityMethods (package model.job). Then a
Jdpd kernel instance is created with the generated text
files as its main input and submitted to a thread-pool for
concurrent execution (methods startJobsInJobExecution-
Queue() and startRemainingJobExecutionTasks() in class
MainFrameController, package gui.main). During as well
as after simulation the Jdpd generated simulation record
is mapped back to corresponding ValueItem instances
(collected in a job result ValueItemContainer instance)
via method getResultValueItemContainerForJobResult() of
class JobResult (package model.job) which are visualized
by MFsim for job result analysis.

To integrate an alternative simulation kernel software
the sketched classes and methods have to be customized
accordingly. In addition, the kernel control structure has
to be adjusted for polyglot programming since scien-
tific kernel software is usually written in languages like
C/C ++ or FORTRAN and ahead-of-time compiled to
executables. To realize the integration task the elaborated
capabilities of the Java platform can be utilized. Thus,
from a software development point of view, the integra-
tion into the MFsim environment allows for an extremely
flexible response to a wide range of requirements – where
the existing Jdpd integration code may serve as a produc-
tive blueprint. It can be estimated from experience with
previous integration tasks that—a skilled software devel-
oper presumed—a simulation kernel integration requires
at least several weeks (for comparatively simple and less
demanding solutions) up to several months (for more
complex, comprehensive and thoroughly safe-guarded
solutions like the Jdpd integration).

Received: 15 February 2020 Accepted: 21 April 2020

References
	1.	 Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydro‑

dynamic phenomena with dissipative particle dynamics. Europhys Lett
19(3):155–160

	2.	 Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulations of hard-
sphere suspensions under steady shear. Europhys Lett 21(3):363–368

	3.	 Espanol P, Warren P (1995) Statistical Mechanics of Dissipative Particle
Dynamics. Europhys Lett 30(4):191–196

	4.	 Espanol P (1995) Hydrodynamics from dissipative particle dynamics. Phys
Rev E 52(2):1734–1742

	5.	 Groot RD, Warren P (1997) Dissipative particle dynamics: bridging the
gap between atomistic and mesoscopic simulation. J Chem Phys.
107(11):4423–4435

	6.	 Groot RD, Madden TJ (1998) Dynamic simulation of diblock copolymer
microphase separation. J Chem Phys 108(20):8713–8724

	7.	 Ryjkina E, Kuhn H, Rehage H, Müller F, Peggau J (2002) Molecular dynamic
computer simulations of phase behavior of non-ionic surfactants. Angew
Chem Int Ed 41(6):983–986

	8.	 Schulz SG, Kuhn H, Schmid G, Mund C, Venzmer J (2004) Phase behavior
of amphiphilic polymers: a dissipative particles dynamics study. Colloid
Polym Sci 283:284–290

	9.	 Truszkowski A, Epple M, Fiethen A, Zielesny A, Kuhn H (2013) Molecu‑
lar fragment dynamics study on the water–air interface behavior of
non-ionic polyoxyethylene alkyl ether surfactants. J Colloid Interface Sci
410:140–145

	10.	 Vishnyakov A, Lee M-T, Neimark AV (2013) Prediction of the critical micelle
concentration of nonionic surfactants by dissipative particle dynamics
simulations. J Phys Chem Lett. 4:797–802

	11.	 Truszkowski A, Daniel M, Kuhn H, Neumann S, Steinbeck C, Zielesny A,
Epple M (2014) A molecular fragment cheminformatics roadmap for
mesoscopic simulation. J Cheminform 6:45

	12.	 Truszkowski A, van den Broek K, Kuhn H, Zielesny A, Epple M (2015) Meso‑
scopic simulation of phospholipid membranes, peptides, and proteins
with molecular fragment dynamics. J Chem Inf Model 55:983–997

	13.	 BIOVIA Materials Studio. https​://www.3dsbi​ovia.com/produ​cts/colla​borat​
ive-scien​ce/biovi​a-mater​ials-studi​o. Accessed 31 Jan 2020

	14.	 CULGI. https​://www.culgi​.com. Accessed 31 January 2020
	15.	 van den Broek K, Kuhn H, Zielesny A (2018) Jdpd—an open java simula‑

tion kernel for molecular fragment dissipative particle dynamics. J
Cheminform 10:25

	16.	 Jdpd - An open Java Simulation Kernel for Molecular Fragment Dissipa‑
tive Particle Dynamics. Project at GitHub. https​://githu​b.com/ziele​sny/
Jdpd. Accessed 31 Jan2020

	17.	 ESPResSo. http://espre​ssomd​.org/wordp​ress. Accessed 31 January 2020
	18.	 LAMMPS. https​://lammp​s.sandi​a.gov. Accessed 31 Jan2020
	19.	 Gromacs. http://www.groma​cs.org. Accessed 31 Jan 2020
	20.	 DL_MESO. http://www.cse.clrc.ac.uk/ccg/softw​are/DL_MESO/. Accessed

31 Jan 2020
	21.	 DPDmacs. https​://www.softs​imu.net/softs​imu-wiki/doku.php?id=softs​

imu:tutor​ials:dpdma​cs. Accessed 31 Jan 2020
	22.	 SYMPLER. http://sympl​er.org. Accessed 31 January 2020
	23.	 USER-MESO. http://www.cfm.brown​.edu/repo/relea​se/USER-MESO.

