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Abstract 

Aromatic rings are important residues for biological interactions and appear to a large extent as part of protein–drug 
and protein–protein interactions. They are relevant for both protein stability and molecular recognition processes due 
to their natural occurrence in aromatic aminoacids (Trp, Phe, Tyr and His) as well as in designed drugs since they are 
believed to contribute to optimizing both affinity and specificity of drug-like molecules. Despite the mentioned rel-
evance, the impact of aromatic clusters on protein–protein and protein–drug complexes is still poorly characterized, 
especially in those that go beyond a dimer. In this work, we studied protein–drug and protein–protein complexes 
and systematically analyzed the presence and structure of their aromatic clusters. Our results show that aromatic 
clusters are highly prevalent in both protein–protein and protein–drug complexes, and suggest that protein–protein 
aromatic clusters have idealized interactions, probably because they were optimized by evolution, as compared to 
protein–drug clusters that were manually designed. Interestingly, the configuration, solvent accessibility and second-
ary structure of aromatic residues in protein–drug complexes shed light on the relation between these properties and 
compound affinity, allowing researchers to better design new molecules.
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Introduction
Aromatic rings are important residues for biological 
interactions and appear to a large extent as part of pro-
tein–drug and protein–protein interactions. π–π (both 
stacking and T-shape), anion-π and cation-π are the main 
interaction types described in the literature [1]. They are 
highly relevant for protein stability and molecular recog-
nition processes due to their natural occurrence in phe-
nylalanine, tyrosine, tryptophan and histidine residues. 
Aromatic rings are also often used in drug design since 
they contribute to optimizing both affinity and specific-
ity [2] of drug-like molecules. Aromatic rings allow the 
generation of skeletons in lead compounds, that can be 

further optimized to achieve the target and off-target 
binding requirements [3, 4]. However, it is also impor-
tant to note that higher aromatic ring count has been 
correlated with lower drug developability [5, 6]. Also, if 
a compound has poor solubility, reducing the number of 
aromatic rings is likely to be beneficial. This knowledge 
suggests that aromatic rings in drugs are resources that 
must be taken seriously.

Aromatic rings also appear in protein–protein inter-
faces playing a significant role as anchor residues. As 
shown by Rajamani et  al. [7], binding interfaces usually 
present aromatic residues in the middle and, only a few of 
them, have aliphatic residues as anchors. Moreover, other 
studies [8, 9] showed that conservation of, mainly Trp 
and in lesser degree Phe and His, on the protein surface, 
possibly indicates a protein–protein interaction inter-
face. In the last decades, there has been an increase in 
drugs designed to bind protein–protein interaction inter-
faces [10, 11]. These developments present additional 
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difficulties compared to more traditional targets since 
it is not easy to find cavities that may be used as ligand-
binding sites [12]. Designing peptides to inhibit pro-
tein–protein interactions is another promising strategy 
because it can be derived directly from protein sequences 
and have the capacity to cover larger areas compared 
with small molecules [13, 14]. Protein–protein interfaces 
usually have ‘hot spots’ that are smaller than the entire 
contact surface and have residues with high contribution 
to the free energy of binding [8, 15–17]. The identifica-
tion of these ‘hot spots’ is of paramount importance as 
drugs are usually designed to bind them. Aromatic resi-
dues belong to this group of hot spots and are, therefore, 
relevant candidates for the design of protein–protein 
drug-like inhibitors [9].

The above-described relevance of aromatic interac-
tions in protein structure, protein–protein, and protein–
drug complexes, promoted the study of their structure 
and energetics. Previous work from our group, extended 
original studies of pairs of aromatic interactions, show-
ing that inside proteins (intraprotein), aromatic rings 
(derived from Phe, Tyr, and Trp) are found forming clus-
ters beyond aromatic dimers. These show an additive 
energetic nature and display particular structures [18, 19]. 
These clusters appear adopting the same motifs found for 
benzene clusters in gas phase, and when three or more 
aromatic residues form a cluster, usually, two of them 
are close in the protein in sequence bringing the other(s) 
from distant positions. Particularly relevant and exciting 
were the structures found for symmetric aromatic trim-
mers, which maximize the number of interactions, 3 for 
3 residues [19]. However, the impact of aromatic clusters 
on protein–protein complexes is unknown. Particularly 
in those that go beyond a dimer, and even though several 
studies are focusing on protein–drug interactions [20, 
21], a systematic study of aromatic interactions and their 
underlying cluster structures in protein–drug complexes 
has, to our knowledge, not been performed.

