
Delannée and Nicklaus J Cheminform (2020) 12:72
https://doi.org/10.1186/s13321-020-00476-x

RESEARCH ARTICLE

ReactionCode: format for reaction searching,
analysis, classification, transform, and encoding/
decoding
Victorien Delannée and Marc C. Nicklaus*

Abstract

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were
mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of
efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly
by companies leading to proprietary formats. Here, we present ReactionCode: a new open-source format that allows
one to encode and decode a reaction into multi-layer machine readable code, which aggregates reactants and prod-
ucts into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similar-
ity searching and classification. It is also designed for database organization, machine learning applications and as a
new transform reaction language.

Keywords: ReactionCode, Reaction, Encoding, Decoding, Searching, Classification

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Different proprietary and open formats for reactions have
been invented over the past 50 years. The first reaction
format can probably be attributed to E. J. Corey and W.
T. Wipke. They implemented a format based on rules to
generate new molecules and integrated it in the first com-
puter-aided organic synthesis program: OCSS (Organic
Chemical Simulation of Synthesis) [1]. This project split
to give birth to LHASA (Logic and Heuristics Applied
to Synthetic Analysis) [2–4] and SECS (Simulation and
Evaluation of Chemical Synthesis) [5]. The LHASA team
designed the language CHMTRN (CHeMistryTRaNsla-
tor), while the SECS group created the ALCHEM (A Lan-
guage for CHEMistry) language [6]. After their launch,
diverse additional reaction transform languages came up
along the implementation of programs such as CLASS
and IGOR & IGOR2. However, the arrival of SMILES

(Simplified Molecular Input Line Entry System) in the
late 1980s led to the development of ReactionSMILES
and SMIRKS (SMIles ReaKtion Specification). These two
formats were largely adopted by the community and are
still widely used nowadays [7–10].

The work around reaction formats has also affected
the need for representations and identifiers for data
exchange. In the 1990s, Molecular Design Limited
(MDL) developed the Chemical Table file (CTfile) for-
mat [11]. In this context, the RXNfile and RDfile formats
were defined with the objective to store reaction data and
quickly became a reference. RXNfile is used to store the
structural information for the reactants and products of
a single reaction [11], while RDFiles allows one to store
a set of RXNs with their associated data [11]. Since then,
additional formats have emerged or are under develop-
ment such as XDfiles [12], MRV [13], UDM [14], CML-
React [15], CDX/CDXML [16] and ReactionSPL [17].
However, none of these formats succeeded in establish-
ing itself widely as the CTfile formats are still much more
frequently used. Next to these representations, work on

Open Access

Journal of Cheminformatics

*Correspondence: mn1@mail.nih.gov
Computer-Aided Drug Design Group, Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, NIH, 376 Boyles
Street, Frederick, MD 21702, USA

http://orcid.org/0000-0002-5776-0129
http://orcid.org/0000-0002-4775-7030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-00476-x&domain=pdf

Page 2 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

reaction identifiers has also been done. The Reaction
International Chemical Identifier (RInChI) [18], an appli-
cation of InChI [19, 20] was recently developed with the
objective to offer a unique reaction identifier, which can
help to organize and validate reaction databases [18].

Besides the formats specifically designed to describe
reaction transforms and allow easy data exchange, other
more versatile formats have been developed in order to
try to offer more flexibility and be utilized in different
contexts related to reactions. In 1986, Fujita proposed the
Imaginary Transition State (ITS) format, which aggre-
gates reactants and products inside a pseudo-molecule
in which the bond changes of a reaction are annotated.
This pseudo-molecule was created to be used for the
purposes of reaction retrieval and design [21]. This for-
mat evolved and became known as Condensed Graph
of Reaction (CGR). Stored in an SD File, it is mainly
employed for machine learning applications, similarity
search, and classification [22, 23]. Recently, a SMIRKS-
like format for CGR was implemented concomitant with
the development of Python-based tools to operate on
them (CGRTools) [24]. However, this format cannot be
used directly for, e.g., string-based comparisons of reac-
tions. Indeed, all analysis methods using it are based on
molecular graph coloration and molecular fragment gen-
erated from the CGR [23, 25–27]. Next to the CGR for-
mat, three multi-layer formats considering the reaction
center and the neighbor atoms have been developed by
J. L. Faulon, InfoChem and Elsevier. J. L. Faulon created
the reaction signature, where each reactant and product
are described as a tree without taking into account the
bond type, and calculates the differences between the
reactant and product trees [28]. Despite the versatility of
this approach, the consideration of only the atom types
and their simple connection is a huge limitation. Info-
Chem developed the reaction ClassCode, which provides
a unique identifier (hash) for the reaction center and its
two closest atom neighborhood layers [29]. Similarly,
Elsevier implemented the BINCODE, which computes,
using a pseudo-molecule, a linear string for each layer
from the reaction center to the deepest atom neighbor-
hood layers. Each layer contains the atoms that compose
it and their connection tables. In addition, the BINCODE
also encodes the bond fate and the atom hybridization
change [30]. While the ClassCode is limited to a depth of
2 and is strict by its nature as an identifier, the BINCODE
appears to offer more flexibility. Indeed, it covers the
complete reaction, and its nature as a string allows some
modifications for search purposes. However, the BIN-
CODE was made overly generalist by encoding elements
into categories (e.g. the halogens Cl, Br, and I have the
same encoding). It therefore cannot be used to recover
the entire reaction.

To overcome these limitations, we have developed
a new format named ReactionCode, which is a multi-
layer machine readable code. This open source format is
canonical and designed to be flexible, upgradeable and
versatile in order to be applied in a broad range of appli-
cations. ReactionCode is particularly useful for reaction
similarity searching and classification, but is also con-
ceived for machine learning applications and as a new
transform reaction language.

