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Abstract 

Graph neural networks (GNN) has been considered as an attractive modelling method for molecular property predic‑
tion, and numerous studies have shown that GNN could yield more promising results than traditional descriptor-
based methods. In this study, based on 11 public datasets covering various property endpoints, the predictive 
capacity and computational efficiency of the prediction models developed by eight machine learning (ML) algo‑
rithms, including four descriptor-based models (SVM, XGBoost, RF and DNN) and four graph-based models (GCN, 
GAT, MPNN and Attentive FP), were extensively tested and compared. The results demonstrate that on average the 
descriptor-based models outperform the graph-based models in terms of prediction accuracy and computational 
efficiency. SVM generally achieves the best predictions for the regression tasks. Both RF and XGBoost can achieve reli‑
able predictions for the classification tasks, and some of the graph-based models, such as Attentive FP and GCN, can 
yield outstanding performance for a fraction of larger or multi-task datasets. In terms of computational cost, XGBoost 
and RF are the two most efficient algorithms and only need a few seconds to train a model even for a large dataset. 
The model interpretations by the SHAP method can effectively explore the established domain knowledge for the 
descriptor-based models. Finally, we explored use of these models for virtual screening (VS) towards HIV and dem‑
onstrated that different ML algorithms offer diverse VS profiles. All in all, we believe that the off-the-shelf descriptor-
based models still can be directly employed to accurately predict various chemical endpoints with excellent comput‑
ability and interpretability.

Keywords:  Graph neural networks, Extreme gradient boosting, Ensemble learning, Deep learning, ADME/T 
prediction
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Introduction
Molecular property modelling, which assists in hunt-
ing for chemicals with desired pharmacological and 
ADME/T (absorption, distribution, metabolism, excre-
tion, and toxicity) properties, is one of the most classi-
cal cheminformatics tasks [1, 2]. A variety of machine 
learning (ML) approaches, such as Naive Bayes (NB) 
[3–5], k-Nearest Neighbors (k-NN) [6], logistic 
regression (LR) [7, 8], support vector machine (SVM) 
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[9–13], random forest (RF), [10, 14, 15] artificial neu-
ral network (ANN) [13] and more, have been widely 
employed in property prediction. More recently, the 
emergence of deep learning (DL) methods has revolu-
tionized this traditional cheminformatics task due to 
their extraordinary capacity to learn intricate relation-
ships between structures and properties [16–23]. The 
models developed by DL can be roughly classified into 
two categories: descriptor-based models and graph-
based models [24]. As to descriptor-based DL models, 
molecular descriptors and/or fingerprints commonly 
used in traditional quantitative structure–activity rela-
tionship (QSAR) models are used as the input, and then 
a specific DL architecture is employed to train a model 
[25]. As to graph-based DL models, the basic chemical 
information encoded by molecular graphs is used as the 
input, and then a graph-based DL algorithm, such as 
graph neural networks (GNN), is used to train a model. 
Similar to the convolutions on the regular data such 
as images and texts, GNN generalizes this operation 
to the irregular molecular graph that is a natural rep-
resentation for chemical structures. More specifically, 
a graph G = (V, E) can be defined as the connectivity 
relations between a set of nodes (V) and a set of edges 
(E). Naturally, a molecule can also be considered as a 
graph consisting of a set of atoms (nodes) and a set of 
bonds (edges).

Essentially, GNN aims to learn the representations of 
each atom by aggregating the information from its neigh-
boring atoms encoded by the atom feature vector and 
the information of the connected bonds encoded by the 
bond feature vector through message passing across the 
molecular graph recursively (Fig. 1), followed by the state 
updating of the central atoms and read-out operation. 
Then, the learned atom representations can be used for 
the prediction of molecular properties through the read-
out phase [19, 26]. The key feature of GNN is its capacity 
to automatically learn task-specific representations using 
graph convolutions while does not need traditional hand-
crafted descriptors and/or fingerprints. The state-of-the-
art accuracy of GNN models in property prediction has 
been well represented [17, 24, 27–32]. The representa-
tive GNN models and their statistical performances on 
the MoleculeNet benchmark datasets [32] are summa-
rized in Table 1. As we can see, their performances on the 
benchmark datasets vary from one to another, which may 
be attributed to the discrepancies on the model archi-
tectures, evaluation methods, training strategies and so 
on. Recently, a GNN method: Attentive FP, has gained 
increasing attention from the scientific community [27]. 
As shown in Table  1, Attentive FP yields the best pre-
dictions to 6 out of 11 benchmark datasets, including 2 
regression tasks (ESOL and FreeSolv) and 4 classification 
tasks (MUV, BBBP, ToxCast and ClinTox), highlighting its 

Fig. 1  The general workflow of GNN in molecular property prediction
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impressive performance in modelling a variety of chemi-
cal properties in comparison with several other graph-
based methods. A majority of those studies claimed that 
graph-based models are typically superior or comparable 
to traditional descriptor-based models [24, 30–35], and 
only a few studies gave the opposite conclusions [36]. 
For example, in 2017, Wu et  al. reported MoleculeNet, 
a large benchmark for molecular machine learning, and 
the evaluation results illustrated that graph-based meth-
ods  outperformed descriptor-based methods on most 
datasets [32]. Similarly, in 2019, Yang et al. introduced a 
novel GNN framework named directed message passing 
neural networks (D-MPNN), and the extensive evalua-
tion on a large dataset collection indicated that D-MPNN 
consistently matched or outperformed descriptor-based 
methods on most datasets [24]. More recently, Korolev 
et al. reported a universal graph convolutional networks 
(GCN) architecture for the predictions of various chemi-
cal endpoints [33], and the application of GCN illustrated 
that its performance was comparable to state-of-the-art 
ML algorithms such as SVM, RF, and gradient boosting 
decision trees (GBDT). 

In most of these reported studies, traditional ML 
models such as LR, RF, SVM (especially ‘gold stand-
ard’ RF) [31, 37] were employed to develop the predic-
tion models based on a set of individual fingerprints 
(especially Extended Connectivity Fingerprints, ECFP) 
[31–33]. However, it is well known that the performance 
of descriptor-based models is highly depending on the 
descriptors used in training and many previous studies 
have highlighted that ML models only based on molec-
ular fingerprints are not such well-performing [4, 5, 38, 
39]. In addition, little attention was paid to several newly 
state-of-the-art ML algorithms, such as XGBoost and 
LightGBM, which have illustrated great potentials for 
modelling various molecular properties [39–42]. Accord-
ingly, the conclusion that graph-based methods  outper-
form traditional descriptor-based methods still remains 
controversial.

The present study attempts to give a comprehensive 
evaluation of descriptor-based and graph-based models 
on 11 public datasets with different property endpoints. 
Four ML algorithms were used to develop the descriptor-
based models, including SVM, extreme gradient boost-
ing (XGBoost), RF and deep neural networks (DNN). 
In order to better represent the chemical and structure 
features of the molecules for the descriptor-based mod-
els, the combination of one set of molecular descriptors 
(206 MOE 1-D and 2-D descriptors) and two sets of fin-
gerprints (881 PubChem fingerprints and 307 substruc-
ture fingerprints) were considered, and such molecular 
representations are also commonly seen and easily acces-
sible. Three typical GNN architectures (GCN, GAT 

and MPNN) and a state-of-the-art graph-based model 
(Attentive FP) were used as the graph-based model base-
lines, and the informationized molecular graph using 
atom-level or bond-level features were taken as the input. 
Both of the predictability and computability of these 
models were assessed. The results illustrate that the com-
putational cost of the descriptor-based models is far less 
than that of the graph-based model baselines, and the 
descriptor-based models generally yield more promising 
predictions than the graph-based methods. More con-
cretely, SVM generally performs best on the regression 
tasks. Both RF and XGBoost are reliable classifiers for the 
classification tasks, but the graph-based models, such as 
GCN and Attentive FP, can also show excellent perfor-
mance on some tasks. In terms of computational cost, 
XGBoost and RF are efficient and they only need a few 
seconds to train a model even for a large dataset. Moreo-
ver, the established descriptor-based models were inter-
preted by the Shapley additive explanations (SHAP), and 
the important descriptors and structural features learned 
by the prediction models were highlighted. Finally, the 
developed ML models were used to conduct a virtual 
screening (VS) study toward human immunodeficiency 
virus (HIV), and the results indicate that different ML 
models offer varied performance in identifying poten-
tial HIV inhibitors. All in all, we believe that the ready-
made and light-weight descriptor-based models can 
reach better or comparable accuracy, computability, and 
interpretability to the highly complicated and specialized 
graph-based DL models.

