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Abstract 

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were 
mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of 
efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly 
by companies leading to proprietary formats. Here, we present ReactionCode: a new open-source format that allows 
one to encode and decode a reaction into multi-layer machine readable code, which aggregates reactants and prod-
ucts into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similar-
ity searching and classification. It is also designed for database organization, machine learning applications and as a 
new transform reaction language.
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Introduction
Different proprietary and open formats for reactions have 
been invented over the past 50 years. The first reaction 
format can probably be attributed to E. J. Corey and W. 
T. Wipke. They implemented a format based on rules to 
generate new molecules and integrated it in the first com-
puter-aided organic synthesis program: OCSS (Organic 
Chemical Simulation of Synthesis) [1]. This project split 
to give birth to LHASA (Logic and Heuristics Applied 
to Synthetic Analysis) [2–4] and SECS (Simulation and 
Evaluation of Chemical Synthesis) [5]. The LHASA team 
designed the language CHMTRN (CHeMistryTRaNsla-
tor), while the SECS group created the ALCHEM (A Lan-
guage for CHEMistry) language [6]. After their launch, 
diverse additional reaction transform languages came up 
along the implementation of programs such as CLASS 
and IGOR & IGOR2. However, the arrival of SMILES 

(Simplified Molecular Input Line Entry System) in the 
late 1980s led to the development of ReactionSMILES 
and SMIRKS (SMIles ReaKtion Specification). These two 
formats were largely adopted by the community and are 
still widely used nowadays [7–10].

The work around reaction formats has also affected 
the need for representations and identifiers for data 
exchange. In the 1990s, Molecular Design Limited 
(MDL) developed the Chemical Table file (CTfile) for-
mat [11]. In this context, the RXNfile and RDfile formats 
were defined with the objective to store reaction data and 
quickly became a reference. RXNfile is used to store the 
structural information for the reactants and products of 
a single reaction [11], while RDFiles allows one to store 
a set of RXNs with their associated data [11]. Since then, 
additional formats have emerged or are under develop-
ment such as XDfiles [12], MRV [13], UDM [14], CML-
React [15], CDX/CDXML [16] and ReactionSPL [17]. 
However, none of these formats succeeded in establish-
ing itself widely as the CTfile formats are still much more 
frequently used. Next to these representations, work on 
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reaction identifiers has also been done. The Reaction 
International Chemical Identifier (RInChI) [18], an appli-
cation of InChI [19, 20] was recently developed with the 
objective to offer a unique reaction identifier, which can 
help to organize and validate reaction databases [18].

Besides the formats specifically designed to describe 
reaction transforms and allow easy data exchange, other 
more versatile formats have been developed in order to 
try to offer more flexibility and be utilized in different 
contexts related to reactions. In 1986, Fujita proposed the 
Imaginary Transition State (ITS) format, which aggre-
gates reactants and products inside a pseudo-molecule 
in which the bond changes of a reaction are annotated. 
This pseudo-molecule was created to be used for the 
purposes of reaction retrieval and design [21]. This for-
mat evolved and became known as Condensed Graph 
of Reaction (CGR). Stored in an SD File, it is mainly 
employed for machine learning applications, similarity 
search, and classification [22, 23]. Recently, a SMIRKS-
like format for CGR was implemented concomitant with 
the development of Python-based tools to operate on 
them (CGRTools) [24]. However, this format cannot be 
used directly for, e.g., string-based comparisons of reac-
tions. Indeed, all analysis methods using it are based on 
molecular graph coloration and molecular fragment gen-
erated from the CGR [23, 25–27]. Next to the CGR for-
mat, three multi-layer formats considering the reaction 
center and the neighbor atoms have been developed by 
J. L. Faulon, InfoChem and Elsevier. J. L. Faulon created 
the reaction signature, where each reactant and product 
are described as a tree without taking into account the 
bond type, and calculates the differences between the 
reactant and product trees [28]. Despite the versatility of 
this approach, the consideration of only the atom types 
and their simple connection is a huge limitation. Info-
Chem developed the reaction ClassCode, which provides 
a unique identifier (hash) for the reaction center and its 
two closest atom neighborhood layers [29]. Similarly, 
Elsevier implemented the BINCODE, which computes, 
using a pseudo-molecule, a linear string for each layer 
from the reaction center to the deepest atom neighbor-
hood layers. Each layer contains the atoms that compose 
it and their connection tables. In addition, the BINCODE 
also encodes the bond fate and the atom hybridization 
change [30]. While the ClassCode is limited to a depth of 
2 and is strict by its nature as an identifier, the BINCODE 
appears to offer more flexibility. Indeed, it covers the 
complete reaction, and its nature as a string allows some 
modifications for search purposes. However, the BIN-
CODE was made overly generalist by encoding elements 
into categories (e.g. the halogens Cl, Br, and I have the 
same encoding). It therefore cannot be used to recover 
the entire reaction.