Methodology and software
ReactionCode format
Structure
The ReactionCode is a multi-layer machine readable
code, which is produced from the aggregation of reac-
tants and products into a condensed graph of reaction
(CGR) (Fig. 1). The ReactionCode is organized into three
blocks, each of which containing their corresponding
layers:

1. Block 1: Reaction center, containing only atoms
undergoing changes in bond status (changes in ste-
reochemistry, charge, isotope, or radical status do not
qualify an atom as part of the reaction center

2. Block 2: Atoms around the reaction center remaining
in the product

3. Block 3: Leaving atoms around the reaction center (if
any)

Each layer is composed of a main sub-layer and up to
three optional sub-layers, which describes the stereo-
chemistry, the charges, and the isotope, respectively. A
layer starts with a number if it illustrates the reaction
center or the remaining group, or a letter if it describes
the leaving group. It is always terminated by the symbol
‘|’.

Main sub-layer The main sub-layer is composed of 4
types of information: the depth, the atom code, the con-
nection table and the atom stoichiometry (Fig. 2). This
layer starts with the depth followed by ‘:’. The depth
indicates the distance relative to the reaction center. It
is expressed in numbers for the reaction center and the
remaining group(s) and in letters for the leaving group(s).
The atom code is composed of three characters: the
first indicates the highest status of the connected bonds
encoded using the hexadecimal system (Additional file 1:
Table S7), the two others encode the atom type (Addi-
tional file 1: Table S8). Each atom code is followed by a
parenthesized connection table, which indicates each
bond connected to an atom with a lower index. A bond is
encoded by 4 characters: the 1st indicates the bond order
in reactants, the 2d encodes the bond order in products
(Additional file 1: Table S6) and the last two refer to the

Page 3 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

index of the other atom connected to. The indices are
encoded using the hexadecimal system for the atoms to
connect that are present in the blocks corresponding to
the leaving group (Additional file 1: Table S2) and the
indices of atoms in the two other blocks are encoded
using a lookup table (Additional file 1: Table S1). Finally,
the square brackets store the atom stoichiometry, i.e. the
number of times the same atom is in the products (Exam-
ple in Additional file 1: Figure S1).

Optional sub-layers The optional sub-layers qualify
the atom and bond in their corresponding layer. Only
the sub-layer(s) where an atom has a property different
from the reference 0 (i.e. has a charge, stereochemis-
try information, a non-standard isotope, or is a radical)
are written directly after the end of the main sub-layer.
The priority order is: (1) the charge sub-layer (/c), (2) the
stereochemistry sub-layer (/s), (3) the isotope sub-layer
(/i), and (4) the radical sub-layer (/r) (Fig. 3).

1 Charge layer: The charge layer starts with /c and the
charge information is contained in a block contain-

ing the charged atom index (2 digits) and 2 characters
encoding the charge. The first one encodes the state
in reactants and the second one the state in prod-
ucts (Additional file 1: Table S3). E.g., in /c00HH, “/c”
indicates that this layer contains charge information.
It having 4 characters means that 1 (4/4) atom has a
charge. The only modification is: “00HH”. 00 means
that the entity at index 00, which is the atom “008”, is
modified. The third character “H” encodes a negative
charge −1 , which remains unchanged in products as
the fourth character is encoded by the same letter “H”.

2 Stereochemistry layer: The stereochemistry layer
starts with /s and the relative information is con-
tained in a block containing the atom or bond index
(2 digits), which has the corresponding stereochem-
istry modification and 2 characters encoding the
stereochemistry in reactants by the first character
and in products by the second one (Additional file 1:
Tables S4 and S5). e.g., in /s01640364, “/s” indicates
that this layer contains stereochemistry informa-

Fig. 1 ReactionCode structure: The ReactionCode is composed of three blocks. The first one describes the reaction center (shown in blue) and
starts with ‘0:’, which corresponds to depth 0. The entire reaction center (atoms highlighted in gray) is always stored in this single layer. The block in
green illustrates the atoms around the reaction center that are still kept in the product(s). This block can be composed of one or multiple layers and
each layer starts with a number followed by ‘:’. The figure indicates the depth of the atoms present in this layer in relation to the reaction center. The
block shown in yellow encapsulates the atoms around the reaction center which are absent in the product(s). This block can be composed of one
or multiple layers and each layer starts with a letter followed by ‘:’. The figure indicates the depth of the atoms present in this layer in relation to the
reaction center. (The letter A means a depth equal to one). Each layer is terminated by a ’|’ symbol and is composed of a main sub-layer that starts
after the : symbol. The optional layers begin with the ‘/’ symbol. /s characterizes the stereochemistry layer. /c describes the charge layers. /i indicates
the isotope layer

Page 4 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

tion. It having 8 characters means that 2 (8/4) enti-
ties [atom(s) and/or bond(s)] have a stereochemistry
information. The two modifications are: “0164” and
“0346”. The first modification is encoded by the first
4 characters “0164”. 01 means that the entity at index
01, which is the bond “11GV”, is modified. The third
character “4” encodes a DOWN bond in reactants,

which becomes an UP bond in products indicated by
the fourth character “6”. The next 4 characters 0364
modify the bond “11GU” from UP to DOWN.