Materials and methods
Datasets
To well compare the performance of descriptor-based 
and graph-based models, the dataset collection related 
to drug discovery used by Attentive FP was also adopted 
in this study [27]. This dataset collection contains 11 dif-
ferent datasets originally reported in MoleculeNet for a 
variety of chemical endpoints [32]. In the study reported 
by Xiong et al. [27], the molecules that could not be suc-
cessfully processed by RDKit [43] or the Attentive FP 
model were excluded from the original datasets. The 
details of those datasets are summarized in Table  2. 
Here, three datasets were used for the regression tasks, 
including ESOL, FreeSolv, and Lipop, and the remain-
ing eight datasets were used for the classification tasks, 
which can be further divided into the single-task datasets 
(ESOL, FreeSolv, Lipop, HIV, BACE, and BBBP) and the 
multi-task datasets (CilnTox, SIDER, Tox21, ToxCast, 
and MUV). Notably, we found that, in the ToxCast multi-
task datasets, some subdatasets are extremely imbal-
anced (the ratio of two classes is higher than 50) or quite 
small (the number of compounds is smaller than 500). 
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Apparently, it seems reluctant to include these subdata-
sets for the development and assessment of ML models 
because of biased evaluation metric or insufficient train-
ing data, especially for traditional ML methods. One 
of the strengths for graph-based models is that multi-
task learning can be applied for such highly imbalanced 
subdatasets and the corresponding statistics may be 
improved in comparison with traditional ML methods, 
but the prediction performances for such highly unbal-
anced subdatasets are not so convinced. Therefore, for 
the sake of fairness and simplification, such subdatasets 
were excluded directly, leading to the number of the tasks 
for ToxCast is 182, not the original number of 617. All 
the assessed ML models were evaluated based on the 
same remaining 182 ToxCast tasks, and we believe that 
the results can still make sense.

Molecular representation
Graph-based methods are capable of learning molecu-
lar representations by operating the convolutions on 
the encoded molecular graphs directly. In the graph 
representation for a molecule, the connectivity relation 
between atoms is represented by a graph G = (V, E). Here, 
the nodes V are represented by the node feature vector Xv 
consisting of a series of atomic features and the edges E 
are represented by the edge feature vector Ekm consisting 
of a series of bond features, where the subscript km indi-
cates that atoms k and m are bonded. Followed by pre-
vious studies [27], almost all the easily accessible atom/
bond-level features were exhausted to comprehensively 
squeeze chemical information into molecular graph for 
graph-based models, where include nine kinds of atomic 
features (i.e., atom symbol, atom degree, formal charge, 

radical electrons, hybridization, aromaticity, hydrogens, 
chirality and chirality type) and four kinds of bond fea-
tures (i.e., bond type, conjugation, ring, and stereo). Most 
of them were encoded into a molecular graph in a one-
hot manner and subsequently the encoded molecular 
graph was used as the input. The more details about the 
molecular representations for graph-based models are 
available in the publication [27].

All the molecules were minimized using the MMFF94 
force field in MOE (Version: 2015.1001) with the default 
parameters. Then, the expert-crafted descriptors and 
fingerprints were computed to develop the descriptor-
based models. To comprehensively represent molecular 
structures, 206 MOE 1-D and 2-D descriptors and two 
sets of fingerprints, including 881 PubChem fingerprints 
(PubchemFP) and 307 substructure fingerprints (SubFP), 
were used. The MOE descriptors were calculated by MOE 
(Version: 2015.1001), and the two sets of fingerprints 
were calculated by PaDEL-Descriptor (Version: 2.1). [44] 
Prior to the development of the descriptor-based models, 
all the molecular features were pretreated as follows: (1) 
the features with missing values and extremely low vari-
ance (< 0.05) were removed; (2) the feature that has a high 
correlation (r > 0.95) with another feature was removed; 
(3) the retained features were normalized to the mean 
value of 0 and variance of 1.

Machine learning algorithms
As one of the most classic cheminformatics problems, 
molecular property prediction has made considerable 
progress over the last decade due to the application of 
new ML methods represented by deep learning and 
ensemble learning [25, 40, 45, 46]. In this study, four 

Table 2  The detailed information of the datasets used in this study

Datasets Task Type Compounds Tasks Metric Descriptions

ESOL Regression 1127 1 RMSE Water solubility for organic small molecules

FreeSolv Regression 639 1 RMSE Hydration free energy of small molecules in water

Lipop Regression 4200 1 RMSE Octanol/water distribution coefficient (logD at pH = 7.4)

HIV Classification 40748 1 AUC-ROC Inhibition to HIV replication

BACE Classification 1513 1 AUC-ROC Inhibition to human β-secretase 1 (BACE-1)

BBBP Classification 2035 1 AUC-ROC Binary labels of blood–brain barrier penetration

ClinTox Classification 1475 2 AUC-ROC Qualitative data of drugs approved by the FDA and those that have failed clinical trials for 
toxicity reasons

SIDER Classification 1366 27 AUC-ROC Database of marketed drugs and adverse drug reactions (ADR), grouped into 27 system 
organ classes

Tox21 Classification 7811 12 AUC-ROC Qualitative toxicity measurements on 12 biological targets, including nuclear receptors 
and stress response pathways

ToxCast Classification 8539 182 AUC-ROC Toxicology data for a large library of compounds based on in vitro high-throughput 
screening, including experiments on over 600 tasks

MUV Classification 93087 17 AUC-PRC Subset of PubChem BioAssay by applying a refined nearest neighbor analysis, designed for 
the validation of virtual screening techniques
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representative ML algorithms (i.e., DNN, SVM, XGBoost 
and RF) were used to develop the descriptor-based mod-
els, and four representative graph-based methods (i.e., 
MPNN, GCN, GAT and Attentive FP) were employed to 
develop the graph-based models.

Deep neural networks (DNN)
As one of the typical DL algorithms, DNN has an input 
layer, an output layer, and many hidden layers. DNN is 
composed of many individual neurons [16, 25]. Each neu-
ron in DNN aggregates information from its connected 
neurons and then the aggregated information is activated 
by a non-linear activation function. Such manifestations 
mimick the behavior of biological neural networks. All 
the operations in DNN aim to learn intricate and rap-
idly-varying non-linear functions and extract a hierar-
chy of useful features from the input [18]. In this study, 
three hidden layers feed-forward neural networks were 
employed, and the following key hyper-parameters were 
optimized: L2 regularization (0 to 0.01), dropout rate (0.0 
to 0.5) and neurons for each hidden layer (64, 128, 256, 
512). The other important hyper-parameters were fixed: 
ReLU function that has been recommended by many pre-
vious studies was used as the activation function [25, 47], 
and the optimizer was set to an adaptive learning rate 
algorithm: Adadelta [48].

Support vector machine (SVM)
SVM is one of the most popular ML approaches and it is 
appropriate for both classification and regression [9, 49, 
50]. It is also capable of dealing with both linearly separa-
ble and linearly inseparable problems. For linearly insep-
arable feature space, the kernel trick is needed to map the 
original feature space onto a new higher separable linear 
space. The basic objective of SVM is to find the optimal 
hyperplane in the feature space that can maximize the 
distance between the data points and hyperplane, and 
the discriminant results generated from this optimal 
hyperplane should be insensitive to small perturbation of 
training samples. Here, the commonly used radial basis 
function (RBF) was used as the kernel and the following 
main hyper-parameters were optimized: C (0.1 to 100) 
and gamma values (0 to 0.2).