To overcome these limitations, we have developed 
a new format named ReactionCode, which is a multi-
layer machine readable code. This open source format is 
canonical and designed to be flexible, upgradeable and 
versatile in order to be applied in a broad range of appli-
cations. ReactionCode is particularly useful for reaction 
similarity searching and classification, but is also con-
ceived for machine learning applications and as a new 
transform reaction language. 

Methodology and software
ReactionCode format
Structure
The ReactionCode is a multi-layer machine readable 
code, which is produced from the aggregation of reac-
tants and products into a condensed graph of reaction 
(CGR) (Fig. 1). The ReactionCode is organized into three 
blocks, each of which containing their corresponding 
layers: 

1. Block 1: Reaction center, containing only atoms 
undergoing changes in bond status (changes in ste-
reochemistry, charge, isotope, or radical status do not 
qualify an atom as part of the reaction center

2. Block 2: Atoms around the reaction center remaining 
in the product

3. Block 3: Leaving atoms around the reaction center (if 
any)

Each layer is composed of a main sub-layer and up to 
three optional sub-layers, which describes the stereo-
chemistry, the charges, and the isotope, respectively. A 
layer starts with a number if it illustrates the reaction 
center or the remaining group, or a letter if it describes 
the leaving group. It is always terminated by the symbol 
‘|’.

Main sub-layer The main sub-layer is composed of 4 
types of information: the depth, the atom code, the con-
nection table and the atom stoichiometry (Fig.  2). This 
layer starts with the depth followed by ‘:’. The depth 
indicates the distance relative to the reaction center. It 
is expressed in numbers for the reaction center and the 
remaining group(s) and in letters for the leaving group(s). 
The atom code is composed of three characters: the 
first indicates the highest status of the connected bonds 
encoded using the hexadecimal system (Additional file 1: 
Table  S7), the two others encode the atom type (Addi-
tional file 1: Table S8). Each atom code is followed by a 
parenthesized connection table, which indicates each 
bond connected to an atom with a lower index. A bond is 
encoded by 4 characters: the 1st indicates the bond order 
in reactants, the 2d encodes the bond order in products 
(Additional file 1: Table S6) and the last two refer to the 
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index of the other atom connected to. The indices are 
encoded using the hexadecimal system for the atoms to 
connect that are present in the blocks corresponding to 
the leaving group (Additional file  1: Table  S2) and the 
indices of atoms in the two other blocks are encoded 
using a lookup table (Additional file 1: Table S1). Finally, 
the square brackets store the atom stoichiometry, i.e. the 
number of times the same atom is in the products (Exam-
ple in Additional file 1: Figure S1).

Optional sub-layers The optional sub-layers qualify 
the atom and bond in their corresponding layer. Only 
the sub-layer(s) where an atom has a property different 
from the reference 0 (i.e. has a charge, stereochemis-
try information, a non-standard isotope, or is a radical) 
are written directly after the end of the main sub-layer. 
The priority order is: (1) the charge sub-layer (/c), (2) the 
stereochemistry sub-layer (/s), (3) the isotope sub-layer 
(/i), and (4) the radical sub-layer (/r) (Fig. 3). 

1 Charge layer: The charge layer starts with /c and the 
charge information is contained in a block contain-

ing the charged atom index (2 digits) and 2 characters 
encoding the charge. The first one encodes the state 
in reactants and the second one the state in prod-
ucts (Additional file 1: Table S3). E.g., in /c00HH, “/c” 
indicates that this layer contains charge information. 
It having 4 characters means that 1 (4/4) atom has a 
charge. The only modification is: “00HH”. 00 means 
that the entity at index 00, which is the atom “008”, is 
modified. The third character “H” encodes a negative 
charge −1 , which remains unchanged in products as 
the fourth character is encoded by the same letter “H”.

