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calculations in Python
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Abstract 

Root mean square displacement (RMSD) calculations play a fundamental role in the comparison of different con-
formers of the same ligand. This is particularly important in the evaluation of protein-ligand docking, where different 
ligand poses are generated by docking software and their quality is usually assessed by RMSD calculations. Unfor-
tunately, many RMSD calculation tools do not take into account the symmetry of the molecule, remain difficult to 
integrate flawlessly in cheminformatics and machine learning pipelines—which are often written in Python—or 
are shipped within large code bases. Here we present a new open-source RMSD calculation tool written in Python, 
designed to be extremely lightweight and easy to integrate into existing software.
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Introduction
Computational structure-based drug discovery has 
steadily gained traction partially thanks to the constant 
improvements in available software, now often free and 
open source. Protein-ligand docking in particular is now 
a standard tool employed in the early stages of drug dis-
covery pipelines in order to screen possible drugs acting 
on a known target of interest.

Protein-ligand docking consists of the prediction of 
binding modes and binding affinity of a (flexible) ligand 
to a target of known structure. The performance of dock-
ing programs is often assessed by their ability to reproduce 
the crystallographic pose of the bound ligand. A com-
mon metric to evaluate the difference between the pre-
dicted binding pose and the crystallographic pose is the 
heavy-atoms root mean square displacement (RMSD) [1], 
although other metrics have been suggested [2]. RMSD 
calculations are also used in other contexts, for example 
for the evaluation of diversity in generated conformers [3].

Many simple scripts to compute RMSDs are based on 
the assumption of a direct one-to-one mapping between 

atoms of different conformers of the same ligand. In dif-
ferent words, atoms are often assumed to be labelled 
according to their position in a coordinate file (or data 
structure) and they are paired according to such label. 
This assumption breaks down when such labels are not 
conserved—i.e. the order of atoms is different in the two 
structures being compared—and/or for symmetric mol-
ecules. In the case of symmetric molecules, different 
binding poses can be chemically identical but different in 
terms of atom-atom mapping. Since molecular connec-
tivity is naturally represented by graphs (atoms as verti-
ces and bonds as edges), tools from graph theory can be 
used to obtain the correct atom-atom mapping for two 
different conformers of the same molecule, thus avoiding 
the problems outlined above.

Here we present a new Python tool, spyrmsd, for the 
calculation of symmetry-corrected RMSDs based on 
graph isomorphisms.

Implementation
spyrmsd is implemented in pure Python and there-
fore  it is easy to integrate in existing Python libraries 
and Python pipelines, particularly common in chemin-
formatics and machine learning projects. In this section 
we describe the implementation of the different types of 
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RMSD calculations implemented in spyrmsd, their use, 
and their shortcomings.

Standard RMSD
Let us call A and B the N × 3 matrices of atomic coordi-
nates of two conformers A and B of the same molecule. 
The standard RMSD is simply defined as

If we define the displacement ri = ai − bi—where ai is 
the i-th row of A and bi is the i-th row of B—the standard 
RMSD can be written more compactly as

This simple formula, which assumes the atomic coordi-
nates to be provided in the same order for both conform-
ers, is easy to compute. In spyrmsd the calculation of 
RMSDstandard is vectorised using numpy [4] for speed.

A serious drawback of standard RMSD calculations is 
that they do not take into account molecular symmetry. 
This is problematic since atoms of the same specie  are 
intrinsically indistinguishable and therefore symme-
try operations conserve molecular properties. Figure  1 
shows the atom–atom mapping for benzene with and 
without symmetry correction after a mirror operation; 
it is clear that a simple positional atom–atom mapping 
leads to artificially inflated results. Symmetry corrections 
would lead to the correct result expected with indistin-
guishable atoms.

Quaternion characteristic polynomial method
Standard RMSD calculations take into account the possi-
ble translations between the two conformers. In order to 
measure conformational similarity—and neglect transla-
tions—the RMSD can be computed on optimally super-
imposed structures. This minimised RMSD for a pair of 
molecules can be computed efficiently using the quater-
nion characteristic polynomial (QCP) method [5], which 
circumvent the need of finding orthogonal (rigid-body) 
rotations and special considerations for edge cases.

The QCP methods is based on the calculation a 4 × 4 
symmetric key matrix [5]
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The minimum RMSD is then given by [5]

where GA = TrAT
A , GB = TrBT

B and �max is the 
maximum eigenvalue of K . The eigenvalues of K can be 
obtained by finding the roots of the characteristic poly-
nomial P(�) = det (K − �I) [6], where I is the identity 
matrix. For the matrix K the characteristic polynomial is 
given by [5]
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Fig. 1  Atom–atom mapping for the benzene molecule after a mirror 
operation with and without symmetry correction
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using the Newton-Raphson method [7] starting from the 
initial guess (GA + GB)/2 [5].