3 Isotope layer: The isotope layer starts with /i and
the isotope information is contained in a block con-
taining the isotope atom index (2 digits) and 2 char-
acters encoding the mass difference between the

Fig. 2 Main sub-layer composition: A layer starts with its depth, which is the distance of its atoms from the reaction center (which has depth =
0). The next three characters characterize the atom. The first character indicates the highest bond status among all bonds connected to this atom.
(Additional file 1: Table S7. For instance, the Si atom (90E) is connected by 4 single bonds: 2 are not part of the reaction centre and are encoded by
0; 1 bond is broken, encoded by 7; and another one is made, encoded by 9, which is the highest bond status. The two other characters encode the
atom symbol (Additional file 1: Table S8). E.g., 0E stands for Si. The connection table is contained between the brackets. Each bond in the connection
table is encoded by 4 characters. E.g., the connection table (11GU11GS) encodes 2 bonds. The first two characters indicate the bond order in
reactants for the first one and in products for the second one, respectively (Additional file 1: Table S6). 01GG means a bond is made with the atom at
index GG. The last two characters represent the index of the other atom to connect to (see Additional file 1: Table S1 for the reaction center and the
remaining group and Additional file 1: Table S2 for the leaving group). The square brackets store the atom stoichiometry, i.e. the number of times a
same atom is in the products (Example in Additional file 1: Figure S1)

Fig. 3 Optional sub-layer composition: An optional sub-layer is directly located after the main sub-layer. Such a code is composed by the symbol
‘/’ followed by a letter and indicates the modification (/c for charge, /i for isotope and /s for stereochemistry). Each block qualifying an atom or a
bond is composed of four characters. The first two characters are a number (2 characters) indicating the index (decimal system) of the entity (atom
or bond) in the current layer which has to be modified. The next 2 characters are encoding the change to apply to reactants (first character) and
products (second character) (for isotope and charge see Additional file 1: Table S3; for atom stereochemistry see Additional file 1: Table S4; and for
bond stereochemistry, see Additional file 1: Table S5)

Page 5 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

current isotope and the reference. The first one is
for the reactants and the second one for products
(Additional file 1: Table S3). e.g., in /i00JJ02HH “/i”
indicates that this layer contains isotope informa-
tion. It having 8 characters means that 2 (8/4) atoms
are isotopes. The two modifications are: “00JJ” and
“02HH”. 00 means that the entity at index 00, which
is the atom “008”, is modified. The third character
“J” encodes an addition of 2 neutrons to the com-
mon isotope. 008 encodes an oxygen with 2 more
neutrons, which means that the atom is an 18 O. The
fourth character “H” is unchanged, which indicates
that the atoms in products remains the same isotope.

4 Radical layer: The isotope layer starts with /r and the
isotope information is contained in a block contain-
ing the isotope atom index (2 digits) and 2 charac-
ters encoding the mass difference between the cur-
rent isotope and the reference. The first one is for the
reactants and the second one for products (Addi-
tional file 1: Table S3). e.g., in /r00IJ “/r” indicates
that this layer contains isotope information. It having
4 characters means that 1 (4/4) atom is radical. The
modification is “00IJ”. 00 means that the entity is at
index 00 in the current sub-layer. The third character
“I” encodes an addition of 1 radical (valence equals at
1 for the carbon). The fourth character “J” encodes an
addition of 2 radicals (valence equals at 2 for the car-
bon).

Encoding/decoding process
One of the major strengths of ReactionCode is its capac-
ity to be bidirectional: a reaction encoded into Reaction-
Code can be easily partially or fully decoded to get the
reaction back (Fig. 4).

In order to generate the ReactionCode, a mapped reac-
tion is necessary. The first step consists in annotating
each atom and bond in reactants and products. Three
types of annotation are computed:

• atoms and bonds constituting the reaction center
• atoms and bonds present both in reactants and prod-

ucts, which are annotated as the remaining group
• atoms and bonds present in reactants but absent in

products (if any), which are annotated as the leaving
group

Once the annotation part is finished, reactants and
products are aggregated into a CGR. Finally, the Reac-
tionCode is generated from the CGR. Each atom of
the CGR is encoded and reverse-ranked by layers. The
algorithm starts from the reaction center, reverse-ranks

each atom of this layer and makes the connection
between them. Then, a Breadth First Search (BFS)
algorithm is used to obtain all the surrounding atoms
having a depth of 1. These atoms are separated into 2
layers: those belonging to the remaining layer and those
that are part of the leaving group. All encoded atoms
are reverse-ranked and the connections between each
atom with the current and the previous layer are estab-
lished. The algorithm iterates this procedure until all
atoms have been visited (Fig. 5).

The decoding process reconstructs the pseudo-mol-
ecule from the ReactionCode by transforming each
atom code into an atom object and making the bonds
between them. This step relies on the chemoinfor-
matics Java libraries contained in CDK (Chemistry
Development Kit) [31]. Then, the pseudo-molecule is
transformed into reactants and products in order to
get the original reaction back. The ReactionCode is set
up by default to recover a balanced reaction but the
elements present in the leaving group block could be
ignored by the user in order to not have them in the
products.

ReactionCode software
Java powered by CDK was used to develop the software
to generate the ReactionCode, to decode it, to make
pseudo-molecules, and to use it as a new transform lan-
guage. All these functions can be easily used thanks to a
CLI (command line interface) and the JAR file can also be
directly employed as an API by calling the corresponding
class.

Encoder The encoder allows one to produce the
pseudo-molecules and ReactionCodes. It takes the most
common formats as input: SMIRKS (single or a set of
SMIRKS in a file), RXN and RDF. The encoder can pro-
vide the pseudo-smiles in SDF and in SMILES format and
depict them. Finally, the generated ReactionCodes are
given in a CSV file.

Decoder The decoder allows one to get the original
reaction back. The reactions can be provided as reaction-
SMILES, SMIRKS, RXN, or RDF. They can also depicted
as a PNG file. In addition, a partial reaction can be gener-
ated by giving the layers of interest as input (Fig. 6).

Transformer Thanks to the structure of ReactionCode,
where each layer is only dependent on its previous lay-
ers but independent of its subsequent layers, it can be
used as a transform language where the ReactionCode is
transformed into a pattern applied to a set of reactants
(Fig. 6). The transformer takes a complete or partial
ReactionCode (set of layers) and the reactants as a unique
SMILES String or an SD file. If the entire pattern matches
the query structures, the transformer will generate all

Page 6 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

unique possible products. It can output them in reaction-
SMILES, SMIRKS, RXN, or RDF format.