2 Stereochemistry layer: The stereochemistry layer 
starts with /s and the relative information is con-
tained in a block containing the atom or bond index 
(2 digits), which has the corresponding stereochem-
istry modification and 2 characters encoding the 
stereochemistry in reactants by the first character 
and in products by the second one (Additional file 1: 
Tables S4 and S5). e.g., in /s01640364, “/s” indicates 
that this layer contains stereochemistry informa-

Fig. 1 ReactionCode structure: The ReactionCode is composed of three blocks. The first one describes the reaction center (shown in blue) and 
starts with ‘0:’, which corresponds to depth 0. The entire reaction center (atoms highlighted in gray) is always stored in this single layer. The block in 
green illustrates the atoms around the reaction center that are still kept in the product(s). This block can be composed of one or multiple layers and 
each layer starts with a number followed by ‘:’. The figure indicates the depth of the atoms present in this layer in relation to the reaction center. The 
block shown in yellow encapsulates the atoms around the reaction center which are absent in the product(s). This block can be composed of one 
or multiple layers and each layer starts with a letter followed by ‘:’. The figure indicates the depth of the atoms present in this layer in relation to the 
reaction center. (The letter A means a depth equal to one). Each layer is terminated by a ’|’ symbol and is composed of a main sub-layer that starts 
after the : symbol. The optional layers begin with the ‘/’ symbol. /s characterizes the stereochemistry layer. /c describes the charge layers. /i indicates 
the isotope layer
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tion. It having 8 characters means that 2 (8/4) enti-
ties [atom(s) and/or bond(s)] have a stereochemistry 
information. The two modifications are: “0164” and 
“0346”. The first modification is encoded by the first 
4 characters “0164”. 01 means that the entity at index 
01, which is the bond “11GV”, is modified. The third 
character “4” encodes a DOWN bond in reactants, 

which becomes an UP bond in products indicated by 
the fourth character “6”. The next 4 characters 0364 
modify the bond “11GU” from UP to DOWN.

3 Isotope layer: The isotope layer starts with /i and 
the isotope information is contained in a block con-
taining the isotope atom index (2 digits) and 2 char-
acters encoding the mass difference between the 

Fig. 2 Main sub-layer composition: A layer starts with its depth, which is the distance of its atoms from the reaction center (which has depth = 
0). The next three characters characterize the atom. The first character indicates the highest bond status among all bonds connected to this atom. 
(Additional file 1: Table S7. For instance, the Si atom (90E) is connected by 4 single bonds: 2 are not part of the reaction centre and are encoded by 
0; 1 bond is broken, encoded by 7; and another one is made, encoded by 9, which is the highest bond status. The two other characters encode the 
atom symbol (Additional file 1: Table S8). E.g., 0E stands for Si. The connection table is contained between the brackets. Each bond in the connection 
table is encoded by 4 characters. E.g., the connection table (11GU11GS) encodes 2 bonds. The first two characters indicate the bond order in 
reactants for the first one and in products for the second one, respectively (Additional file 1: Table S6). 01GG means a bond is made with the atom at 
index GG. The last two characters represent the index of the other atom to connect to (see Additional file 1: Table S1 for the reaction center and the 
remaining group and Additional file 1: Table S2 for the leaving group). The square brackets store the atom stoichiometry, i.e. the number of times a 
same atom is in the products (Example in Additional file 1: Figure S1)

Fig. 3 Optional sub-layer composition: An optional sub-layer is directly located after the main sub-layer. Such a code is composed by the symbol 
‘/’ followed by a letter and indicates the modification (/c for charge, /i for isotope and /s for stereochemistry). Each block qualifying an atom or a 
bond is composed of four characters. The first two characters are a number (2 characters) indicating the index (decimal system) of the entity (atom 
or bond) in the current layer which has to be modified. The next 2 characters are encoding the change to apply to reactants (first character) and 
products (second character) (for isotope and charge see Additional file 1: Table S3; for atom stereochemistry see Additional file 1: Table S4; and for 
bond stereochemistry, see Additional file 1: Table S5)
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current isotope and the reference. The first one is 
for the reactants and the second one for products 
(Additional file  1: Table  S3). e.g., in /i00JJ02HH “/i” 
indicates that this layer contains isotope informa-
tion. It having 8 characters means that 2 (8/4) atoms 
are isotopes. The two modifications are: “00JJ” and 
“02HH”. 00 means that the entity at index 00, which 
is the atom “008”, is modified. The third character 
“J” encodes an addition of 2 neutrons to the com-
mon isotope. 008 encodes an oxygen with 2 more 
neutrons, which means that the atom is an 18 O. The 
fourth character “H” is unchanged, which indicates 
that the atoms in products remains the same isotope.