Care should be taken when the two molecules A and 
B overlap perfectly. In such case, �max = (GA + GB)/2 
and therefore the term GA + GB − 2�max in Eq.  (2) can 
become negative due to numerical errors.

In spyrmsd the solution of the characteristic poly-
nomial equation P(�max) = 0 is based on the Newton–
Raphson method implemented in scipy [8] while other 
vector and matrix operations are vectorised using numpy.

Hungarian algorithm for symmetry correction
The Hungarian algorithm [9, 10] is an algorithm to solve 
the linear sum assignment problem [11]  (also known as 
minimum weight matching in bipartite graphs)  and has 
been previously proposed as a method to introduce sym-
metry corrections in RMSD calculations [12]. If D is the 
N × N  matrix of squared pairwise distances between all 
atoms of the conformer A to all atoms of the conformer 
B, the linear weight assignment problem consists in find-
ing the assignment matrix X that minimises the assign-
ment cost 

∑

ij DijXij , where Xij = 1 if and only if atom 
i of conformer A is assigned to atom j of conformer B. 
The RMSD computed using the Hungarian algorithm is 
therefore given by

under the constraint that each row is assigned to exactly 
one column and each column to exactly one row. This 
definition is however problematic, since the solution of 
the assignment problem could end up pairing atoms of 
different elements. In order to avoid this drawback, the 
assignment problem is solved for every element sepa-
rately [12]. If De is the Ne × Ne matrix of squared pair-
wise distances between atoms of element e of conformer 
A to atoms of element e of conformer B, the RMSD com-
puted using the Hungarian algorithm is given by

where Xe
ij = 1 if and only if atom i of element e in con-

former A is assigned to atom j of element e in conformer 
B and were the sum on e runs over all elements of the 
molecule.

Even when the Hungarian algorithm is used to assign 
atoms of the same element, problems can arise from the 
fact that the algorithm is not aware of the overall molecu-
lar structure. This could result in unphysical assignments 
which break the molecular graph and result in artificially 
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low RMSD values [13]. Figure 2 shows a simple situation 
where unphysical assignments arise and lead to a RMSD 
value lower than the correct one.

Graph isomorphisms for symmetry correction
In order to overcome the problems of the Hungarian algo-
rithm, tools from graph theory can be borrowed to per-
form an optimal atom-atom assignment based on graph 
isomorphisms. A molecule can be represented as a graph 
G(V ,E)—hereafter referred to molecular graph—where 
the vertices V are associated to atoms and the edges E are 
associated to bonds. If two conformers A and B are rep-
resented by graphs GA and GB , respectively, the mapping 
of atoms of molecule A to atoms of molecule B becomes 
a graph isomorphism problem. An isomorphism between 
graphs GA and GB is a bijective mapping of the vertices 
of graph A to vertices of graph B that preserves the edge 
structure of the graphs (molecular connectivity in the 
case of molecular graphs). With the bijective mapping 
connecting vertices (atoms) of GA to vertices (atoms) of GB 
the RMSD between the two molecules can be computed 
using the standard RMSD formulation of Eq. (1).
spyrmsd can leverage networkx [14] or graph-

tool [15] for graph representation and graph matching. 
All possible graph isomorphisms are computed using the 
VF2 algorithm [16] and the lowest RMSD among all iso-
morphisms is retained.

The graph isomorphism problem is a non-polyno-
mial (NP) problem and therefore symmetry-corrected 
RMSD calculations are only suited for small to medium 
sized molecules. In order to improve speed, graph 

Fig. 2  Crystal pose (green) and second-best docking pose (cyan) 
for the ligand of the protein-ligand complex 1DRJ. The Hungarian 
method assigns the ring oxygen to an oxygen atom nearby 
( d = 1.6 Å , grey) while the graph isomorphism method correctly 
maps one ring oxygen to the other ( d = 3.3 Å , yellow). The Hungarian 
method results in an artificially low RMSD of 1.00 Å, compared to the 
correct RMSD of 2.46 Å obtained with graph isomorphisms
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isomorphisms are cached by default when computing 
the RMSD between multiple conformations of the same 
molecule.