In this work, we studied two datasets of protein–drug 
and protein–protein complexes and systematically 
analyzed the presence and structure of their aromatic 
clusters. In particular, we compared those found in pro-
tein–drug complexes with those found in protein–pro-
tein interfaces. Additionally, we compare our results 
with the previously reported intraprotein dataset [19]. 
Our results show that aromatic clusters are highly pre-
sent in protein–drug and protein–protein complexes, 
that the number of clusters and the average number 
of interactions is higher in the case of protein–protein 
compared to protein–drug and, that protein–drug inter-
actions are enriched in face-to-face π-stacking conforma-
tions. Moreover, our analysis sheds light on the relation 
between aromatic cluster configuration and chemical 

characteristics with the compound Ki. Finally, our results 
show that aromatic clusters in protein–protein could be 
more stable than protein–drug clusters as the former 
were optimized by evolution and not manually designed.

Materials and methods
Selection of protein–drug and protein–protein complexes
We constructed two datasets based on available 
structures in the PDB: (i) protein–drug complexes 
(protein–drug) and (ii) protein–protein complexes (pro-
tein–protein). First, we filtered the entire PDB in order 
to select only structures with ‘drug-like’ compounds. We 
removed those that appear in more than ten different 
crystals to eliminate natural compounds and also those 
having less than 100 Da to avoid small molecules that are 
too small. Additionally, we applied a 95% sequence iden-
tity clustering using CD-HIT [22] over the underlying set 
of protein targets.

We took a protein–drug complex for each cluster and 
each drug-like compound, to eliminate duplicate pairs 
when crystals have several structures and avoid biases 
due to a differential representation of protein families in 
the PDB. For the set of protein–protein complexes, we 
selected entries from the PDB that have only two chains 
and are explicitly mentioned in the PDB file header, which 
corresponds to a dimeric complex. Over these entries, we 
applied a clustering procedure at 95% of sequence iden-
tity ensuring not to repeat the same combination of two 
protein clusters (note: this procedure allows at least one 
homodimer for each sequence cluster).

For both datasets, only complexes with a resolution of 
2.5  Å or below were kept for further analysis. Detailed 
statistics of the filtering can be seen in Additional file 1: 
Table S2.

Aromatic clusters detection
First, we needed to detect aromatic rings. In protein 
molecules, benzene rings are found in Phe, Tyr, and 
Trp. Imidazole rings are found upon His and pyrrole in 
Trp. Aromatic ring selection in drug-like compounds 
was implemented using OpenBabel library [23] with 
python scripting (pybel) to get a set of atoms for every 
aromatic ring and to classify each ring by its chemical 
type (i.e., benzene, pyrrole, etc.). Each ring in a fused 
system is counted individually; for example, the indole 
group is defined as having two rings: benzene and pyr-
role. We classified aromatic rings as residue rings (R) if 
they belong to a protein or as rings belonging to a drug 
compound (D). In this sense, aromatic interactions found 
in protein–protein interaction interfaces are made by two 
R rings from different protein subunits (chains) while 
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protein–drug interactions are made between a D ring 
and an R ring.

Aromatic interactions are known to be mainly 
described by the distance between the centre of each 
ring [24]. Besides, angles can be used to describe aro-
matic interaction energetics better [25–27]. We detected 
aromatic interactions using the distance (d) between the 
geometric centre of each aromatic ring planes as defined 
in Fig. 1a, using a cutoff of 7.0 Å. Also, we used the planar 
angle (α) and the orientational angle (ө) to describe dif-
ferent π-π interactions such as π-stacking and T-shape, 
identifying in edge-to-edge, face-to-face and edge-to-face 
conformations.

In order to characterize three or more interacting rings, 
we defined the aromatic clusters as each connected com-
ponent in the underlying graph of interactions. We ana-
lyzed every entry in the database by detecting aromatic 
clusters based only on drug–residue aromatic interac-
tions and residue–residue interactions. Only these inter-
actions have been included to count for the number of 
interactions reported and define each cluster. Then, the 
number of interactions of each aromatic cluster in pro-
tein–drug is calculated as the number of drug–residue 

interactions and the number of residue–residue interac-
tions. In the case of protein–protein, only residue–resi-
due interactions that correspond to two rings belonging 
to different chains were used for detection and, as well 
as in protein–drug, but residue–residue interactions 
between the same chain were included to count the total 
number of interactions.