ReactionCode validation
To test the encoding and decoding, we used the UPSTO
data set (https ://bitbu cket.org/dan20 97/paten t-react
ion-extra ction /downl oads). First, all spectator mole-
cules (i.e. molecules not contributing to the reactions)
were removed. Then, all reactions were encoded into
ReactionCode. The circular fingerprint ECFP6 was gen-
erated for each molecule in both reactions. A reaction
was considered similar if all fingerprints of the origi-
nal reaction were contained in the fingerprints of the
decoded reaction. To evaluate the correctness of the
reactions returned as not identical, we applied the 3
following protocols:

• Molecules were not kekulized and products were
not corrected. All aromatic bonds were set to sin-
gle and the aromatic property was set to false. The
implicit hydrogen was set to 0 for each aromatic
atom. All aromatic atoms were set to non-aromatic.
We did not apply our algorithm trying to deduce
missing cleaved bonds for unbalanced reactions to
restore the correct balance by predicting the cor-
rect missing product. This procedure allows detect-
ing wrong atom-atom mapping in the USPTO data-
set by manually comparing the returned results.
The original and the decoded reactions are both
depicted and the atom-atom mapping is checked in
the original reaction. Removing the aromaticity and
not kekulizing the molecules avoid false negatives
due to the kekulization, which can produce differ-
ent tautomers.

Fig. 4 Encoding and decoding process: Encoding The reactants and products of the mapped reaction are aggregated into a pseudo-molecule. The
bond changes are annotated: green for a bond order change, blue for a bond made, and red for a bond broken. All atoms and bonds are annotated
as part of the reaction center (inside blue circle), remaining in the final product (green circles), or leaving the final product (yellow circle). Finally, all
atoms and bonds are encoded into ReactionCode by layers starting from the reaction center to the outermost layer. Decoding: The ReactionCode is
transformed into a pseudo-molecule, which allows one to recover the initial reaction

https://bitbucket.org/dan2097/patent-reaction-extraction/downloads
https://bitbucket.org/dan2097/patent-reaction-extraction/downloads

Page 7 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

• Molecules were kekulized and products were not
corrected. All molecules were kekulized. We did
not apply our algorithm trying to deduce missing
cleaved bonds for unbalanced reactions to restore
the correct balance by predicting the correct miss-
ing product. This procedure will detect the differ-
ences related to the kekulization leading to poten-
tially different tautomers and the failures of our
product correction algorithm.

• Molecules were not kekulized and products were
corrected. All aromatic bonds were set to single
and the aromatic property was set to false. The
implicit hydrogen was set to 0 for each aromatic
atom. All aromatic atoms were set to non-aromatic.
We applied our algorithm trying to deduce missing
cleaved bonds for unbalanced reactions to restore
the correct balance by predicting the correct miss-
ing product. This procedure will detect the differ-
ences related to the failures of our product correc-
tion algorithm.

The validation procedure code can be found on GitHub
(Tests.java).

Applications and results
ReactionCode validation
The first validation test showed that 87 decoded
reactions did not match with the original reactions
(Table 1). After manual analysis, we identified the
source of these differences coming from an incorrect
atom-atom mapping. This result demonstrates the
capacity of our software at identifying wrong atom-
atom mapping. It also indicated that 99.8% of the
dataset is correctly annotated. The second validation
test indicated that 12,426 reactions were not identical
(Table 1). This count includes 2 types of errors: both
reactions are tautomers of each other (9320 reactions)
and our kekulization algorithm failed to kekulize the
molecule (3105 reactions). The kekulization process
does not guarantee the generation of the initial tau-
tomer and can therefore fail for some reactions. Finally,

Fig. 5 ReactionCode encoding algorithm: Once all atoms and bonds are encoded, all encoded atoms present in the reaction center (depth = 0)
are reverse sorted. If two or more atoms have the same code, the conflict solver algorithm is started. The conflict algorithm will make a tree of the
connected atom (see Additional file 1: Figure S2) and compare the atom codes and the bond codes of the atom present in the next layer using
a BFS algorithm. The algorithm iterates until the conflicts are solved and a proper order can be set up. Then, the connections between the atoms
in the current layer are made. Then, all the atoms present in the depth n + 1 (if any), which will be all atoms connected with those in the reaction
center in this situation, are reverse sorted. If there are any conflicts, they are first solved by comparing the position of the connected atoms in the
previous layer, then using the connected bonds, the atom properties (stereochemistry, charge and isotopy) and finally in the next layer(s) if the
conflict cannot be solved. We iterate this process until all layers are processed

Page 8 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

Fig. 6 ReactionCode partial and complete decoding: The ReactionCode can be decoded by taking all or some layers. The layer 0 corresponds to
the decoding of the reaction center only. Layers 0 + 1 illustrates the decoding of the reaction center and all surrounding atoms in the remaining
group having a depth equal to 1, while layers 0 + 1 + A incorporates all surrounding atoms (remaining and leaving groups) with a depth of 1.
Layers 0 + 1 + 2 and 0 + 1 + 2 + A + B are considering all surrounding atoms present in the depth lower or equal to 2. Layers 0 + 1 + 2 + 3 +
4 + 5 is an example where the reaction is decoded in its entirety but without the leaving group. Finally, “All Layers” represents the decoding of the
complete reaction

Table 1 ReactionCode validation (tested with version 1.2.0)

Test number Similar reactions Non-identical reactions

1 478,948 (99.98%) 87 (0.02%)

2 466,634 (97.41%) 12,425 (2.59%)

3105 (0.65%) structures could not be kekulized

9320 (1.94%) structures that are tautomers

3 478,948 (99.61%) 87 (0.39%)

Page 9 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

87 reactions were not well corrected, which were those
with a bad atom-atom mapping.