Extreme gradient boosting (XGBoost)
XGBoost is one of the most representative ensemble 
learning ML algorithms under the frame of gradient 
boosting [51]. Compared with traditional gradient boost-
ing, several algorithm optimizations were introduced to 
XGBoost, such as minor improvement in the loss func-
tion by penalizing the complexity of the model, introduc-
tion of shrinkage and column subsampling for further 
preventing over-fitting, employment of sparsity-aware 

split finding technique for efficient training on sparse 
data, etc. [51]. XGBoost has gained extensive attention 
in the property prediction due to its significant predic-
tive power and low computational cost [42, 52, 53]. In 
the training of XGBoost, the following hyper-parameters 
were optimized: learning_rate (0.01 to 0.2), gamma (0 to 
0.2), min_child_weight (1 to 6), subsample (0.7 to 1.0), 
colsample_bytree (0.7 to 1.0), max_depth (3 to 10) and 
n_estimators (50, 100, 200, 300, 400, 500, 1000).

Random forest (RF)
Random forest is another representative ensemble learn-
ing ML algorithms. It constructs a strong classifier or 
regressor by an ensemble of individual decision trees 
under the frame of bagging and makes predictions by 
majority vote or averaging of multiple decision trees [10, 
15]. In the implementation of RF algorithm, sample per-
turbation via bootstrap sampling of the training data and 
feature perturbation via random feature subset selection 
are introduced to improve the diversity of base learner 
(decision trees), which corrects for the overfitting habit 
of decision trees and subsequently enhances the gener-
alization ability of RF. In the training of RF, the following 
hyper-parameters were optimized: n_estimators (10, 50, 
100, 200, 300, 400, 500), max_depth (3 to 12), min_sam-
ples_leaf (1, 3, 5, 10, 20, 50), min_impurity_decrease (0 to 
0.01) and max_features (‘sqrt’, ‘log2’, 0.7, 0.8, 0.9).

Message passing neural networks (MPNN)
MPNN is a common framework for GNN that was used 
for chemical prediction in 2017 by Gilmer et al. [54], and 
it has shown versatility in many applications such as nat-
ural language processing, image segmentation, chemical/
molecular graphs, and so on. Many recently proposed 
GNN architectures for molecular property prediction 
can be formulated in this flexible framework [24, 26, 34, 
37]. In theory, MPNN operates the convolutions on undi-
rected molecular graphs G = (V, E) with node features 
Xv and edge features Ekm. The forward propagation of 
MPNN has two phases: message passing phase and read-
out phase. The message passing phase transmits infor-
mation across the molecular graph to learn a molecular 
embedding using the message functions Mt and node 
updating functions Ut, and the readout phase computes a 
feature vector for the whole molecular graph using some 
readout functions R to model the properties of inter-
est. More mathematical details are available in the study 
reported by Gilmer et al. [54] In the training of MPNN, 
the following hyper-parameters were optimized: L2 regu-
larization (0, 10e-8, 10e-6, 10e-4), learning rate (10e-2.5, 
10e-3.5, 10e-1.5), dimension of node feature in hidden 
layers (64, 32, 16), dimension of edge feature in hidden 
layers (64, 32, 16), and number of set2set layers (2,3,4). 
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The number of message passing steps and set2set steps 
were fixed to 6.

Graph convolutional networks (GCN)
To date, various GCN frameworks and variants have 
been proposed, and the most classical GCN model was 
introduced by Kipf et al. in 2017 [55]. Mathematically, it 
follows the propagation rule: H (l+1) = σ

(

D̂
− 1

2 ÂD̂
− 1

2 H (l)W (l)
)

 , 
where H (l) and W (l) denote the lth neural networks layer 
and its corresponding learnable parameters, respectively. 
σ represents a non-linear activation function. Generally, 
D and A are the degree matrix and adjacency matrix, 
respectively, Â = A+ I where I is the identity matrix, 
and D̂ is the diagonal node degree matrix of Â . The 
design of the D̂− 1

2 ÂD̂− 1
2 term is intended to add a self-

connection to each node and keep the scale of the feature 
vectors. From the message passing point of view, it can 
also be ascribed to the following two step: (1): aggregate 
neighbors’ information hv to produce an intermediate 
representation ĥu ; (2) transform the aggregated represen-
tation ĥu with a linear projection followed by a non-line-
arity activation: hu = σ

(

Wuĥu

)

 . In this study, the vanilla 
GCN model proposed by Kipf et al. was used and the fol-
lowing hyper-parameters were optimized: L2 regulariza-
tion (0, 10e−8, 10e−6, 10e−4), learning rate (10e−2.5, 
10e−3.5, 10e−1.5), dimension of FNN classifier (64, 128, 
256), and dimension of GCN hidden layers ([128, 128], 
[256, 256], [128, 64], [256, 128]).

Graph attention network (GAT)
GAT is an extension of the vanilla GCN model, and the 
biggest distinction between vanilla GCN and GAT is the 
way of neighboring information aggregation. In the 
vanilla GCN model, the graph convolution operation 
aggregates the normalized sum of neighboring informa-
tion. In the GAT, attention mechanisms by specifying dif-
ferent weights to different nodes are introduced and the 
corresponding graph convolution operation aggregates 
the weighed sum of neighboring information in a formu-
lation: H (l+1)

i = σ

(

∑

j∈N (i) α
(l)
ij W

(l)H
(l)
i

)

 , where α(l)
ij  is 

the normalized attention score between node i and node 
j in the lth graph convolution layer. W ,N (i) and σ are 
learnable weight matrix, the neighbors of node i , and 
non-linear activation function respectively. The calcula-
tion of the attention score and other details can be refer-
ence to the corresponding publication [56]. The 
application of attention mechanisms in the graph convo-
lution can force the model to learn the most meaningful 
parts in neighbors and local environment and it has 
gained preferable performance in comparison with other 
usual GCN architectures [27, 34, 56]. In the training of 
GAT model, the following key hyper-parameters were 

optimized for each task: L2 regularization (0, 10e−8, 
10e−6, 10e−4), learning rate (10e−2.5, 10e−3.5, 
10e−1.5), dimension of GAT hidden layers ([128, 128], 
[256, 256], [128, 64], [256, 128]), dimension of FNN clas-
sifier (64, 128, 256), and the number of attention heads 
([2, 2], [3, 3], [4, 4], [3, 4], [2, 3]).

Attentive FP
Attentive FP, proposed by Xiong et al. [27] is a state-of-
the-art GNN model for molecular property prediction. 
In Attentive FP, the recursive neural networks (RNN) 
was employed to agglomerate the structural informa-
tion encoding in molecular graph  from nearby to dis-
tant and update the state of centered atom. Moreover, a 
graph attention mechanism was introduced to allow the 
model to focus on the most relevant parts of the input. 
The results reported by Xiong et al. illustrated that Atten-
tive FP can achieve state-of-the-art predictions to a wide 
range of molecular properties (Table  1) [57]. The main 
hyper-parameters for Attentive FP include num_layers 
(the number of attentive layers for atom embedding), 
num_timesteps (the number of attentive layers for mol-
ecule embedding), graph_feat_size (fingerprint dimen-
sion), L2 regularization, learning rate, and dropout rate. 
Here, all those main hyper-parameters were optimized: 
L2 regularization (0, 10e-8, 10e-6, 10e-4), learning rate 
(10e-2.5, 10e-3.5, 10e-1.5), num_layers (2, 3, 4, 5, 6), 
num_timesteps (1, 2, 3, 4, 5), dropout (0, 0.1, 0.3, 0.5), 
and graph_feat_size (50, 100, 200, 300).

For the development of the four descriptor-based 
models, the DNN algorithm was implemented in the 
PyTorch package (Version: 1.3.1 + cu92) of Python (Ver-
sion: 3.6.5 × 64), and the XGBoost (Version: 0.80), RF 
and SVM algorithms were implemented in the scikit-
learn package (Version: 0.20.1) of Python [58]. All the 
four graph-based models were implemented by the Deep 
Graph Library (DGL) package (Version: 0.4.1) using 
PyTorch as the backend of Python [59].