4 Radical layer: The isotope layer starts with /r and the 
isotope information is contained in a block contain-
ing the isotope atom index (2 digits) and 2 charac-
ters encoding the mass difference between the cur-
rent isotope and the reference. The first one is for the 
reactants and the second one for products (Addi-
tional file  1: Table  S3). e.g., in /r00IJ “/r” indicates 
that this layer contains isotope information. It having 
4 characters means that 1 (4/4) atom is radical. The 
modification is “00IJ”. 00 means that the entity is at 
index 00 in the current sub-layer. The third character 
“I” encodes an addition of 1 radical (valence equals at 
1 for the carbon). The fourth character “J” encodes an 
addition of 2 radicals (valence equals at 2 for the car-
bon).

Encoding/decoding process
One of the major strengths of ReactionCode is its capac-
ity to be bidirectional: a reaction encoded into Reaction-
Code can be easily partially or fully decoded to get the 
reaction back (Fig. 4).

In order to generate the ReactionCode, a mapped reac-
tion is necessary. The first step consists in annotating 
each atom and bond in reactants and products. Three 
types of annotation are computed:

• atoms and bonds constituting the reaction center
• atoms and bonds present both in reactants and prod-

ucts, which are annotated as the remaining group
• atoms and bonds present in reactants but absent in 

products (if any), which are annotated as the leaving 
group

Once the annotation part is finished, reactants and 
products are aggregated into a CGR. Finally, the Reac-
tionCode is generated from the CGR. Each atom of 
the CGR is encoded and reverse-ranked by layers. The 
algorithm starts from the reaction center, reverse-ranks 

each atom of this layer and makes the connection 
between them. Then, a Breadth First Search (BFS) 
algorithm is used to obtain all the surrounding atoms 
having a depth of 1. These atoms are separated into 2 
layers: those belonging to the remaining layer and those 
that are part of the leaving group. All encoded atoms 
are reverse-ranked and the connections between each 
atom with the current and the previous layer are estab-
lished. The algorithm iterates this procedure until all 
atoms have been visited (Fig. 5).

The decoding process reconstructs the pseudo-mol-
ecule from the ReactionCode by transforming each 
atom code into an atom object and making the bonds 
between them. This step relies on the chemoinfor-
matics Java libraries contained in CDK (Chemistry 
Development Kit) [31]. Then, the pseudo-molecule is 
transformed into reactants and products in order to 
get the original reaction back. The ReactionCode is set 
up by default to recover a balanced reaction but the 
elements present in the leaving group block could be 
ignored by the user in order to not have them in the 
products.

ReactionCode software
Java powered by CDK was used to develop the software 
to generate the ReactionCode, to decode it, to make 
pseudo-molecules, and to use it as a new transform lan-
guage. All these functions can be easily used thanks to a 
CLI (command line interface) and the JAR file can also be 
directly employed as an API by calling the corresponding 
class.

Encoder The encoder allows one to produce the 
pseudo-molecules and ReactionCodes. It takes the most 
common formats as input: SMIRKS (single or a set of 
SMIRKS in a file), RXN and RDF. The encoder can pro-
vide the pseudo-smiles in SDF and in SMILES format and 
depict them. Finally, the generated ReactionCodes are 
given in a CSV file.

Decoder The decoder allows one to get the original 
reaction back. The reactions can be provided as reaction-
SMILES, SMIRKS, RXN, or RDF. They can also depicted 
as a PNG file. In addition, a partial reaction can be gener-
ated by giving the layers of interest as input (Fig. 6).

Transformer Thanks to the structure of ReactionCode, 
where each layer is only dependent on its previous lay-
ers but independent of its subsequent layers, it can be 
used as a transform language where the ReactionCode is 
transformed into a pattern applied to a set of reactants 
(Fig.  6). The transformer takes a complete or partial 
ReactionCode (set of layers) and the reactants as a unique 
SMILES String or an SD file. If the entire pattern matches 
the query structures, the transformer will generate all 
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unique possible products. It can output them in reaction-
SMILES, SMIRKS, RXN, or RDF format.