USPTO reaction data diversity analysis
The USPTO reaction dataset has been used in many
machine learning approaches for predicting reactions
[32–35]. However, we know of no previous analysis to
evaluate the diversity of this dataset. For this purpose,
we have used the generated ReactionCodes of each
reaction in the USPTO dataset.

To evaluate the diversity, we split the ReactionCodes
by incremental layers taking into account a layer and
all its previous layers and count the common occur-
rences. The first part of the analysis consists of extract-
ing all reaction center layers (depth 0) and reverse-sort
them as a function of their frequency. In other words,
the most frequent reaction center is at the top of the
list. Then, the next layers are processed in the same way
until we reach a depth of 9, leading to the generation of
10 CSV files (see Additional file 1). Each file starts with
the letter ’d’ followed by the depth and contains 2 col-
umns: one with the partial ReactionCode and another

one with the number of occurrences (number of time
this ReactionCode was found in USPTO dataset).

The USPTO is formed of 479,035 reactions. Among
these reactions, 9532 different reaction centers were
identified by ReactionCode, i.e. our approach determines
that the UPSTO dataset contains 9532 reaction types.
The 10 most-represented reaction types in this dataset
are found in 203,776 (42.5%) of the reactions. 90% of the
USPTO dataset is covered by only 400 reaction types,
which corresponds to 4.2% of all reaction types identified
in this dataset (Fig. 7. We finally note that 4607 reaction
types (48.3%) are only represented by one single reaction
in the USPTO dataset.

Other applications of ReactionCode
ReactionCode is a format that can be used for multiple
purposes. We describe a few of them here.

Reaction balancing correction
Unbalanced reactions (typically, one or more molecules
are missing in products) are not uncommon in reac-
tion databases. This can complicate or entirely throw

Fig. 7 Reaction center diversity analysis: The UPSTO contains 9532 different reaction centers (by extension 9532 reaction types). The graph
illustrates the diversity of the reaction types of UPSTO dataset. The x-axis corresponds to the reaction types, where 1 indicates the reaction center,
which is the most frequent in the dataset and 9432 the one, which is the less frequent. For instance, the reaction center is common to 45,534
reactions. The blue line shows the number of reaction center types in the logarithmic scale (the reaction center 1 is present in 45,534 reactions,
and the reaction center 2 in 29,834 reactions). The orange line depicts the cumulative sum of reactions. For example, the cumulative sum for the
reaction center 2 is 75,368 as the reactions center 1 is identified in 45,534 reactions, and the reaction center 2 in 29,834 (45,534 + 29,834 = 75,368).
The table details the 10 most frequent reaction centers

Page 10 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

off analyses and work-up of reactions. As ReactionCode
aggregates both reactants and products, it can be used to
restore the balance of a reaction by encoding and then re-
decoding the flawed reaction.

Searching for similar reactions
The ReactionCode is perfectly suited to search for similar
reactions in a database as it is in string format. In addi-
tion, a wild card can replace each figure or letter. This
can be employed in order to match with any atom, or
to ignore the bond order, or any property desired by the
user. The syntax of the ReactionCode thus provides the
user with a broad flexibility.

Reaction transform language
The ReactionCode is also designed as a new reaction
transform language. One or multiple layers can be used
to match a set of reactants in order to generate all the
possible products and get all possible reactions. This can
be easily done by using our software. Note, however, that
this approach does not incorporate any knowledge about
the actual synthetic accessibility of the proposed reaction
(in contrast to CHMTRN/PATRAN [36]) but operates
strictly on the basis of pattern matching.

Classification
The layered structure of the ReactionCode allows one to
classify the reaction in order to make statistical analyses,
study the diversity or just to have an idea of the contents
of a database. A clusterization of reaction data can also
be useful in the context of machine learning, for trying
to build the best possible training, testing, and validation
sets.

Machine Learning
The ReactionCode could be useful for machine learning
applications as descriptors or directly for reaction predic-
tion by predicting one or multiple layers. The Reaction-
Code describes the reaction center and its neighboring
environment, which provides additional descriptors com-
pared to current methods.

Compression
In the context of graph databases, the ReactionCode
could be used as a tree structure where a node cor-
responds to a layer. This structure could improve the
searching process but also help save disk usage because
only the unique layers are stored. This structure permits
one to retrieve and regenerate each reaction. Such a tree
structure could be used to develop a reaction encoding
process. Each layer could be transformed into a bit vector
similarly to fingerprints used for molecules, which could

allow one to compress a reaction and speed up the reac-
tion comparison process.

Discussion
ReactionCode validation
Kekulization leads to an increase in the number of non-
similar reactions. The original kekulization algorithm in
CDK first identifies the atoms that can receive a pi bond.
Then, it attempts to find a perfect match, such that a pi
bond is located next to each atom being able to have a
pi bond, and it then propagates the bond order infor-
mation. If the solution is ambiguous, the kekulization is
aborted. Such ambiguity is often related to missing or
ambiguous implicit hydrogen(s) or a failure of the aroma-
ticity perception algorithm. As ReactionCode does not
store implicit hydrogen information, we implemented
an algorithm to force kekulization only for final reac-
tions (decoded reactions, which are not used for trans-
forming). This can generate some errors. To potentially
fix them in a future version, the implicit hydrogen num-
ber for each atom could be encoded in ReactionCode, or
some manual patterns for kekulization correction could
be implemented. However, it may not be guaranteed to
reproduce the right Kekulé structure for both cases.