Model training, optimization and evaluation protocols
In the first stage, the same training, validation and test 
sets at a ratio of 8:1:1 used by Attentive FP were also 
used in our study (Additional file 1 generated from the 
source code provided in the github). For the assessed 
ML algorithms, the prediction on the validation set 
was used to guide the optimization of hyper-param-
eters. The Tree of Parzen Estimators (TPE) algorithm 
was used to identify the best hyper-parameters for dif-
ferent ML models in 50 evaluations (Here four graph-
based models on the HIV and MUV datasets were in 
30 evaluations due to the high computation overhead). 
The TPE algorithm is an optimization algorithm under 
the sequential model-based global optimization frame 
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and capable of finding ideal hyper-parameters only 
through a few objective function evaluations. TPE was 
implemented by the hyperopt package (Version: 0.2) 
in Python (Version: 3.6.5 × 64) [60]. Then, in the sec-
ond stage, in order to alleviate the effect of the ran-
domness of data splitting, 50 independent runs with 
different random seeds for data splitting (training/vali-
dation/test = 8:1:1) were performed to evaluate each 
ML model in a more reliable way. Similarly, four graph-
based models on the HIV and MUV datasets were in a 
20 independent runs due to the high computation over-
head, and the optimized hyper-parameters determined 
in the first stage were straightly adopted. For avoiding 
overfitting and tremendous time consumption, all the 
neural network (NN)-based model (i.e. DNN, GCN, 
GAT, MPNN and Attentive FP) were trained in an early 
stopping way for all tasks if no validation performance 
improvement was observed in successive 50 epochs, 
and followed by the previous DNN hyper-parameter 
recommendations [25, 61], the maximum epoch was 
set as an empirical value of 300 for all the task. The 
additional check of the training logs also proved that 
this empirical value is enough to learn representative 
parameters for NN-based models. The training batch 
for most tasks was set as 128. However, this number 
was also merely empirical and could change depending 
on the complexity of model and data volume. All the 
model training and evaluation scripts were available in 
Additional file 2.

According to the recommendations of MoleculeNet 
benchmarks [32], the classification models were evalu-
ated by the area under the receiver operating charac-
teristic curve (AUC-ROC) for the classification tasks 
except the maximum unbiased validation (MUV) data-
set, which was evaluated by the area under precision-
recall curve (AUC-PRC) due to its extreme biased data 
distribution. The regression models were evaluated by 
root mean square error (RMSE). In a more diverse eval-
uation, we also considered mean absolute error (MAE) 
and R-Square (R2) metrics for regression model. As 
shown in Table  2, five datasets contain more than one 
task. The multi-task learning was applied in the devel-
opment of the five NN-based models including DNN, 
GCN, GAT, MPNN and Attentive FP for each multi-
task dataset, and the average performance across mul-
tiple tasks was reported. However, it is not practical to 
generalize the multi-task learning to traditional descrip-
tor-based models (i.e. SVM, XGBoost, and RF). In this 
case, each multi-task dataset was split into multiple 
single-task datasets and the individual descriptor-based 
model on each single dataset was trained, and then the 
average performance was reported in a similar way.

Model interpretation
ML algorithms usually function as a “black-box”, and 
how to interpret these complicated ML models remains 
a big challenge. Several interpretation methods have 
been proposed to uncover the “black-box” essence of 
ML algorithms and they can be roughly classified into 
two major categories: model-specific and model-agnos-
tic strategies. The model-specific strategies are relevant 
to the specific structure of a model, such as the fea-
ture weights for the simplistic linear model and feature 
importance determined by Gini index for RF model. 
One of the strengths for the model-agnostic strategies 
is that they do not depend on the specific model archi-
tecture and can mitigate the necessity to balance model 
performance and interpretability [62, 63]. Some model-
agnostic strategies such as sensitivity analysis have 
been applied in model interpretation but it becomes 
inefficient with the increase of model dimensionality 
[64, 65].

Here, a recently-developed model-agnostic inter-
pretation framework called SHapley Additive exPla-
nations (SHAP) was employed to interpret the ML 
models due to its both local and global interpretability 
[66]. SHAP method was inspired from the game theory 
and the corresponding SHAP value was employed to 
quantify the contributions of single players to a col-
laborative game [65]. Some published studies have 
demonstrated that SHAP method has high potential 
in understanding arbitrary complicated ML models 
[39, 65]. In a more specific way, this method defines an 
explanation model that belongs to a linear function of 
binary variables: f (x) ≈ g

(

z′
)

= ∅0 +
∑M

i=1 ∅iz
′

i , where 
z′ ∈ {0, 1}M denotes the absence (0) or presence (1) of 
a certain descriptor, and M is the number of molecular 
descriptors. ∅i is the so-called SHAP value, and similar to 
previous descriptions, it measures the impact of the pres-
ence or absence of a descriptor on the model output, and 
the sum of all descriptor attributions g

(

z′
)

 approximates 
the output f (x) of the original model. More details about 
this method can be found in the relevant publications 
[39, 65]. The SHAP method was implemented in the shap 
package (Version: 0.35.0) of Python software (Version: 
3.6.5 x64).

Washing of the benchmark datasets
Data quality is one of the fundamental questions in 
cheminformatics and the incorrect or inappropri-
ate structures contained in datasets would hinder 
the effort of developing reliable prediction models. 
Here we found that some salts, inorganics, counte-
rions, solvents, mixtures and even duplicates with 
inconsistent labels existing in the datasets provided 
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by Xiong et  al. [27], but we do not remove them 
first for the sake of fairness. The original data was 
reported by Wu et  al. and it is apparently unreason-
able to use such datasets for model building. In this 
regard, we developed a python script based on MOE 
(Version: 2015.1001) and RDKit (Version: 2019.09.1) 
to automatically eliminate the incorrect or inappro-
priate structures from the original datasets with the 
following steps: (1) For the mixtures and compounds 
containing salts, counterions, and solvents, we used 
a compromised method of keeping the major com-
ponent with the largest number of heavy atoms and 
the retained component was neutralized if possible. 
This step was accomplished by the sdwash module 
in MOE and the compounds that cannot be recog-
nized by MOE were eliminated; (2) A molecule was 
identified as an inorganics if it does not contain any 
carbon atom and then eliminated from the datasets. 
Similarly, the compounds that cannot be recognized 
by RDKit were also eliminated in this step; (3) Dupli-
cates were identified by the canonical SMILES gener-
ated from RDKit. After that, the duplicated records 
with inconsistent labels were removed.

Results and discussion
Performance of descriptor‑based and graph‑based models
At the outset, the same training, validation, and test sets 
for the development of the Attentive FP models were 
adopted, and the corresponding statistical results for the 
six single-task datasets including three regression tasks 
and three classification tasks given by the four descrip-
tor-based and four graph-based models are summarized 
in Table  3 (regression tasks) and Table  4 (classification 
tasks).