Accessed 31 Jan 2020
	24.	 GPU package in LAMMPS. https​://lammp​s.sandi​a.gov/doc/Speed​_gpu.

html. Accessed 31 Jan 2020
	25.	 van den Broek K, Daniel M, Epple M, Kuhn H, Schaub J, Zielesny A (2018)

SPICES: a particle-based molecular structure line notation and support
library for mesoscopic simulation. J Cheminform 10:35

	26.	 SPICES—A particle-based Molecular Structure Line Notation and Support
Library for Mesoscopic Simulation. Project at GitHub. https​://githu​b.com/
ziele​sny/SPICE​S. Accessed 31 Jan 2020

	27.	 Protein Data Bank. https​://www.rcsb.org. Accessed 31 Jan 2020
	28.	 Reenskaug TMH, MVC, Xerox PARC 1978-79. http://heim.ifi.uio.no/~trygv​

er/theme​s/mvc/mvc-index​.html. Accessed 31 Jan 2020
	29.	 Swing GUI Toolkit. http://openj​dk.java.net/group​s/swing​. Accessed 31

Jan 2020
	30.	 Java platform. http://openj​dk.java.net. Accessed 31 Jan 2020

https://www.3dsbiovia.com/products/collaborative-science/biovia-materials-studio
https://www.3dsbiovia.com/products/collaborative-science/biovia-materials-studio
https://www.culgi.com
https://github.com/zielesny/Jdpd
https://github.com/zielesny/Jdpd
http://espressomd.org/wordpress
https://lammps.sandia.gov
http://www.gromacs.org
http://www.cse.clrc.ac.uk/ccg/software/DL_MESO/
https://www.softsimu.net/softsimu-wiki/doku.php%3fid%3dsoftsimu:tutorials:dpdmacs
https://www.softsimu.net/softsimu-wiki/doku.php%3fid%3dsoftsimu:tutorials:dpdmacs
http://sympler.org
http://www.cfm.brown.edu/repo/release/USER-MESO
https://lammps.sandia.gov/doc/Speed_gpu.html
https://lammps.sandia.gov/doc/Speed_gpu.html
https://github.com/zielesny/SPICES
https://github.com/zielesny/SPICES
https://www.rcsb.org
http://heim.ifi.uio.no/%7etrygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/%7etrygver/themes/mvc/mvc-index.html
http://openjdk.java.net/groups/swing
http://openjdk.java.net

Page 15 of 15van den Broek et al. J Cheminform (2020) 12:29 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	31.	 Java2D. https​://docs.oracl​e.com/javas​e/6/docs/techn​otes/guide​s/2d.
Accessed 31 Jan 2020

	32.	 FFmpeg —A complete, cross-platform solution to record, convert and
stream audio and video. https​://ffmpe​g.org. Accessed 31 Jan 2020

	33.	 Apache Commons IO. http://commo​ns.apach​e.org/prope​r/commo​ns-io.
Accessed 31 Jan 2020

	34.	 Apache Commons Lang. https​://commo​ns.apach​e.org/prope​r/commo​
ns-lang. Accessed 31 Jan 2020

	35.	 Apache Commons RNG. http://commo​ns.apach​e.org/prope​r/commo​
ns-rng. Accessed 31 Jan 2020

	36.	 Prlic A, Yates A, Bliven SE, Rose PW, Jacobsen J, Troshin PV, Chapman M,
Gao J, Koh CH, Foisy S, Holland R, Rimsa G, Heuer ML, Brandstatter-Muller
H, Bourne PE, Willis S (2012) BioJava: an open-source framework for
bioinformatics. Bioinformatics 28(20):2693–2695

	37.	 BioJava. https​://bioja​va.org. Accessed 31 Jan 2020
	38.	 GraphStream—A Dynamic Graph Library. http://graph​strea​m-proje​ct.org.

Accessed 31 January 2020
	39.	 JAMA: A Java Matrix Package. http://math.nist.gov/javan​umeri​cs/jama.