In general, dealing with kekulized molecules can poten-
tially be a source of mistakes. First, some errors can be
made by the algorithms during the aromaticity per-
ception. Second, each toolkit has a different kekuliza-
tion algorithm, which can lead to potentially different
kekulized molecules. Thus, different tautomers can be the
cause of the non-application of a transform as Reaction-
Code will lose aromaticity information and look instead
for a specific bond layout. Third, the generation of differ-
ent Kekulé structures is a common problem as two dif-
ferent SMIRKS of the same reaction can lead to different
kekulized molecules. For instance, Fig. 8 shows the same
reaction, which is depicted differently by https ://www.
simol ecule .com/cdkde pict/depic t.html. The reaction A is
the raw reaction found in the USPTO dataset. The reac-
tion B is this same reaction but it has been previously
parsed by CDK and its SMIRKS has been recreated after
removing the spectator molecules. To avoid such errors
related to kekulization, and merge different kekulized
molecules, ReactionCode uses the aromaticity instead of
the bond order. However, the bond order can be encoded
in the API instead of the aromaticity information by set-
ting all isAromatic() properties for atoms and bonds to
false beforehand.

All atoms and bonds present in the leaving layers cor-
respond to the atoms and bonds absent in the products
in the submitted reaction. By extension, the presence of
leaving layers implies an unbalanced reaction. As Reac-
tionCode contains information on both reactants and

https://www.simolecule.com/cdkdepict/depict.html
https://www.simolecule.com/cdkdepict/depict.html

Page 11 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

products, it can restore the balance while decoding.
However, for some reactions, bond(s) made between
two non-hydrogen atoms can be missing, which would
lead to the generation of incorrect products. To attempt
to fix these products, we have implemented an algo-
rithm that tries to deduce the missing to-be-generated
bonds by using the information stored in the leaving
layer A and the atom in the reaction center having 7
as its status. A bond between two atoms is generated
if one of them is a carbon, the other one is a non-
heteroatom and both are not detected in the original
products.

ReactionCode implements a dedicated function enco-
deAndRebalance, which encodes the reaction having
a leaving group and flags the leaving atoms present in
the given product. Then, the generated ReactionCode is
decoded using our correction algorithm by taking into
account the flagged atoms. Finally, the fixed reaction is
re-encoded. The created ReactionCode is final (i.e. the
decoding/re-encoding will always give the same Reac-
tionCode) as the atoms and bonds contained in the
leaving group have been repositioned in the remaining
group. The user can still encode and decode the reac-
tion twice, but an unbalanced reaction with a reaction
partially balanced (i.e.unbalanced reactions with more
than one products), can potentially lead to a wrong
leaving product (Fig. 9b). This experimental algorithm
trying to correct the unbalanced reactions can still
be improved. For instance, it could be ameliorated by
using reaction patterns validated by chemists to correct
the products. As this implementation is still experi-
mental, the API can prevent its usage by setting the
parameter correctProducts to false. If correctProducts

is set to false, the leaving group will be removed from
the products and the unbalanced reaction would be
regenerated (Fig. 9).

USPTO analysis
The diversity analysis of the USPTO dataset showed that
this database is covered in the vast majority by only about
400 reaction types while conversely 48.3% of the dataset
consists of reactions that do not share a common reac-
tion center with any other reaction in the dataset. This
analysis shows that the USPTO has an unbalanced diver-
sity with some significantly over-represented reaction
types, which may explain the good accuracy of the mod-
els predicting reactions. However, as 48.3% of the dataset
consists of unique reactions, it may be wise to define an
appropriate strategy during training, testing and the vali-
dation of a predictive model. The unique reactions can-
not be learned by ML (if they are in the validation dataset
it will decrease the score, if they are in the training set,
they cannot be validated). In other words, if one does not
apply cross-validation, you cannot trust such models. We
therefore hope that this diversity analysis of the USPTO
dataset via ReactionCodes may be helpful for better sam-
pling during model-building and for future implementa-
tions using the USPTO dataset.

Future developement
The ReactionCode was designed to be an upgradeable
format. This format is open to the community, which can
submit a new version. For instance, the aromatic bonds
are encoded with the same character “9”, which can fail
to encode some tautomeric reactions. In a lot of mapped

Fig. 8 Kekulization differences: Reaction a extracted from the USPTO dataset is parsed by CDK and its SMIRKS is recreated after removing the
agents (Reaction b). The only difference in the regenerated SMIRKS is the atom order. Despite all other characteristics remaining unchanged
(atom-atom mapping, aromaticity, implicit hydrogens, etc.), the resulting SMIRKS leads to a different kekulization (kekulization of the ring containing
atoms 10–15 in the reactants)

Page 12 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

reactions, the correspondence of the Kekulé versions in
reactants and products is wrong, which will be consid-
ered as a change of the molecule and integrated into the
reaction center. To avoid this problem, it is safest in most
of the cases to adopt the aromatic annotation. However,
if the user is sure of his/her mapping, this parameter can
be easily changed and the bond will be encoded as sin-
gle or double. Besides, it can be of interest for tautomeric
reaction studies to have the number of hydrogens in the
ReactionCode. This can be easily added to the Reaction-
Code code by modifying one single parameter in the
code.

Conclusion
ReactionCode has been implemented as a new, open
source, versatile reaction format that avoids the draw-
backs of others. The field of its possible applications
is large and we believe that it can be profitable for the
community working on reactions. Freely available and
open source software has been developed to generate

the ReactionCode from, and to convert it to, a variety of
existing reaction formats, as well as to use it as a reaction
transform language. This program and the source code
are available at https ://cactu s.nci.nih.gov/react ionco de.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1332 1-020-00476 -x.

Additional file 1: Figure S1. Stoichiometry management. Figure S2.
Conflict solver algorithm. Table S1. Atom index encoding for reaction
center and remaining group. Table S2. Atom index encoding for leaving
group. Table S3. Charge and Isotope encoding. Table S4. Atom stereo-
chemistry encoding. Table S5. Bond stereochemistry encoding. Table S6.
Bond order encoding. Table S7. Bond change status encoding. Table S8.
Atom symbol encoding.