For the regression tasks, one of the graph-based mod-
els, Attentive FP, achieves the best statistical perfor-
mance on ESOL with the RMSE of 0.471 for the test 
set, and the performances of SVM (RMSE = 0.516) and 
DNN (RMSE = 0.553) are slightly worse than it. As we 
can see, the performances of three classical graph-based 
models (i.e., GCN, GAT and MPNN) and RF are obvi-
ously unpleasant on this dataset. For FreeSolv, both SVM 
and XGBoost offer considerable and comparable per-
formances with RMSE = 0.674 and 0.707 for the test set 
respectively, which are slightly better than that of DNN 
(RMSE = 0.724). With regard to Lipop, three methods 
including one graph-based method (Attentive FP) and 

Table 3  The performance comparison (RMSE) of  the  four descriptor-based and  four graph-based models on  the  three 
regression datasets (data folds were generated from Attentive FP and the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

ESOL 1127 1 RMSE SVM 0.158 0.624 0.516

XGBoost 0.188 0.511 0.571

RF 0.391 0.635 0.631

DNN 0.448 0.568 0.553

GCN 0.429 0.622 0.598

GAT​ 0.402 0.518 0.604

MPNN 0.467 0.546 0.665

Attentive FP 0.407 0.479 0.471

FreeSolv 639 1 RMSE SVM 0.347 0.423 0.674

XGBoost 0.106 0.685 0.707

RF 0.536 0.932 0.888

DNN 0.483 0.527 0.724

GCN 0.187 0.526 0.795

GAT​ 0.496 0.634 0.851

MPNN 0.316 0.772 1.050

Attentive FP 0.529 0.517 0.813

Lipop 4200 1 RMSE SVM 0.185 0.552 0.567

XGBoost 0.145 0.524 0.556

RF 0.481 0.625 0.649

DNN 0.210 0.553 0.591

GCN 0.315 0.573 0.612

GAT​ 0.409 0.602 0.676

MPNN 0.474 0.606 0.662

Attentive FP 0.282 0.521 0.559
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two descriptor-based methods (SVM and XGBoost) 
achieve similar performances with RMSE ≈ 0.560 for the 
test set and this predictive capability is superior to other 
methods, especially RF, GAT  and   MPNN. Clearly, the 
RF and three graph-based models (i.e., GCN, GAT and 
MPNN) show disappointing predictive capability to the 
three regression tasks. On average, SVM achieves the 
best predictions on the test sets of the regression tasks. 
XGBoost and Attentive FP perform similarly but slightly 
worse than SVM.

As for the three classification tasks including HIV, 
BACE and BBBP, it gets puzzled to tell which type of 
model, i.e. descriptor-based and graph-based, is supe-
rior in the light of statistical results only from one ran-
dom partition. However, it can be observed that three 
descriptor-based models (i.e. XGBoost, RF, and DNN) 
and two graph-based models (i.e. GCN and Attentive 
FP) are more powerful than the other models in general. 
Concretely, GCN and DNN offer almost the same pre-
dictions to HIV with AUC-ROC ≈ 0.857 for the test set, 
and three models including XGBoost, Attentive FP and 
RF are slightly worse than them with AUC-ROC ≈ 0.847. 
Besides, XGBoost and Attentive FP give the same 

performances on BACE with AUC-ROC = 0.889 for the 
test set, and DNN is slightly inferior to them with AUC-
ROC = 0.883 for the test set. For BBBP, both Attentive FP 
and RF offer the same predictive ability for the test set 
with AUC_ROC = 0.907, and SVM gives slightly worse 
results with AUC_ROC = 0.899 for the test set.

Next, the performances of the descriptor-based and 
graph-based models were further compared on the five 
multi-task datasets including ClinTox, SIDER, Tox21, 
ToxCast, and MUV. As shown in Table  5, it seems also 
struggling to distinguish which type of model is more 
promising. Here from the overall level, the models that 
perform well in the aforementioned three classification 
tasks (i.e. GCN, Attentive FP, XGBoost, RF and DNN) 
can still give satisfactory predictions to the five multi-task 
datasets. More specifically, for ClinTox, two descriptor-
based models (SVM and RF) and one-graph based model 
(GAT) give more promising predictions than the other 
models. For both SIDER and Tox21, two descriptor-
based models (XGBoost and RF) and one graph-based 
model (Attentive FP) share similar and more powerful 
predictions on the corresponding test sets. For MUV, 
one descriptor-based model (SVM) and two graph-based 

Table 4  The performance comparison (AUC_ROC) of the four descriptor-based and four graph-based models on the three 
classification datasets (data folds were generated from Attentive FP and the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

HIV 40748 1 AUC_ROC SVM 1.000 0.821 0.840

XGBoost 0.999 0.842 0.848

RF 0.962 0.805 0.846

DNN 0.978 0.835 0.858

GCN 0.994 0.862 0.857

GAT​ 0.997 0.853 0.825

MPNN 0.968 0.865 0.828

Attentive FP 0.905 0.852 0.847

BACE 1513 1 AUC_ROC SVM 0.976 0.883 0.861

XGBoost 1.000 0.898 0.889

RF 0.989 0.876 0.861

DNN 0.973 0.921 0.883

GCN 1.000 0.945 0.876

GAT​ 0.996 0.937 0.848

MPNN 0.972 0.921 0.848

Attentive FP 1.000 0.923 0.889

BBBP 2035 1 AUC_ROC SVM 0.988 0.922 0.899

XGBoost 0.977 0.946 0.886

RF 0.991 0.929 0.907

DNN 0.981 0.933 0.856

GCN 0.997 0.947 0.881

GAT​ 0.999 0.947 0.872

MPNN 0.944 0.961 0.889

Attentive FP 0.971 0.952 0.907
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models (GAT and Attentive FP) offer more promising 
results on the test set compared with the others.

To our surprising, five NN-based models including 
DNN, GCN, GAT, MPNN and Attentive FP yields much 
better prediction than three descriptor-based models to 
the ToxCast dataset (average AUC-ROC = 0.897 for five 

NN-based models and 0.760 for three descriptor-based 
models). The careful analysis of the Attentive FP source 
code suggests that the unreasonable data splitting for 
ToxCast may attribute to the over-optimistic predic-
tions of five NN-based models where multi-task learn-
ing was applied. More concretely, it is quite possible that 

Table 5  The performance comparison (AUC_ROC, MUV: AUC_PRC) of  the  four descriptor-based and  four graph-based 
models on  the  five multi-task classification datasets (data folds were generated from  Attentive FP and  the  top three 
model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

ClinTox 1475 2 AUC_ROC SVM 0.991 0.879 0.966

XGBoost 0.997 0.954 0.919

RF 0.972 0.939 0.964

DNN 0.993 0.943 0.956

GCN 0.987 0.967 0.901

GAT​ 0.992 0.965 0.968

MPNN 0.943 0.950 0.955

Attentive FP 0.951 0.961 0.944

SIDER 1366 27 AUC_ROC SVM 0.975 0.683 0.620

XGBoost 0.930 0.732 0.665

RF 0.934 0.678 0.659

DNN 0.939 0.658 0.639

GCN 0.940 0.697 0.647

GAT​ 0.924 0.681 0.602

MPNN 0.880 0.666 0.606

Attentive FP 0.985 0.651 0.670

Tox21 7811 12 AUC_ROC SVM 0.971 0.946 0.826

XGBoost 0.990 0.885 0.847

RF 0.981 0.861 0.858

DNN 0.941 0.849 0.854

GCN 0.992 0.857 0.837

GAT​ 0.985 0.844 0.830

MPNN 0.889 0.833 0.802

Attentive FP 0.984 0.870 0.847

ToxCast 8539 182 AUC_ROC SVM 0.987 0.731 0.724

XGBoost 0.973 0.836 0.773

RF 0.950 0.811 0.782

DNN 0.950 0.910 0.909

GCN 0.969 0.904 0.902

GAT​ 0.975 0.905 0.904

MPNN 0.860 0.858 0.849

Attentive FP 0.990 0.921 0.919

MUV 93087 17 AUC_PRC SVM 0.852 0.080 0.144

XGBoost 0.730 0.158 0.087

RF 0.707 0.061 0.091

DNN 0.030 0.031 0.024

GCN 0.115 0.063 0.052

GAT​ 0.187 0.113 0.134

MPNN 0.020 0.017 0.025

Attentive FP 0.090 0.030 0.141
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all positive samples or negative samples may occur for 
some columns of the data folds generated from a strongly 
biased subdataset in ToxCast based on the random data 
splitting and the average AUC-ROC cannot be calculated 
for such data folds accordingly (AUC-ROC metric cal-
culation error). In this case, Xiong et al. adopted a com-
promised splitting strategy where a stratified sampling 
at a ratio of 8:1:1 was individually applied to each single 
task of ToxCast to generate 182 independent training 
sets, validation sets and test sets for 182 different tasks 
[27]. After that, those independent training/validation/
test sets were merged one task by one task in an outer 
join manner to produce the final training/validation/
test set. It is the fact that the aforementioned situation 
(AUC-ROC metric calculation error) was well avoided, 
but the issue raised by such splitting strategy is the over-
estimated statistical results when multi-task learning was 
applied because many samples in the final test or valida-
tion sets will be included in the final training set. How-
ever, such situation (over-estimated statistical results) 
was well evaded by descriptor-based model where each 
single task was detached to train the model individually 
and no duplicated samples could occur in the data folds. 
More details about the data splitting used by Xiong et al. 
could be found in their webpage [67]. Besides, it is the 
same manner for the splitting of the biased MUV data-
set in Attentive FP. To our knowledge, a reasonable way 
to solve this problem is to change the random seed for 
data splitting if the randomly generated data folds suf-
fer from such situation. Hence, the obvious inferiority 
of three descriptor-based models on ToxCast compared 
with five NN-based models may be reasonably explained 
by the over-optimistic predictions of our NN-based mod-
els (what we will discuss later).