API
The main module of spyrmsd is the rmsd module, 
where all the high-level RMSD functions are imple-
mented. The following functions are available to the user:

•	 rmsd for the computation of the standard RMSD,
•	 hrmsd for the computation of RMSD using the Hun-

garian algorithm,
•	 symmrmsd for the computation of symmetry-cor-

rected RMSD,

symmrmsd should always be used for small molecules, in 
order to get the right symmetry-corrected RMSD. rmsd 
is provided to compute the standard RMSD when sym-
metry does not play a role (or when the molecular graph 
is too large to efficiently apply symmetry-corrections) 
and atoms are listed in the same order. hrmsd is pro-
vided for comparison with existing implementations and 
should not be used otherwise, because of the problems 
outlined above.

The minimum RMSD  (computed using the 
QCP method [5])  can be obtained with the key-
word minimize=True, with and without 
symmetry-corrections.
spyrmsd is designed to be easily integrated in exist-

ing Python libraries or pipelines. For this reason the 
application programming interface (API) is minimalistic: 
only atomic coordinates and atomic numbers (rmsd and 
hrmsd), and molecular adjacency matrices (symmrmsd) 
have to be passed to RMSD functions in the form of 
numpy arrays. This simple API makes spyrmsd com-
pletely agnostic of the way molecules are stored in dif-
ferent software, as long as they can provide the minimal 
information required.

Standalone RMSD tool
spyrmsd also offers a standalone RMSD tool as a com-
mand line interface (CLI) exposing the functional-
ity of the rmsd and symmrmsd functions. The hrmsd 
function is not exposed in the CLI, to avoid erroneous 
calculations.

In the standalone tool, molecular input is handled by 
OpenBabel [17] (via its Python interface pybel [18]) or 
RDKit [19]. Such packages are also responsible for building 
the adjacency matrix representing the molecular graph.

OpenBabel’s own RMSD calculation tool, obrms, is 
expected to be faster than spyrmsd as a standalone tool 
since it does not have any Python overhead.

Results
Testing
In order to test the correctness of spyrmsd against 
OpenBabel’s obrms we redocked the PDBbind refined 
set [20, 21] with smina [22] to generate different ligand 
conformations. Ligand SDF files were downloaded 
directly from the PDB [23] in order to avoid problems 
with the connectivity present in the original PDBbind 
dataset. smina was run using the default settings with 
protein PDB files stripped of water molecules. The top 10 
binding poses were retained, resulting in a total of 40,439 
different conformations. The RMSD of each docked pose 
with respect to the crystal pose was computed using 
symmetry-corrected RMSD with and without minimisa-
tion (using the QCP method [5]). 

Figures  3 and 4 show the relationship between RMSDs 
obtained with spyrmsd and obrms with and without min-
imisation. The RMSDs computed with the two softwares 
correlates perfectly (Spearman’s correlation coefficient of 
1.00) and present a maximum absolute error of 5× 10−5Å . 
This gives us great confidence that the two independent 
implementations are equivalent (Additional file 1).

A comparison between the Hungarian method and 
symmetry-corrected RMSD obtained via graph isomor-
phisms is presented in Fig. 5. As previously pointed out, 
the Hungarian method can result in assignments incom-
patible with the molecular connectivity and therefore 
leads to artificially low RMSD values [13]. Therefore, the 

Fig. 3  Comparison between obrms and spyrmsd for 
symmetry-corrected RMSD calculations. The mean squared error is 
3.80× 10−11 while the Pearson’s correlation coefficient is 1.00. The 
maximum absolute error is 5.00× 10−5 amongst all 40439 system 
tested
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hrmsd function is provided only for comparison with 
existing software and should not be used otherwise.

Speed
By design, spyrmsd is written fully in Python and lever-
ages fast libraries that are easy to install (using the pip 
or conda package managers). This means that there is 
some overhead compared to the most efficient imple-
mentations in other compiled libraries.

Figure 6 shows a speed comparison between spyrmsd 
and obrms for 100 randomly selected systems. Error 
bars are obtained by repeating the measurements 25 
times. spyrmsd is usually comparable or an order of 
magnitude slower than obrms. This is expected since 
Python comes with some overhead compared to com-
piled code. The difference between  the graph-tool 
and networkx backends is more difficult to elucidate: 
graph-tool seems to be generally slightly faster, but 
networkx has clearly more variation from system to 
system (see Fig. 7).

Benchmarking was performed on an Apple MacBook 
Pro (macOS 10.15) with a 2.6 GHz 6-Core Intel Core i7 
processor and 32 GB of 2400 MHz DDR4 memory (Addi-
tional file 2).

Discussion
Despite being somewhat slower than other state-of-the-
art tools for RMSD calculation, we believe that spyrmsd 
could be extremely useful to the community: it is a light-
weight tool with focussed functionality, it is easy to use 
and integrate in existing Python codebases and pipelines, 
and it is easy to install via popular package managers.