ReactionCode validation
To test the encoding and decoding, we used the UPSTO 
data set (https ://bitbu cket.org/dan20 97/paten t-react 
ion-extra ction /downl oads). First, all spectator mole-
cules (i.e. molecules not contributing to the reactions) 
were removed. Then, all reactions were encoded into 
ReactionCode. The circular fingerprint ECFP6 was gen-
erated for each molecule in both reactions. A reaction 
was considered similar if all fingerprints of the origi-
nal reaction were contained in the fingerprints of the 
decoded reaction. To evaluate the correctness of the 
reactions returned as not identical, we applied the 3 
following protocols:

• Molecules were not kekulized and products were 
not corrected. All aromatic bonds were set to sin-
gle and the aromatic property was set to false. The 
implicit hydrogen was set to 0 for each aromatic 
atom. All aromatic atoms were set to non-aromatic. 
We did not apply our algorithm trying to deduce 
missing cleaved bonds for unbalanced reactions to 
restore the correct balance by predicting the cor-
rect missing product. This procedure allows detect-
ing wrong atom-atom mapping in the USPTO data-
set by manually comparing the returned results. 
The original and the decoded reactions are both 
depicted and the atom-atom mapping is checked in 
the original reaction. Removing the aromaticity and 
not kekulizing the molecules avoid false negatives 
due to the kekulization, which can produce differ-
ent tautomers.

Fig. 4 Encoding and decoding process: Encoding The reactants and products of the mapped reaction are aggregated into a pseudo-molecule. The 
bond changes are annotated: green for a bond order change, blue for a bond made, and red for a bond broken. All atoms and bonds are annotated 
as part of the reaction center (inside blue circle), remaining in the final product (green circles), or leaving the final product (yellow circle). Finally, all 
atoms and bonds are encoded into ReactionCode by layers starting from the reaction center to the outermost layer. Decoding: The ReactionCode is 
transformed into a pseudo-molecule, which allows one to recover the initial reaction

https://bitbucket.org/dan2097/patent-reaction-extraction/downloads
https://bitbucket.org/dan2097/patent-reaction-extraction/downloads


Page 7 of 13Delannée and Nicklaus  J Cheminform           (2020) 12:72  

• Molecules were kekulized and products were not 
corrected. All molecules were kekulized. We did 
not apply our algorithm trying to deduce missing 
cleaved bonds for unbalanced reactions to restore 
the correct balance by predicting the correct miss-
ing product. This procedure will detect the differ-
ences related to the kekulization leading to poten-
tially different tautomers and the failures of our 
product correction algorithm.

• Molecules were not kekulized and products were 
corrected. All aromatic bonds were set to single 
and the aromatic property was set to false. The 
implicit hydrogen was set to 0 for each aromatic 
atom. All aromatic atoms were set to non-aromatic. 
We applied our algorithm trying to deduce missing 
cleaved bonds for unbalanced reactions to restore 
the correct balance by predicting the correct miss-
ing product. This procedure will detect the differ-
ences related to the failures of our product correc-
tion algorithm.

The validation procedure code can be found on GitHub 
(Tests.java).

Applications and results
ReactionCode validation
The first validation test showed that 87 decoded 
reactions did not match with the original reactions 
(Table  1). After manual analysis, we identified the 
source of these differences coming from an incorrect 
atom-atom mapping. This result demonstrates the 
capacity of our software at identifying wrong atom-
atom mapping. It also indicated that 99.8% of the 
dataset is correctly annotated. The second validation 
test indicated that 12,426 reactions were not identical 
(Table  1). This count includes 2 types of errors: both 
reactions are tautomers of each other (9320 reactions) 
and our kekulization algorithm failed to kekulize the 
molecule (3105 reactions). The kekulization process 
does not guarantee the generation of the initial tau-
tomer and can therefore fail for some reactions. Finally, 

Fig. 5 ReactionCode encoding algorithm: Once all atoms and bonds are encoded, all encoded atoms present in the reaction center (depth = 0) 
are reverse sorted. If two or more atoms have the same code, the conflict solver algorithm is started. The conflict algorithm will make a tree of the 
connected atom (see Additional file 1: Figure S2) and compare the atom codes and the bond codes of the atom present in the next layer using 
a BFS algorithm. The algorithm iterates until the conflicts are solved and a proper order can be set up. Then, the connections between the atoms 
in the current layer are made. Then, all the atoms present in the depth n + 1 (if any), which will be all atoms connected with those in the reaction 
center in this situation, are reverse sorted. If there are any conflicts, they are first solved by comparing the position of the connected atoms in the 
previous layer, then using the connected bonds, the atom properties (stereochemistry, charge and isotopy) and finally in the next layer(s) if the 
conflict cannot be solved. We iterate this process until all layers are processed