Actually, it seems arbitrary to judge which of models 
is better only based on the statistical results from one-
time run because of the randomness in data splitting. To 
evaluate the ML models in a more reliable way, 50 times 
independent runs based on different random seeds to 
split data into 50 different folds of training, validation, 
and test sets at the ratio of 8:1:1 were conducted for each 
dataset, and the average performance over the 50 folds 
with the corresponding standard deviation was used to 
evaluate the ML models. And the splitting strategy for 
the ToxCast and MUV datasets was revised. The cor-
responding statistical results for the 11 studied datasets 
given by eight assessed models are listed in Table 6 (three 
regression datasets), Table  7 (three single-task classifi-
cation datasets) and Table  8 (five multi-task classifica-
tion datasets). From the Table 8, it can be observed that 
the predictions to the randomly split ToxCast datasets 
(Table 5) are much worse than those to the data gener-
ated by the original splitting strategy used by Attentive 

FP (average AUC_ROC of five NN-based models: 0.897 
to 0.770), demonstrating the over-optimistic predictions 
given by five NN-based models based on the original 
splitting strategy. Here, it can be found that the average 
performance of the 50 times independent runs is worse 
than that of the one-time run for the 11 studied data-
sets. To our knowledge, many previous studies evaluated 
the ML models by only averaging the performance from 
three independent runs and their results may be sensitive 
to the randomness of data splitting [27, 32]. To well illus-
trate this point, we counted the average performances for 
the top three runs and the worst three runs among the 50 
times independent runs for XGBoost (Additional file  3: 
Table  S1). It can be recognized that the average perfor-
mances for the top three runs and the worst three runs 
have big discrepancies for XGBoost. Therefore, with the 
aim of alleviating the randomness of data splitting, it is 
recommended to conduct sufficient independent runs to 
evaluate ML models more reliably.

As shown in the Table 6, it can be recognized that two 
descriptor-based models (SVM and XGBoost) and one 
graph-based model (Attentive FP) generally give better 
performances than the other models, which is consist-
ent, to some extent, with the findings from the previous 
one random split. Among them, SVM gives the best pre-
dictions to the ESOL and FreeSolv datasets with average 
RMSE of 0.569 and 0.852 to the test sets, respectively. 
Attentive FP gives the best predictions to the Lipop 
dataset with average RMSE of 0.553 to the test set, and 
SVM and XGBoost are slightly worse than Attentive FP 
with RMSE ≈ 0.574. Here, XGBoost offers satisfactory 
but slightly worse predictions to all the three regres-
sion datasets (average RMSE = 0.582, 1.025, and 0.574 to 
ESOL, Freesolv, and Lipop respectively) compared with 
SVM and Attentive FP. In addition, the MAE and R2 
metrics given by the eight models on the three regres-
sion tasks were also calculated (Additional file 3: Tables 
S2 and S3). As shown in Additional file 3: Table S2 and 
S3, similar conclusions could be drawn where SVM, 
XGBoost and Attentive FP are well-performing regres-
sors and on average SVM is the best one. Here what we 
found from Table 6 is that the descriptor-based models, 
especially SVM, generally show much better training 
set performances in comparison with the graph-based 
models (especially for two smallest datasets FreeSolv 
and ESOL). However, some graph-based models, espe-
cially Attentive FP, are able to reach comparable predic-
tion results to the descriptor-based models for the test 
sets, implying that the descriptor-based models are more 
likely to be over-fitted and less generalized compared 
with the graph-based models learnt from small and 
chemically narrow datasets. As for the three single-task 
classification datasets shown in Table  7, what we can 
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find is that the four descriptor-based models are obvi-
ously superior to the four graph-based models on the 
BBBP dataset, where the average AUC_ROC of the four 
descriptor-based models is 0.924 compared with  that 
of 0.891 for the four graph-based models. Similarly, on 
average the four descriptor-based models can give more 
reliable predictions to the BACE dataset where the aver-
age AUC_ROC of the four descriptor-based models is 
0.891 compared with  that of 0.875 for the four graph-
based models. However, for the larger HIV, it seems 
that the graph-based models are slightly better than 
the descriptor-based models, implying that inclusion 
of more samples may be helpful to train a better graph-
based model. In some cases, one may need to re-train 
their ML models with the gradual accumulation of avail-
able experimental datasets. Such operations can benefit 
more to graph-based models due to their data-hungry 
essence, but the rapid accumulation of qualitied experi-
mental datasets is not an easy task. On the contrary, reg-
ular re-training of ML models by adding a small number 
of new compounds one time could be some of routine. 
Generally speaking, the optimization of hyper-parame-
ters is necessary when re-training ML models, especially 

for NN-based models where their performances are sen-
sitive to the hyper-parameters such as the initial param-
eters and learning rate. Compared with graph-based 
models, descriptor-based models such as RF or SVM 
may be more stable for a long time. With regard to the 
five multi-task datasets shown in Table 8, it can be found 
that the descriptor-based models, especially XGBoost 
and RF, achieve better predictions than the graph-based 
models on the ClinTox, SIDER and MUV datasets. How-
ever, one graph-based model, Attentive FP, achieves the 
best predictions to the two relatively large toxicity-rele-
vant datasets including Tox21 and ToxCast with average 
AUC_ROC of 0.852 and 0.794 to the test sets, respec-
tively, which may benefit from the multi-task learning 
and larger data volume. Numerous studies demonstrated 
that multi-task models have advantages over single-task 
models due to their ability to excavate the inconspicuous 
hidden relations between different subtasks and trans-
parently share the learned features among all the tasks 
[57, 68, 69]. Nevertheless, the performance of multi-task 
models is highly related to the favorable correlations of 
individual tasks but such ready-to-use tasks are not so 
commonly seen in practical drug discovery campaigns. 

Table 6  The performance comparison (average RMSE) of the 50 times independent runs on the three regression datasets 
for the eight models. (the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