Acknowledgements
We thank Scott Hutton, Matthew Clark, and Hans Kraut for useful discussions.
This work was supported by the Intramural Research Program of the National
Institutes of Health, Center for Cancer Research, National Cancer Institute. The
content of this publication does not necessarily reflect the views or policies
of the Department of Health and Human Services, nor does mention of trade

a

b

Fig. 9 Reaction balancing and product correction: The function encodeAndRebalance attempts to correct the missing products in the original
reaction by deducing missing to-be-generated bonds. The encode function generates a non-final ReactionCode, which is still able to reproduce the
original unbalanced reaction. If the parameter correctProducts is set to true for the decoding, the products related to the missing atom in the given
reaction are corrected. Reactiona depicts a fully unbalanced reaction. As there is no reference in the products, the correction algorithm returns the
same decoded reaction using the non-final or final ReactionCode. Reaction b depicts a partially balanced reaction ((i.e.unbalanced reaction with
more than one products)), where one atom involved in a broken bond is present. The function encodeAndRebalance returns a different reaction
because it flags the atoms in products, which do not need to be corrected ([Cl:3]). While decoding the non-final ReactionCode, this information is
missing and as the Cl atom is not connected to any atom in the remaining layers or leaving layer, it is considered by our algorithm as leaving and is
associated with the other leaving group

https://cactus.nci.nih.gov/reactioncode
https://doi.org/10.1186/s13321-020-00476-x
https://doi.org/10.1186/s13321-020-00476-x

Page 13 of 13Delannée and Nicklaus J Cheminform (2020) 12:72

names, commercial products or organizations imply endorsement by the US
Government.

Author’s contributions
VD developed the idea of ReactionCode and wrote all the code. MN has been
leading the project. All authors read and approved the final manuscript.

Funding
This work was supported by the Intramural Research Program of the National
Institutes of Health, Center for Cancer Research, National Cancer Institute.

Availability of data and materials
The software is available at https ://cactu s.nci.nih.gov/react ionco de and the
source code at https ://githu b.com/victo riend elann ee/react ionco de. Future
updates will be available at the same URLs. The generated data for USPTO
diversity analysis is attached to the manuscript as 11 additional files.

Competing interests
The authors declare that they have no competing interests.

Received: 21 September 2020 Accepted: 18 November 2020

References
 1. Corey EJ, Wipke WT (1969) Computer-assisted design of complex organic

syntheses. Science 166(3902):178–192
 2. Corey EJ, Cramer RD, Howe WJ (1972) Computer-assisted synthetic

analysis for complex molecules. Methods and procedures for machine
generation of synthetic intermediates. J Am Chem Soc 94(2):440–459

 3. Corey EJ, Wipke WT, Cramer RD, Howe WJ (1972) Computer-assisted syn-
thetic analysis. Facile man-machine communication of chemical structure
by interactive computer graphics. J Am Chem Soc 94(2):421–430

 4. Pensak DA, Corey EJ (1977) LHASA—logic and heuristics applied to
synthetic analysis. In: Computer-assisted organic synthesis, Chap 1, vol 61.
ACS symposium series, USA, pp 1–32

 5. Wipke WT, Ouchi GI, Krishnan S (1978) Simulation and evaluation of
chemical synthesis-SECS: an application of artificial intelligence tech-
niques. Artif Intell 11(1):173–193 (Applications to the Sciences and
Medicine)

 6. Yanaka M, Nakamura K, Kurumisawa A, Wipke WT (1990) Automatic
knowledge base building for the organic synthesis design program
(secs). Tetrahedron Comput Methodol 3(6, Part A):359–375

 7. Hunter RS, Culver FD, Fitzgerald A (1987) SMILES user manual. A simpli-
fied molecular input line entry system. Includes extended SMILES for
defining fragments. Review draft, internal report. Montana State Univer-
sity, Institute for Biological and Chemical Process Control (IPA), Bozeman

 8. Weininger D (1988) SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28(1):31–36

 9. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm
for generation of unique smiles notation. J Chem Inf Comput Sci
29(2):97–101

 10. Anderson GVE, Weininger D (1990) A line notation, and computerized
interpreter for chemical structures. Report No EPA, 600, M-87, 021 US
Environmental Protection Agency. Environmental Research Laboratory-
Duluth. Duluth, p 55804

 11. Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA,
Laufer J (1992) Description of several chemical structure file formats used
by computer programs developed at Molecular Design Limited. J Chem
Inf Comput Sci 32(3):244–255

 12. Biovia: XDFiles. http://help.accel ryson line.com/ulm/onela b/1.0/conte nt/
ulm_pdfs/direc t/refer ence/ctfil eform ats20 16.pdf. Accessed 4 Nov 2020

 13. ChemAxon: MRV. https ://docs.chema xon.com/displ ay/docs/chemd raw-
sketc h-file-cdx-cdxml .md. Accessed 4 Nov 2020

 14. Alliance P. UDM. https ://www.pisto iaall iance .org/proje cts/curre nt-proje
cts/udm/. Accessed 4 Nov 2020

 15. Murray-Rust P, Rzepa HS (1999) Chemical markup, xml, and the world-
wide web. 1. Basic principles. J Chem Inf Comput Sci 39(6):928–942

 16. ChemAxon: CDX/CDXML. https ://docs.chema xon.com/displ ay/docs/
chemd raw-sketc h-file-cdx-cdxml .md. Accessed 4 Nov 2020

 17. (HL7) HLS ReactionSPL. https ://www.fda.gov/indus try/fda-resou rces-
data-stand ards/struc tured -produ ct-label ing-resou rces. Accessed 4 Nov
2020