Despite the filter of complexes that we performed after 
clustering, we wanted to evaluate if there were biases in 
protein families. We searched the PFAM database [28] 
and we found that both datasets cover a high diversity, as 
the most abundant in protein–drug were

(1)	 Protein Kinase family (Pkinase:PF00069 and Pki-
nase_tyr:PF07714) 10.09%.

(2)	 Trypsins (Trypsin:PF00089) 4.66%.
(3)	 Nuclear Hormone Receptors (Hormone_

recep:PF00104) 3.58%.
(4)	 Retroviral Aspartyl Proteases (RVP:PF00077) 2.24%.

On the other hand, the protein–protein dataset the 
most abundant families were:

Fig. 1  Aromatic interaction in protein–drug and protein–protein interactions. a Interaction scheme showing main aromatic interaction descriptors: 
distance (d), planar angle (α) and orientational angle (ө). b Radial distribution function for the distance between aromatic rings in protein–drug 
complexes (solid), protein–protein complexes (dashed) and intra-protein interactions (dotted). c Planar protein–drug interactions. d Planar protein–
protein interactions. Color scale is a Delta G energy computed with Boltzmann Equation with a temperature of 298 K
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(1)	 Immunoglobulins (V-set:PF07686 and 
C1-set:PF07654) 2.1%

(2)	 Protein kinases (Pkinase:PF00069), 1.04%
(3)	 Small GTPases Ras proteins (Ras:PF00071) 1.03%
(4)	 Short-chain dehydrogenases (adh_short:PF00106) 

0.91%

This means that no family is over-represented in nei-
ther protein–drug nor protein–protein.

Additionally, we have computed the amino acid com-
position of our two datasets and compared it with the 
whole PDB. No significant differences were found (Addi-
tional file 1: Figure S6).

Structural properties of aromatic clusters
For each aromatic residue involved in a cluster, we com-
puted the secondary structure using DSSP [29] and 
defined three major classes: Helix, Sheet, and Loop. Also, 
we calculated the preference of a given ring to be inter-
acting with a residue in a particular secondary structure 
as the log (odds ratio) between the probability of this ring 
to be in that class and the class background probability. 
For example:

where P(helix|sheetprotein–protein) is the probability of a 
protein-protein residue in Sheet conformation to be 
interacting with a residue in Helix conformation. We also 
calculated the same preference for a given ring in a drug 
to be contacting a residue in a certain conformation.

Solvent Accessible Surface Area (SASA) was computed 
using the plug-in based on the Connolly surface algo-
rithm as implemented in the VMD program [30]. The 
radius of the probe used was 1.4 Å. For each residue, we 
calculated the percentage of the exposed area as:

with iSASA being the surface of the amino acid side 
chain in isolation and eSASA being the surface with the 
rest of the protein. Also, we calculated the percentage of 
the exposed surface that is in contact as:

with nSASA being the surface exposed in the context of 
the entire complex

(1)

Preference
(

sheetprotein−protein, helix
)

= log(
P(helix|sheetprotein−protein)

P(helix)
)

(2)%Exposed =
eSASA

iSASA

(3)% in Contact =
(eSASA− nSASA)

eSASA

Affinity data mapping
Affinity data was taken from BindingDB [31] and mapped 
to the corresponding protein–drug complex. As of Feb-
ruary 2020, BindingDB had 2291 protein–ligand crystal 
structures with binding affinity reported on that data-
base where the identity of both the protein and the ligand 
matches perfectly.