ESOL 1127 1 RMSE SVM 0.149 ± 0.005 0.565 ± 0.038 0.569 ± 0.052

XGBoost 0.224 ± 0.057 0.573 ± 0.048 0.582 ± 0.056

RF 0.391 ± 0.008 0.664 ± 0.053 0.663 ± 0.074

DNN 0.492 ± 0.061 0.617 ± 0.060 0.670 ± 0.092

GCN 0.272 ± 0.049 0.650 ± 0.064 0.708 ± 0.068

GAT​ 0.300 ± 0.093 0.608 ± 0.083 0.658 ± 0.109

MPNN 0.463 ± 0.074 0.652 ± 0.051 0.700 ± 0.073

Attentive FP 0.390 ± 0.076 0.535 ± 0.045 0.587 ± 0.065

FreeSolv 639 1 RMSE SVM 0.307 ± 0.023 0.804 ± 0.192 0.852 ± 0.171

XGBoost 0.228 ± 0.168 0.988 ± 0.197 1.025 ± 0.185

RF 0.518 ± 0.011 1.129 ± 0.248 1.143 ± 0.230

DNN 0.574 ± 0.115 0.840 ± 0.158 1.013 ± 0.197

GCN 0.703 ± 0.127 0.872 ± 0.191 1.149 ± 0.262

GAT​ 0.937 ± 0.375 1.079 ± 0.204 1.304 ± 0.272

MPNN 0.824 ± 0.220 1.130 ± 0.245 1.327 ± 0.279

Attentive FP 0.720 ± 0.131 0.881 ± 0.207 1.091 ± 0.191

Lipop 4200 1 RMSE SVM 0.191 ± 0.005 0.566 ± 0.037 0.577 ± 0.039

XGBoost 0.191 ± 0.040 0.569 ± 0.033 0.574 ± 0.034

RF 0.478 ± 0.003 0.660 ± 0.031 0.659 ± 0.031

DNN 0.271 ± 0.068 0.583 ± 0.031 0.608 ± 0.034

GCN 0.360 ± 0.081 0.616 ± 0.038 0.664 ± 0.086

GAT​ 0.372 ± 0.084 0.658 ± 0.037 0.683 ± 0.060

MPNN 0.476 ± 0.065 0.640 ± 0.037 0.673 ± 0.038

Attentive FP 0.309 ± 0.045 0.533 ± 0.033 0.553 ± 0.035
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For the purpose of simplicity, we counted the top three 
models and the corresponding performances based on 
the results from 50 times independent runs for each 
dataset. As can be seen from Table  9, the descriptor-
based model achieves the best predictions to six out of 
11 datasets including ESOL, FreeSolv, BBBP, ClinTox, 
SIDER and MUV. Moreover, it can be observed that 
the top three models of all the datasets were mainly 
occupied by the descriptor-based models (the ratio is 
24/33 = 73%), substantiating the more powerful predic-
tive abilities of the descriptor-based models compared 
with the graph-based models. It is possible that the supe-
riority of the descriptor-based models for some datasets 
(ESOL, FreeSolv, and Lipop) may be partially contrib-
uted from the descriptors that are highly correlated to 
the target values (such as the ‘LogS’ descriptor for the 
ESOL dataset). To systematically check this problem, we 
removed the top three descriptors that are highly corre-
lated to the target values according to the Pearson’s cor-
relation coefficients (ESOL: ‘logS’, ‘h_logS’, and ‘SlogP’; 
FreeSolv: ‘vsa_pol’, ‘h_emd’ and ‘a_donacc’; Lipop: 
‘SlogP’, ‘h_logD’, and ‘logS’) and then used the remaining 

descriptors to reconstruct the four descriptor-based 
models based on the optimal hyper-parameter con-
figurations determined in the first evaluation stage. The 
evaluation metrics were also averaged from the 50 times 
independent runs (Additional file  3: Table  S4). It can 
be observed that the performance of the models devel-
oped based on the remaining descriptors do not show 
large difference compared with those developed based 
on the original descriptors. Moreover, we found that 
the descriptor-based models without thse high-related 
descriptors are still superior to the graph-based models 
(Additional file 3: Table S4). Here what we found is that 
the graph-based models can outperform the descriptor-
based models on some lager or multi-task datasets such 
as the HIV, Tox21 and ToxCast datasets, which is in well 
accordance with the previous conclusions where DNN 
excel at larger amounts of data and multi-task learn-
ing [68, 69]. However, to build such generalizable and 
robust deep models requires large-scale high-quality 
datasets and the datasets in the practical drug discovery 
campaigns routinely suffer from narrow chemical diver-
sity and insignificant sample sizes [70]. On the ground, 

Table 7  The performance comparison (Average AUC_ROC) of the 50 times  independent runs on the three classification 
datasets for the eight models. (the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

HIV 40748 1 AUC_ROC SVM 1.000 ± 0.000 0.825 ± 0.023 0.822 ± 0.020

XGBoost 0.990 ± 0.012 0.831 ± 0.022 0.816 ± 0.020

RF 0.963 ± 0.002 0.819 ± 0.021 0.820 ± 0.016

DNN 0.935 ± 0.040 0.825 ± 0.020 0.797 ± 0.018

GCN 0.984 ± 0.024 0.852 ± 0.023 0.834 ± 0.025

GAT​ 0.957 ± 0.036 0.841 ± 0.019 0.826 ± 0.030

MPNN 0.934 ± 0.040 0.828 ± 0.022 0.811 ± 0.031

Attentive FP 0.928 ± 0.052 0.839 ± 0.022 0.822 ± 0.026

BACE 1513 1 AUC_ROC SVM 0.979 ± 0.002 0.891 ± 0.026 0.893 ± 0.020

XGBoost 0.994 ± 0.010 0.903 ± 0.029 0.889 ± 0.021

RF 0.988 ± 0.001 0.896 ± 0.031 0.890 ± 0.022

DNN 0.976 ± 0.015 0.916 ± 0.024 0.890 ± 0.024

GCN 0.990 ± 0.018 0.921 ± 0.025 0.898 ± 0.019

GAT​ 0.981 ± 0.021 0.916 ± 0.024 0.886 ± 0.023

MPNN 0.926 ± 0.028 0.876 ± 0.030 0.838 ± 0.027

Attentive FP 0.970 ± 0.029 0.906 ± 0.033 0.876 ± 0.023

BBBP 2035 1 AUC_ROC SVM 0.988 ± 0.002 0.919 ± 0.029 0.919 ± 0.028

XGBoost 0.995 ± 0.005 0.938 ± 0.022 0.926 ± 0.026

RF 0.990 ± 0.001 0.929 ± 0.026 0.927 ± 0.025

DNN 0.990 ± 0.010 0.938 ± 0.022 0.922 ± 0.029

GCN 0.981 ± 0.018 0.931 ± 0.024 0.903 ± 0.027

GAT​ 0.987 ± 0.016 0.927 ± 0.022 0.898 ± 0.033

MPNN 0.961 ± 0.024 0.916 ± 0.030 0.879 ± 0.037

Attentive FP 0.972 ± 0.021 0.922 ± 0.027 0.887 ± 0.032
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we believe that the descriptor-based models can be still 
widely used and give reliable predictions in the drug dis-
covery campaigns.

In conclusion, regardless of the statistical results on 
the same data folds used by Attentive FP or a more reli-
able 50 times independent runs, what we found is that 

the traditional descriptor-based models generally out-
perform the state-of-the-art graph-based models. Among 
them, SVM is the best algorithm in modelling regression 
tasks. Both RF and XGBoost can be well-performing in 
modelling classification tasks, and some graph-based 
models, such as Attentive FP and GCN, can outperform 

Table 8  The performance comparison (Average AUC_ROC, MUV: Average AUC_PRC) of  the  50 times  independent runs 
on the five multi-task classification datasets for the eight models. (the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