Page 8 of 13Delannée and Nicklaus  J Cheminform           (2020) 12:72 

Fig. 6 ReactionCode partial and complete decoding: The ReactionCode can be decoded by taking all or some layers. The layer 0 corresponds to 
the decoding of the reaction center only. Layers 0 + 1 illustrates the decoding of the reaction center and all surrounding atoms in the remaining 
group having a depth equal to 1, while layers 0 + 1 + A incorporates all surrounding atoms (remaining and leaving groups) with a depth of 1. 
Layers 0 + 1 + 2 and 0 + 1 + 2 + A + B are considering all surrounding atoms present in the depth lower or equal to 2. Layers 0 + 1 + 2 + 3 + 
4 + 5 is an example where the reaction is decoded in its entirety but without the leaving group. Finally, “All Layers” represents the decoding of the 
complete reaction

Table 1 ReactionCode validation (tested with version 1.2.0)

Test number Similar reactions Non-identical reactions

1 478,948 (99.98%) 87 (0.02%)

2 466,634 (97.41%) 12,425 (2.59%)

3105 (0.65%) structures could not be kekulized

9320 (1.94%) structures that are tautomers

3 478,948 (99.61%) 87 (0.39%)
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87 reactions were not well corrected, which were those 
with a bad atom-atom mapping.

USPTO reaction data diversity analysis
The USPTO reaction dataset has been used in many 
machine learning approaches for predicting reactions 
[32–35]. However, we know of no previous analysis to 
evaluate the diversity of this dataset. For this purpose, 
we have used the generated ReactionCodes of each 
reaction in the USPTO dataset.

To evaluate the diversity, we split the ReactionCodes 
by incremental layers taking into account a layer and 
all its previous layers and count the common occur-
rences. The first part of the analysis consists of extract-
ing all reaction center layers (depth 0) and reverse-sort 
them as a function of their frequency. In other words, 
the most frequent reaction center is at the top of the 
list. Then, the next layers are processed in the same way 
until we reach a depth of 9, leading to the generation of 
10 CSV files (see Additional file 1). Each file starts with 
the letter ’d’ followed by the depth and contains 2 col-
umns: one with the partial ReactionCode and another 

one with the number of occurrences (number of time 
this ReactionCode was found in USPTO dataset).  

The USPTO is formed of 479,035 reactions. Among 
these reactions, 9532 different reaction centers were 
identified by ReactionCode, i.e. our approach determines 
that the UPSTO dataset contains 9532 reaction types. 
The 10 most-represented reaction types in this dataset 
are found in 203,776 (42.5%) of the reactions. 90% of the 
USPTO dataset is covered by only 400 reaction types, 
which corresponds to 4.2% of all reaction types identified 
in this dataset (Fig. 7. We finally note that 4607 reaction 
types (48.3%) are only represented by one single reaction 
in the USPTO dataset.

Other applications of ReactionCode
ReactionCode is a format that can be used for multiple 
purposes. We describe a few of them here.

Reaction balancing correction
Unbalanced reactions (typically, one or more molecules 
are missing in products) are not uncommon in reac-
tion databases. This can complicate or entirely throw 

Fig. 7 Reaction center diversity analysis: The UPSTO contains 9532 different reaction centers (by extension 9532 reaction types). The graph 
illustrates the diversity of the reaction types of UPSTO dataset. The x-axis corresponds to the reaction types, where 1 indicates the reaction center, 
which is the most frequent in the dataset and 9432 the one, which is the less frequent. For instance, the reaction center is common to 45,534 
reactions. The blue line shows the number of reaction center types in the logarithmic scale (the reaction center 1 is present in 45,534 reactions, 
and the reaction center 2 in 29,834 reactions). The orange line depicts the cumulative sum of reactions. For example, the cumulative sum for the 
reaction center 2 is 75,368 as the reactions center 1 is identified in 45,534 reactions, and the reaction center 2 in 29,834 (45,534 + 29,834 = 75,368). 
The table details the 10 most frequent reaction centers
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off analyses and work-up of reactions. As ReactionCode 
aggregates both reactants and products, it can be used to 
restore the balance of a reaction by encoding and then re-
decoding the flawed reaction.