Results
Occurrence and distribution of aromatic clusters 
in biomolecular complexes
To analyze the structure and prevalence of aromatic 
interactions in protein–drug (PD) and protein–protein 
(PP) complexes, we surveyed the PDB and the complexes 
were filtered to have only one for each pair of protein–
protein and protein–drug complexes. We found and 
analyzed 10,231 protein–drug complexes and 4837 pro-
tein–protein complexes to identify the presence of pro-
tein–drug/protein–protein aromatic clusters. Aromatic 
clusters are defined by the presence of at least two (i.e. 
a dimer), aromatic rings that are interacting according 
to Materials and Method based on our previous work 
[19]. In the present case, we looked for clusters that have 
at least one ring on a different molecule. For detailed 
description and characterization of intra-protein aro-
matic clusters see our previous work [19]. The number of 
complexes with at least one aromatic cluster is 5908 in 
the case of protein–drug (57% of all protein–drug com-
plexes). Amazingly, if we consider the complexes where 
the drug has an aromatic ring (ca. 66% of the drugs in 
the dataset fulfil this criterion), 87% of them are forming 
aromatic clusters. In the protein–protein complexes, we 
found 3048 with at least one aromatic cluster, which rep-
resents 63% of the dataset. The total number of clusters 
was 7236 (protein–drug) and 7717 (protein–protein), this 
means that protein–protein interaction sites have more 
than twice the number of clusters compared with drug 
binding sites, having 2.53 against 1.22 clusters per cluster. 
Accordingly, the total number of interactions found was 
23,303 and 15,309 for protein–drug and protein–protein, 
respectively, which correspond to an average of 3.22 and 
1.98 interactions per cluster for each case. (Table 1) Con-
cerning cluster size, dimers are, as expected, the predom-
inant type but trimers, tetramers and beyond are well 
represented.

Interestingly, dimers are over-represented in pro-
tein–protein (59%) compared to protein–drug (31%) 
complexes (Additional file  1: Figure S1A). As expected, 
the number of interactions increases with the clus-
ter size quite evenly for both datasets for small cluster 
sizes. Nevertheless, for big clusters (≥ 6), the number of 
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interactions is higher for the protein–drug group than 
the protein–protein group (Additional file 1: Figure S1B).

For the sake of comparison, we also look for intrapro-
tein clusters in the protein–drug dataset, and found 9760 
clusters (shown in Table 1), which represents 95% of the 
dataset. As expected, the number of clusters per com-
plex is higher than in the other two cases (protein–drug 
and protein–protein) because of the volume analyzed. 
Protein cores are bigger than protein–protein interfaces 
and drug binding sites. However, the average number of 
interactions in intraprotein clusters is comparable to that 
of protein–drug complex clusters, and both cases are 
around double that in the protein–protein clusters.

As aromatic trimmers adopt two different conforma-
tions in space, Symmetric (Sym) and Ladder (Lad) we 
analyzed how they behave in Protein–drug and Protein–
Protein interactions (see Additional file 1: Figure S4). In 
particular, most of the protein–drug timers (78%) are in 
the Ladder structure and the same is for protein–protein 
Ladder trimers (79%). In both datasets, the number trim-
ers seem to be equally balanced in terms of structural 
choice. (Additional file 1: Table S1).

Aromatic residues interact slightly different in protein–
drug vs protein–protein complexes
To characterize the structure of each cluster we deter-
mined two key parameters (Fig.  1a): The distance 
between the centre of each aromatic ring and the planar 
angle (α), which is the angle formed between the planes 
of the two rings. We compared aromatic interactions in 
protein–drug and protein–protein complexes, as well 
as those found inside proteins, in terms of both param-
eters. In all cases, the plot is very similar (Fig. 1b), with 
a broad wide peak at ca. 5 Å, which is the optimal aver-
age distance between two aromatic rings, in a T-shape 
like orientation (optimal angle is ca. 75°, see Fig. 1c and 
d). Surprisingly, all distributions also show a minor nar-
row peak at ca. 3.75 Å, but the relative intensity of it is 

different in all three cases. It is small in intra-protein 
clusters, slightly larger in protein–protein and largest in 
protein–drug complexes. This peak corresponds to the 
distance of optimum π-stacking interaction according 
to McGaughey [26], and therefore our data suggest that 
stacking interactions are favoured in protein–drug com-
plexes. This is confirmed by looking at the planar angle 
vs. distance plot for protein–drug and protein–protein 
(Fig. 1c and d) showing that π-stacking conformations, a 
planar angle close to zero degrees, are enriched in pro-
tein–drug compared to protein–protein complex.