Easy installation
spyrmsd is available on the Python Package Index 
(PyPI) [24] and via the conda package manager [25] on 
the conda-forge channel [26]. This provides easy cross-
platform installation of spyrmsd and all its dependen-
cies to work as a library (with networkx). On macOS 
and Linux, users can get some speed improvement by 
installing graph-tool, which is also available via the 
conda package manager.

In order to use spyrmsd as a standalone tool, users 
will have to install either OpenBabel or RDKit with their 
preferred installation method.

Easy integration in existing libraries
spyrmsd is easy to integrate into existing pipelines 
thanks to its clean and simple API. Standard RMSD cal-
culations require atomic coordinates and atomic num-
bers only, while symmetry-corrected RMSD calculations 
also require adjacency matrices in order to compute 
graph isomorphisms. Atomic coordinates and atomic 

Fig. 4  Comparison between obrms and spyrmsd for minimised 
symmetry-corrected RMSD calculations. The mean squared error is 
3.28× 10−12 while the Pearson’s correlation coefficient is 1.00. The 
maximum absolute error is 5.00× 10−6 amongst all 40439 system 
tested

Fig. 5  Comparison between symmetry-correction performed 
with the Hungarian method or leveraging graph isomorphisms. 
The Hungarian algorithm often results in artificially low RMSDs due 
to atom-atom assignments breaking the molecular connectivity. 
The green cross corresponds to the protein-ligand complex 1DRJ 
analysed in Fig. 2
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numbers are usually readily available in most Python 
libraries dealing with molecular file formats, while the 
adjacency matrix of a molecule is easy to build from bond 
connectivity.

We believe that the simple API will favour the integration 
of spyrmsd in many existing libraries, bringing symmetry-
corrected RMSD calculations to widely used packages.

Software best practices
The development of spyrmsd is based on modern soft-
ware engineering best practices. The code is version-con-
trolled using git [27] and it is freely available on GitHub 
(https​://githu​b.com/RMeli​/spyrm​sd) [28], released under 
the open-source and permissive MIT license.

The code is extensively tested using pytest [29]. Tests 
are run automatically every time a new version of the 
code is pushed to GitHub thanks to Travis-CI bindings 
for continuous integration [30]. The code coverage of the 
test suite is reported on Codecov [31], which provides 

easy-to-read reports. A code coverage of 100% is tar-
geted, so that all lines of code are executed at least once 
during tests.

The code is compatible with Python 3.6 or above. Static 
analysis tools are constantly applied to the code in order to 
catch errors that would be otherwise missed or discovered 
only during execution. We use mypy to perform static 
checks [32] and flake8 to detect style and formatting 
issues. Such tools help maintaining correctness and stabil-
ity for future developments as well as a clean codebase.

Finally, the code is documented using Python doc-
strings and the documentation is built automatically 
using sphinx [33]. This will likely make it easier to fully 
understand the codebase thus facilitating the adoption of 
spyrmsd by other libraries.

Conclusion
spyrmsd provides robust symmetry-corrected RMSD 
calculations with a clean and simple API that is easy to 
integrate in existing Python libraries and pipelines. We 

Fig. 6  RMSD calculation time (including input) for 100 randomly selected systems. Error bars indicate the standard deviation over 25 repeats. 
spyrmsd is comparable or an order of magnitude slower than obrms 

Fig. 7  RMSD calculation time (without input) for 100 randomly selected systems. Error bars indicate the standard deviation over 25 repeats. 
networkx shows a large variability between systems, while graph-tool is more consistent

https://github.com/RMeli/spyrmsd


Page 7 of 7Meli and Biggin ﻿J Cheminform           (2020) 12:49 	

believe that such a tool could be useful to the wider com-
munity of molecular modellers and cheminformaticians.

Future development of the software will focus on 
improved automatic bond perception (to automatically 
build molecular adjacency matrices) and speed.

Availability and requirements

•	 Project name: spyrmsd
•	 Code: https​://githu​b.com/RMeli​/pyrms​d
•	 Docs: https​://spyrm​sd.readt​hedoc​s.io/
•	 Operating systems: Linux, macOS, Windows
•	 Programming language: Python
•	 Other requirements: Python 3.6 or higher
•	 License: MIT

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1332​1-020-00455​-2.

Additional file 1. Comparison of correctness between spyrmsd and 
obrms. 

Additional file 2. Speed comparison between spyrmsd (with net-
workx or graph-tool) and obrms.
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