Searching for similar reactions
The ReactionCode is perfectly suited to search for similar 
reactions in a database as it is in string format. In addi-
tion, a wild card can replace each figure or letter. This 
can be employed in order to match with any atom, or 
to ignore the bond order, or any property desired by the 
user. The syntax of the ReactionCode thus provides the 
user with a broad flexibility.

Reaction transform language
The ReactionCode is also designed as a new reaction 
transform language. One or multiple layers can be used 
to match a set of reactants in order to generate all the 
possible products and get all possible reactions. This can 
be easily done by using our software. Note, however, that 
this approach does not incorporate any knowledge about 
the actual synthetic accessibility of the proposed reaction 
(in contrast to CHMTRN/PATRAN [36]) but operates 
strictly on the basis of pattern matching.

Classification
The layered structure of the ReactionCode allows one to 
classify the reaction in order to make statistical analyses, 
study the diversity or just to have an idea of the contents 
of a database. A clusterization of reaction data can also 
be useful in the context of machine learning, for trying 
to build the best possible training, testing, and validation 
sets.

Machine Learning
The ReactionCode could be useful for machine learning 
applications as descriptors or directly for reaction predic-
tion by predicting one or multiple layers. The Reaction-
Code describes the reaction center and its neighboring 
environment, which provides additional descriptors com-
pared to current methods.

Compression
In the context of graph databases, the ReactionCode 
could be used as a tree structure where a node cor-
responds to a layer. This structure could improve the 
searching process but also help save disk usage because 
only the unique layers are stored. This structure permits 
one to retrieve and regenerate each reaction. Such a tree 
structure could be used to develop a reaction encoding 
process. Each layer could be transformed into a bit vector 
similarly to fingerprints used for molecules, which could 

allow one to compress a reaction and speed up the reac-
tion comparison process.

Discussion
ReactionCode validation
Kekulization leads to an increase in the number of non-
similar reactions. The original kekulization algorithm in 
CDK first identifies the atoms that can receive a pi bond. 
Then, it attempts to find a perfect match, such that a pi 
bond is located next to each atom being able to have a 
pi bond, and it then propagates the bond order infor-
mation. If the solution is ambiguous, the kekulization is 
aborted. Such ambiguity is often related to missing or 
ambiguous implicit hydrogen(s) or a failure of the aroma-
ticity perception algorithm. As ReactionCode does not 
store implicit hydrogen information, we implemented 
an algorithm to force kekulization only for final reac-
tions (decoded reactions, which are not used for trans-
forming). This can generate some errors. To potentially 
fix them in a future version, the implicit hydrogen num-
ber for each atom could be encoded in ReactionCode, or 
some manual patterns for kekulization correction could 
be implemented. However, it may not be guaranteed to 
reproduce the right Kekulé structure for both cases.

In general, dealing with kekulized molecules can poten-
tially be a source of mistakes. First, some errors can be 
made by the algorithms during the aromaticity per-
ception. Second, each toolkit has a different kekuliza-
tion algorithm, which can lead to potentially different 
kekulized molecules. Thus, different tautomers can be the 
cause of the non-application of a transform as Reaction-
Code will lose aromaticity information and look instead 
for a specific bond layout. Third, the generation of differ-
ent Kekulé structures is a common problem as two dif-
ferent SMIRKS of the same reaction can lead to different 
kekulized molecules. For instance, Fig. 8 shows the same 
reaction, which is depicted differently by https ://www.
simol ecule .com/cdkde pict/depic t.html. The reaction A is 
the raw reaction found in the USPTO dataset. The reac-
tion B is this same reaction but it has been previously 
parsed by CDK and its SMIRKS has been recreated after 
removing the spectator molecules. To avoid such errors 
related to kekulization, and merge different kekulized 
molecules, ReactionCode uses the aromaticity instead of 
the bond order. However, the bond order can be encoded 
in the API instead of the aromaticity information by set-
ting all isAromatic() properties for atoms and bonds to 
false beforehand.