In Fig.  2a, we compared the solvent exposure (or 
SASA) percentage for the rings containing residues in 
each group. As expected, aromatic residues inside the 
protein core are barely exposed. While residues in pro-
tein–drug are more exposed than protein core residues 
and the exposure of protein–protein residues is more 
significant and shows a wider range of solvent-accessible 
surface. In Additional file  1: Figures  S2A and S2B, we 
compare the relationship between the solvent-accessible 
surface and the contact surface to understand how much 
surface is devoted to the aromatic interaction. Although 
we observed a solvent accessible surface spanning a wide 
range of values, the contact surface is mainly distributed 
at high values with the maximum of the distributions at 
100% in both sets which means that the aromatic resi-
dues use all the available surface to establish the clusters. 
Figure 2b shows how the interacting rings of the clusters 
are distributed in the different secondary structure ele-
ments. This panel shows that aromatic residues interact-
ing with drugs have a preference to be in loops and less 
likely to be in a structured region. The same is true for 
residues forming protein–protein complexes, residues in 
loops have a strong preference to be interacting with resi-
dues in loops from the partner protein.

Moreover, in protein–protein, secondary structure 
matches between interaction partners. Residues in sheet 
or helix have a preference to contact residues in the same 

Table 1  Aromatic–aromatic cluster complexes properties in protein–drug, protein–protein and intraprotein

Property Protein–drug Protein–protein Intraprotein

≥ 1 Aromatic cluster complexes 5908 3048 9760

Number of clusters 7236 7717 73,312

Average number of clusters 1.22 2.53 7.51

Number of interactions 23,303 15,309 277,797

Average number of Interactions per cluster 3.22 1.98 3.78

Proportion of interacting aromatic residues 
(%PHE, %TYR, %TRP, %HIS)

34.8%, 26.5%, 21.7%, 
16.8%

36.7%, 25.3%, 20.7%, 
17.1%

35.2%, 24.5%, 25.4%, 14.6%

Proportion of secondary structures for interacting residues 
(%Loop, %Sheet, %Helix)

43.4%, 23.6%, 32.9% 34.3%, 22.4%, 43.2% 32.5%, 27.3%, 40.1%

Average  % exposure of aromatic residues 17.29 34.63 9.18
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secondary structure (sheet with sheet and helix with 
helix). These residues also present an inverse prefer-
ence to be in contact with residues in the other second-
ary structures. Although the preference is slightly higher 
for sheet conformation, as aromatic trimmers have been 
reported to stabilize the structure of beta-sheets [32].

Binding affinity dependence on aromatic interactions
We now turn our attention to the relationship of differ-
ent aromatic cluster properties and ligand affinity in the 
protein–drug complexes. We looked for binding affin-
ity information using BindingDB [31] assigning (when 
possible) the Ki associated with a given complex in the 
protein–drug dataset. This assignment resulted in 358 
protein–drug complexes with annotated binding affin-
ity which have aromatic clusters with more than 2 ring 
interactions and with a resolution higher than 2.5 Å. 
First, in Fig.  3a, we display violin plots showing how Ki 
distributions vary as a function of the number of clusters 
(1 or 2) and the total number of ring interactions. First, 
as expected, when we look at complexes having only one 
cluster, the average Ki slightly decreases as the number of 
interactions increases. The trend is, however, not found 
when two clusters are present. Thus, no improvement in 
affinity is observed by adding more interactions. Also, 
comparing complexes with two or three interactions, if 
these are established using two clusters (Fig. 3a) the aver-
age Ki is improved about ten times to those cases having 
one cluster (Fig. 3a). In other words, it is better to anchor 
the drug through more than one cluster (or interaction 
site). However, this is only possible when the drug dis-
plays more than one aromatic ring.

As shown in Fig.  3b, we found that residues that are 
more than 20% exposed, interact with drugs having sig-
nificantly lower binding affinity than those exposed less 
than 20% (Fig. 3b). Example conformations can be seen 
in Additional file 1: Figure S3A and S3B.

Now, we can ask if these properties have some relation 
with binding affinity to drugs.

Interestingly, as shown in Fig.  3c, we found that the 
secondary structure presents great differences. Residues 
in helix conformation (Additional file 1: Figure S3D) have 
weaker binding affinity than residues in sheets (Addi-
tional file  1: Figure S3C) and loops (Additional file  1: 
Figure S3E), and surprisingly residues in sheets have sig-
nificantly better binding affinity than the other two cases. 
This difference contrasts heavily with the fact mentioned 
before that drugs have a negative preference for contact-
ing residues in sheet conformation.