 18. Grethe G, Goodman JM, Allen CH (2013) Internationa chemical identifier
for reactions (RInChI). J Cheminform 5(1):45

 19. Heller S, McNaught A, Stein S, Tchekhovskoi D, Pletnev I (2013) InChI—the
worldwide chemical structure identifier standard. J Cheminform 5(1):7

 20. Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the
IUPAC international chemical identifier. J Cheminform 7:23

 21. Fujita S (1986) Description of organic reactions based on imaginary tran-
sition structures. 1. Introduction of new concepts. J Chem Inf Comput Sci
26(4):205–212

 22. Hoonakker F, Lachiche N, Varnek A, Wagner A (2009) Condensed graph of
reaction: considering a chemical reaction as one single pseudo molecule.
Springer, Berlin

 23. de Luca A, Horvath D, Marcou G, Solov’ev V, Varnek A (2012) Mining
chemical reactions using neighborhood behavior and condensed graphs
of reactions approaches. J Chem Inf Model 52(9):2325–2338

 24. Nugmanov RI, Mukhametgaleev RN, Akhmetshin T, Gimadiev TR, Afonina
VA, Madzhidov TI, Varnek A (2019) CGRtools: python library for molecule,
reaction, and condensed graph of reaction processing. J Chem Inf Model
59(6):2516–2521

 25. Ruggiu F, Marcou G, Varnek A, Horvath D (2010) ISIDA property-labelled
fragment descriptors. Mol Inform 29(12):855–868

 26. Muller C, Marcou G, Horvath D, Aires-de-Sousa J, Varnek A (2012) Models
for identification of erroneous atom-to-atom mapping of reactions per-
formed by automated algorithms. J Chem Inf Model 52(12):3116–3122

 27. Glavatskikh M, Madzhidov T, Horvath D, Nugmanov R, Gimadiev T,
Malakhova D, Marcou G, Varnek A (2019) Predictive models for kinetic
parameters of cycloaddition reactions. Mol Inform 38(1–2):1800077

 28. Faulon J-L, Visco DP, Pophale RS (2003) The signature molecular descrip-
tor. 1. Using extended valence sequences in QSAR and QSPR studies. J
Chem Inf Comput Sci 43(3):707–720

 29. Kraut H, Eiblmaier J, Grethe G, Löw P, Matuszczyk H, Saller H (2013) Algo-
rithm for reaction classification. J Chem Inf Model 53(11):2884–2895

 30. Elsevier: BinCoder. https ://www.elsev ier.com/solut ions/reaxy s. Accessed
6 Apr 2020

 31. Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N,
Kuhn S, Pluskal T, Rojas-Cherto M, Spjuth O, Torrance G, Evelo CT, Guha
R, Steinbeck C (2017) The Chemistry Development Kit (CDK) v.20: atom
typing, depiction, molecular formulas, and substructure searching. J
Cheminform 9(1):33

 32. Coley CW, Barzilay R, Jaakkola TS, Green WH, Jensen KF (2017) Prediction
of organic reaction outcomes using machine learning. ACS Cent Sci
3(5):434–443

 33. Schwaller P, Gaudin T, Lányi D, Bekas C, Laino T (2018) “Found in transla-
tion”: predicting outcomes of complex organic chemistry reactions using
neural sequence-to-sequence models. Chem Sci 9:6091–6098

 34. Baylon JL, Cilfone NA, Gulcher JR, Chittenden TW (2019) Enhancing
retrosynthetic reaction prediction with deep learning using multiscale
reaction classification. J Chem Inf Model 59(2):673–688

 35. Bai R, Zhang C, Wang L, Yao C, Ge J, Duan H (2020) Transfer learning: mak-
ing retrosynthetic predictions based on a small chemical reaction dataset
scale to a new level. Molecules 25(10):2357

 36. Judson PN, Ihlenfeldt W-D, Patel H, Delannée V, Tarasova N, Nicklaus MC
(2020) Adapting CHMTRN (chemistry translator) for a new use. J Chem Inf
Model 60(7):3336–3341

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://cactus.nci.nih.gov/reactioncode
https://github.com/victoriendelannee/reactioncode
http://help.accelrysonline.com/ulm/onelab/1.0/content/ulm_pdfs/direct/reference/ctfileformats2016.pdf
http://help.accelrysonline.com/ulm/onelab/1.0/content/ulm_pdfs/direct/reference/ctfileformats2016.pdf
https://docs.chemaxon.com/display/docs/chemdraw-sketch-file-cdx-cdxml.md
https://docs.chemaxon.com/display/docs/chemdraw-sketch-file-cdx-cdxml.md
https://www.pistoiaalliance.org/projects/current-projects/udm/
https://www.pistoiaalliance.org/projects/current-projects/udm/
https://docs.chemaxon.com/display/docs/chemdraw-sketch-file-cdx-cdxml.md
https://docs.chemaxon.com/display/docs/chemdraw-sketch-file-cdx-cdxml.md
https://www.fda.gov/industry/fda-resources-data-standards/structured-product-labeling-resources
https://www.fda.gov/industry/fda-resources-data-standards/structured-product-labeling-resources
https://www.elsevier.com/solutions/reaxys

	ReactionCode: format for reaction searching, analysis, classification, transform, and encodingdecoding
	Abstract
	Introduction
	Methodology and software
	ReactionCode format
	Structure
	Encodingdecoding process
	ReactionCode software
	ReactionCode validation

	Applications and results
	ReactionCode validation
	USPTO reaction data diversity analysis
	Other applications of ReactionCode
	Reaction balancing correction
	Searching for similar reactions
	Reaction transform language
	Classification
	Machine Learning
	Compression

	Discussion
	ReactionCode validation
	USPTO analysis
	Future developement

	Conclusion
	Acknowledgements
	References