All atoms and bonds present in the leaving layers cor-
respond to the atoms and bonds absent in the products 
in the submitted reaction. By extension, the presence of 
leaving layers implies an unbalanced reaction. As Reac-
tionCode contains information on both reactants and 

https://www.simolecule.com/cdkdepict/depict.html
https://www.simolecule.com/cdkdepict/depict.html
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products, it can restore the balance while decoding. 
However, for some reactions, bond(s) made between 
two non-hydrogen atoms can be missing, which would 
lead to the generation of incorrect products. To attempt 
to fix these products, we have implemented an algo-
rithm that tries to deduce the missing to-be-generated 
bonds by using the information stored in the leaving 
layer A and the atom in the reaction center having 7 
as its status. A bond between two atoms is generated 
if one of them is a carbon, the other one is a non-
heteroatom and both are not detected in the original 
products.

ReactionCode implements a dedicated function enco-
deAndRebalance, which encodes the reaction having 
a leaving group and flags the leaving atoms present in 
the given product. Then, the generated ReactionCode is 
decoded using our correction algorithm by taking into 
account the flagged atoms. Finally, the fixed reaction is 
re-encoded. The created ReactionCode is final (i.e. the 
decoding/re-encoding will always give the same Reac-
tionCode) as the atoms and bonds contained in the 
leaving group have been repositioned in the remaining 
group. The user can still encode and decode the reac-
tion twice, but an unbalanced reaction with a reaction 
partially balanced (i.e.unbalanced reactions with more 
than one products), can potentially lead to a wrong 
leaving product (Fig.  9b). This experimental algorithm 
trying to correct the unbalanced reactions can still 
be improved. For instance, it could be ameliorated by 
using reaction patterns validated by chemists to correct 
the products. As this implementation is still experi-
mental, the API can prevent its usage by setting the 
parameter correctProducts to false. If correctProducts 

is set to false, the leaving group will be removed from 
the products and the unbalanced reaction would be 
regenerated (Fig. 9).

USPTO analysis
The diversity analysis of the USPTO dataset showed that 
this database is covered in the vast majority by only about 
400 reaction types while conversely 48.3% of the dataset 
consists of reactions that do not share a common reac-
tion center with any other reaction in the dataset. This 
analysis shows that the USPTO has an unbalanced diver-
sity with some significantly over-represented reaction 
types, which may explain the good accuracy of the mod-
els predicting reactions. However, as 48.3% of the dataset 
consists of unique reactions, it may be wise to define an 
appropriate strategy during training, testing and the vali-
dation of a predictive model. The unique reactions can-
not be learned by ML (if they are in the validation dataset 
it will decrease the score, if they are in the training set, 
they cannot be validated). In other words, if one does not 
apply cross-validation, you cannot trust such models. We 
therefore hope that this diversity analysis of the USPTO 
dataset via ReactionCodes may be helpful for better sam-
pling during model-building and for future implementa-
tions using the USPTO dataset.

Future developement
The ReactionCode was designed to be an upgradeable 
format. This format is open to the community, which can 
submit a new version. For instance, the aromatic bonds 
are encoded with the same character “9”, which can fail 
to encode some tautomeric reactions. In a lot of mapped 

Fig. 8 Kekulization differences: Reaction a extracted from the USPTO dataset is parsed by CDK and its SMIRKS is recreated after removing the 
agents (Reaction b). The only difference in the regenerated SMIRKS is the atom order. Despite all other characteristics remaining unchanged 
(atom-atom mapping, aromaticity, implicit hydrogens, etc.), the resulting SMIRKS leads to a different kekulization (kekulization of the ring containing 
atoms 10–15 in the reactants)



Page 12 of 13Delannée and Nicklaus  J Cheminform           (2020) 12:72 

reactions, the correspondence of the Kekulé versions in 
reactants and products is wrong, which will be consid-
ered as a change of the molecule and integrated into the 
reaction center. To avoid this problem, it is safest in most 
of the cases to adopt the aromatic annotation. However, 
if the user is sure of his/her mapping, this parameter can 
be easily changed and the bond will be encoded as sin-
gle or double. Besides, it can be of interest for tautomeric 
reaction studies to have the number of hydrogens in the 
ReactionCode. This can be easily added to the Reaction-
Code code by modifying one single parameter in the 
code.

Conclusion
ReactionCode has been implemented as a new, open 
source, versatile reaction format that avoids the draw-
backs of others. The field of its possible applications 
is large and we believe that it can be profitable for the 
community working on reactions. Freely available and 
open source software has been developed to generate 

the ReactionCode from, and to convert it to, a variety of 
existing reaction formats, as well as to use it as a reaction 
transform language. This program and the source code 
are available at https ://cactu s.nci.nih.gov/react ionco de.
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