Discussion
In this work, we studied aromatic clusters over two sets 
showing relevant biomolecular interactions, protein–
drug, and protein–protein complexes. We found that in 
protein–drug complexes, around 74% of aromatic con-
taining drugs form at least one aromatic interaction with 
its target. The number of clusters and the average num-
ber of interactions is higher in the case of protein–pro-
tein compared to protein–drug, which can be explained 
since protein–protein interactions have been optimized 
through evolution meanwhile interactions with drugs 
are designed artificially. Also, looking at angle distribu-
tions deduced from aromatic interactions, we found that 
aromatic rings in protein–drug interact reaching lower-
energy conformations than in protein–protein, which 
are very similar to those found in protein cores [19]. 
Meanwhile, protein–drug interactions are enriched in 
face-to-face π-stacking conformations compared to pro-
tein–protein probably because the former have restric-
tions imposed by the protein backbone (Fig. 1). Because 
aromatic rings in drugs interact with its protein target 
with more degrees of freedom, allowing aromatic rings to 
interact more tightly.

Fig. 2  Structural properties of aromatic interacting residue and their secondary structure preference. a Percentage of exposed surface distribution 
for residues in protein–drug clusters (solid), protein–protein clusters (dashed) and intra protein clusters (dotted) b Secondary structure preference. 
On top, the three preferences for interacting residues in protein–drug, and below, the preferences for residues in protein–protein
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According to solvent accessibility and secondary struc-
ture, residues in protein–drug and protein–protein are 
different. Regarding their secondary structure, rings in 
drugs are found to interact mainly with residues in loops 
discouraging other types of secondary structures (Fig. 2). 
However, residues in protein–protein interfaces match 
the same secondary structure. Additionally, clusters in 
protein–protein interfaces are formed by residues having 
more exposed surfaces than those residues found bind-
ing drugs. Also, because the contact surface is one of the 
main parameters that describe hydrophobic interactions 
(due to the hydrophobic effect, with more surface buried, 
there are more water molecules excluded). This differ-
ence in exposure could explain why aromatic clusters in 
protein–protein could be more stable than protein–drug 
clusters.

Analyzing affinity, we found that clusters with two 
interactions bind with lower Ki values when they are 
established by two separated clusters rather than only 
one. For the case with two clusters, the affinity is between 
micromolar (μM) and nanomolar (nM) (Fig.  3). When 
four or five interactions are achieved, the addition of 
more interactions does not change binding significantly. 

When looking at aromatic rings individually by plotting 
the number of rings in a compound vs the interaction 
affinity (Ki) (Additional file 1: Figure S5), we see a similar 
tendency to a plateau around four to five rings. Never-
theless, the appearance of bimodality on > 5 rings argues 
that the addition of more rings could increase affinity in a 
system-dependant manner.

It was previously argued that having too many aromatic 
rings decreases drug developability [4, 5]. Our results 
on fused systems energetics support the idea that fused 
rings should not be the first choice to increase compound 
affinity. It is known that drugs with more than one aro-
matic system are rarely produced [33]. In this sense, the 
location of aromatic systems in a drug should be opti-
mized according to the outstanding interactions with its 
target when more than one aromatic residue is available. 
Keeping the number of aromatic rings low but increasing 
the number of interactions by increasing the number of 
clusters and trying to avoid fused systems.

Fig. 3  Aromatic clusters and binding affinity. a From left to right, violin plots are displayed increasing the number of interactions alternating (2 or 
3, 4 or 5, 5 or more interactions) between drugs having 1 cluster and drugs with 2 clusters. Ki is expressed in molar units and y-axis is displayed in 
logarithmic scale. b Violin plot of Binding affinity of drugs interacting with a residue having less and more than 20% of the exposed surface. c Violin 
plot of drug binding affinity for drugs interacting with aromatic residues in different secondary structures
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Conclusions
In the present work, we have analyzed the occurrence 
of aromatic interactions in the structures deposited in 
the Protein Data Bank, focusing mostly on higher-order 
interactions that go beyond the pure dimer. We found 
that there are some differences in preference of interac-
tion between protein–drug and protein–protein, while 
the former can adopt a traditional Pi-stacking interaction 
as well as T-shaped. The latter mostly prefers traditional 
T-shaped. On the affinity side, it is better to have more 
clusters with the same number of interactions. This infor-
mation is valuable for optimization campaigns where 
medicinal chemists have to make decisions on which 
modifications to synthesize and test.
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