Accessed 31 Jan 2020
	40.	 JCommon. http://www.jfree​.org/jcomm​on. Accessed 31 January 2020
	41.	 JDOM. http://www.jdom.org. Accessed 31 Jan 2020
	42.	 JFreeChart. http://www.jfree​.org/jfree​chart​. Accessed 31 January 2020
	43.	 Jmol: an open-source browser-based HTML5 viewer and stand-alone

Java viewer for chemical structures in 3D. http://jmol.sourc​eforg​e.net.
Accessed 31 Jan 2020

	44.	 PCG-Java—PCG pseudorandom generator implementation for Java.
https​://githu​b.com/alexe​yr/pcg-java. Accessed 31 Jan 2020

	45.	 Minimal C implementation of PCG Random Number Generators. http://
www.pcg-rando​m.org. Accessed 31 Jan 2020

	46.	 D Vector Math Package. https​://mvnre​posit​ory.com/artif​act/javax​.vecma​
th/vecma​th. Accessed 31 Jan 2020

	47.	 High resolution solution structure of Kalata B1. https​://www.rcsb.org/
struc​ture/1NB1. Accessed 31 Jan 2020

	48.	 MFsim - Simulation of a DMPC bilayer membrane model. PDF document
in tutorials section. https​://githu​b.com/ziele​sny/MFsim​. Accessed 31 Jan
2020

	49.	 MFsim—Simulation of a DMPC bilayer membrane model. MP4 clip. https​
://w-hs.scieb​o.de/s/wzfNG​CrXSG​eqEna​. Accessed 13 Feb 2020

	50.	 MFsim- Cyclotide-membrane sandwich interaction model. PDF docu‑
ment in tutorials section. https​://githu​b.com/ziele​sny/MFsim​. Accessed
24 March 2020

	51.	 MFsim Cyclotide-membrane sandwich interaction model. MP4 clip. https​
://w-hs.scieb​o.de/s/XDgcN​DwM6K​tYxrh​. Accessed 24 Mar 2020

	52.	 GNU General Public License. http://www.gnu.org/licen​ses. Accessed 31
Jan 2020

	53.	 MFsim —Installation and initial test (Windows OS). PDF document in
tutorials section. https​://githu​b.com/ziele​sny/MFsim​. Accessed 31 Jan
2020

	54.	 MFsim - Installation and initial test (Windows OS). MP4 clip. https​://w-hs.
scieb​o.de/s/Ln0Q6​OIQhW​xUC8i​. Accessed 21 March 2020

	55.	 Javadoc documentation. http://www.oracl​e.com/techn​etwor​k/java/javas​
e/docum​entat​ion. Accessed 31 Jan 2020

	56.	 NetBeans IDE Version 8.2. https​://netbe​ans.org. Successor: https​://netbe​
ans.apach​e.org. Accessed 31 Jan 2020

	57.	 Groot RD (2003) Electrostatic interactions in dissipative particle dynam‑
ics—simulation of polyelectrolytes and anionic surfactants. J Chem Phys.
118(24):11265–11277

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://docs.oracle.com/javase/6/docs/technotes/guides/2d
https://ffmpeg.org
http://commons.apache.org/proper/commons-io
https://commons.apache.org/proper/commons-lang
https://commons.apache.org/proper/commons-lang
http://commons.apache.org/proper/commons-rng
http://commons.apache.org/proper/commons-rng
https://biojava.org
http://graphstream-project.org
http://math.nist.gov/javanumerics/jama
http://www.jfree.org/jcommon
http://www.jdom.org
http://www.jfree.org/jfreechart
http://jmol.sourceforge.net
https://github.com/alexeyr/pcg-java
http://www.pcg-random.org
http://www.pcg-random.org
https://mvnrepository.com/artifact/javax.vecmath/vecmath
https://mvnrepository.com/artifact/javax.vecmath/vecmath
https://www.rcsb.org/structure/1NB1
https://www.rcsb.org/structure/1NB1
https://github.com/zielesny/MFsim
https://w-hs.sciebo.de/s/wzfNGCrXSGeqEna
https://w-hs.sciebo.de/s/wzfNGCrXSGeqEna
https://github.com/zielesny/MFsim
https://w-hs.sciebo.de/s/XDgcNDwM6KtYxrh
https://w-hs.sciebo.de/s/XDgcNDwM6KtYxrh
http://www.gnu.org/licenses
https://github.com/zielesny/MFsim
https://w-hs.sciebo.de/s/Ln0Q6OIQhWxUC8i
https://w-hs.sciebo.de/s/Ln0Q6OIQhWxUC8i
http://www.oracle.com/technetwork/java/javase/documentation
http://www.oracle.com/technetwork/java/javase/documentation
https://netbeans.org
https://netbeans.apache.org
https://netbeans.apache.org

	MFsim—an open Java all-in-one rich-client simulation environment for mesoscopic simulation
	Abstract
	Introduction
	Implementation
	Results and discussion
	Simulation job design
	Simulation job execution
	Simulation job result evaluation
	MFsim use cases

	Conclusions
	Acknowledgements
	References