ClinTox 1475 2 AUC_ROC SVM 0.922 ± 0.001 0.896 ± 0.048 0.888 ± 0.044

XGBoost 0.985 ± 0.009 0.938 ± 0.035 0.911 ± 0.036

RF 0.975 ± 0.003 0.918 ± 0.041 0.911 ± 0.042

DNN 0.984 ± 0.014 0.929 ± 0.041 0.884 ± 0.051

GCN 0.977 ± 0.020 0.945 ± 0.039 0.895 ± 0.046

GAT​ 0.989 ± 0.010 0.941 ± 0.033 0.888 ± 0.042

MPNN 0.895 ± 0.056 0.884 ± 0.069 0.847 ± 0.062

Attentive FP 0.965 ± 0.018 0.943 ± 0.033 0.904 ± 0.043

SIDER 1366 27 AUC_ROC SVM 0.953 ± 0.021 0.630 ± 0.025 0.630 ± 0.021

XGBoost 0.954 ± 0.010 0.694 ± 0.023 0.642 ± 0.020

RF 0.932 ± 0.001 0.655 ± 0.024 0.646 ± 0.022

DNN 0.814 ± 0.064 0.657 ± 0.029 0.631 ± 0.028

GCN 0.902 ± 0.047 0.656 ± 0.021 0.634 ± 0.026

GAT​ 0.865 ± 0.068 0.663 ± 0.024 0.627 ± 0.024

MPNN 0.741 ± 0.010 0.637 ± 0.030 0.598 ± 0.031

Attentive FP 0.834 ± 0.103 0.657 ± 0.024 0.623 ± 0.026

Tox21 7811 12 AUC_ROC SVM 0.972 ± 0.001 0.821 ± 0.013 0.817 ± 0.009

XGBoost 0.989 ± 0.005 0.857 ± 0.009 0.836 ± 0.010

RF 0.981 ± 0.001 0.840 ± 0.010 0.838 ± 0.011

DNN 0.920 ± 0.022 0.849 ± 0.012 0.840 ± 0.014

GCN 0.961 ± 0.019 0.846 ± 0.013 0.836 ± 0.016

GAT​ 0.946 ± 0.025 0.842 ± 0.013 0.835 ± 0.014

MPNN 0.896 ± 0.023 0.826 ± 0.014 0.809 ± 0.017

Attentive FP 0.939 ± 0.021 0.859 ± 0.012 0.852 ± 0.012

ToxCast 8539 182 AUC_ROC SVM 0.982 ± 0.007 0.723 ± 0.005 0.722 ± 0.006

XGBoost 0.976 ± 0.002 0.800 ± 0.004 0.774 ± 0.004

RF 0.949 ± 0.000 0.783 ± 0.005 0.782 ± 0.005

DNN 0.900 ± 0.021 0.797 ± 0.017 0.786 ± 0.019

GCN 0.891 ± 0.020 0.784 ± 0.019 0.770 ± 0.016

GAT​ 0.881 ± 0.021 0.782 ± 0.018 0.768 ± 0.018

MPNN 0.802 ± 0.033 0.746 ± 0.022 0.731 ± 0.021

Attentive FP 0.921 ± 0.037 0.804 ± 0.020 0.794 ± 0.017

MUV 93087 17 AUC_PRC SVM 0.834 ± 0.046 0.107 ± 0.036 0.112 ± 0.045

XGBoost 0.646 ± 0.064 0.095 ± 0.039 0.068 ± 0.028

RF 0.704 ± 0.019 0.053 ± 0.024 0.061 ± 0.032

DNN 0.027 ± 0.028 0.030 ± 0.031 0.021 ± 0.030

GCN 0.182 ± 0.012 0.067 ± 0.030 0.061 ± 0.034

GAT​ 0.151 ± 0.078 0.062 ± 0.028 0.057 ± 0.030

MPNN 0.011 ± 0.005 0.024 ± 0.022 0.016 ± 0.010

Attentive FP 0.066 ± 0.052 0.040 ± 0.034 0.038 ± 0.024
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the descriptor-based model on some larger or multi-task 
datasets.

Computational consumption of different ML algorithms
It is worthwhile mentioning that an optimal predictive 
model should have a good balance between prediction 
accuracy and computational efficiency. As we all know, the 
run time complexity of SVM is quadratic to the number of 
training data [36]. As can be seen from Table 10, it takes 
a few seconds (average wall-clock time) to fit a model for 
the tasks whose data size is less than 4000. However, the 
average wall-clock time is centupled when fitting the larg-
est HIV dataset (data size of 40,748). That is to say, SVM is 
a good choice in dealing with small to medium datasets, 
but it will be frustrated when dealing with large datasets. 
To some extent, the same problem exists for the NN-based 
methods, which highly depend on the acceleration of 
graphics processing units (GPU) cards. However, XGBoost 
and RF provide a parallel tree training with high efficiency, 
and one of their strengths is the speed [40].

Here, we summarized the training speed of the four 
descriptor-based and four graph-based models on the six 
single-task datasets (Table 10), and the training speed was 
evaluated by the mean wall-clock time (seconds) from 
five independent runs where each run is to fit one corre-
sponding model using the corresponding optimal hyper-
parameters. It is worthwhile that the training speed of 
ML models can partly depend on the used hyper-param-
eters, such as the hidden layers of DNN, the trees of RF 
model and the graph convolution layers of GNN model. 
In this study, the training speed of all the ML models 
were evaluated under the corresponding optimal hyper-
parameters determined in the first stage of performance 
comparison. In addition, we shall emphasize that we are 
not analyzing the time and space complexity of different 
algorithms theoretically but intend to provide intuitive 
and touchable elapsed time of different algorithms under 
the affordable computational resources. All the compared 
algorithms were implemented by the recognized python 
packages (i.e., scikit-learn, PyTorch and PyTorch-based 

Table 9  The top three model and  corresponding performances based on  the  results from  50 times  independent 
runs for  each dataset. (the descriptor-based models were colored as  italic and  the  graph-based model were colored 
as undeline)

Dataset No. Tasks Metric Top 1 Top 2 Top 3

ESOL 1127 1 RMSE SVM (0.569 ± 0.052) XGBoost (0.582 ± 0.056) Attentive FP (0.587 ± 0.065)

FreeSolv 639 1 RMSE SVM (0.852 ± 0.171) DNN (1.013 ± 0.197) XGBoost (1.025 ± 0.185)

Lipop 4200 1 RMSE Attentive FP (0.553 ± 0.035) XGBoost (0.574 ± 0.034) SVM (0.577 ± 0.039)

HIV 40748 1 AUC_ROC GCN (0.834 ± 0.025) GAT (0.826 ± 0.030) SVM (0.822 ± 0.020)

BACE 1513 1 AUC_ROC GCN (0.898 ± 0.019) SVM (0.893 ± 0.020) RF (0.890 ± 0.022)

BBBP 2035 1 AUC_ROC RF (0.927 ± 0.025) XGBoost (0.926 ± 0.026) DNN (0.922 ± 0.029)

ClinTox 1475 2 AUC_ROC XGBoost (0.911 ± 0.036) RF (0.911 ± 0.042) Attentive FP (0.904 ± 0.043)

SIDER 1366 27 AUC_ROC RF (0.646 ± 0.022) XGBoost (0.642 ± 0.020) GCN (0.634 ± 0.026)

Tox21 7811 12 AUC_ROC Attentive FP (0.852 ± 0.012) DNN (0.840 ± 0.014) RF (0.838 ± 0.011)

ToxCast 8539 182 AUC_ROC Attentive FP (0.794 ± 0.017) DNN (0.786 ± 0.019) RF (0.782 ± 0.005)

MUV 93087 17 AUC_PRC SVM (0.112 ± 0.045) XGBoost (0.068 ± 0.028) RF (0.061 ± 0.032)

Table 10  The mean wall-clock time (seconds) for the six single-task datasets given by the four descriptor-based and four 
graph-based models

a  SVM was implemented with the scikit-learn package and run in a single thread (CPU: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz); bXGBoost and RF were 
implemented with the scikit-learn package and run in six parallel threads (CPU: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz); cDNN was implemented with PyTorch 
package and run in a single GPU card (NVIDIA GEFORCE RTX 2080 Ti with video memory of 11G); dGCN, GAT, MPNN and Attentive FP were implemented with DGL 
package using PyTorch as the backend and run in a single GPU card (NVIDIA GEFORCE RTX 2080 Ti with video memory of 11G); All tested NN-based models were 
trained with a batch-size 128 in early-stopping way as described in ‘Materials and methods’ (HIV with a batch-size 128*5 due to the large data volume)

Dataset SVMa XGBoostb RFb DNNc GCNd GAT​d MPNNd Attentive FPd

FreeSolv (639) 0.17 0.209 1.429 6.27 18.458 29.37 77.85 20.927

ESOL (1127) 0.51 0.329 0.342 9.032 68.197 80.597 181.114 59.199

Lipop (4200) 6.431 7.379 5.722 28.686 159.879 151.191 611.048 652.777

BACE (1513) 2.105 0.327 1.327 8.911 108.967 156.074 630.748 137.291

BBBP (2035) 8.033 0.242 0.873 6.74 83.062 129.817 316.224 98.743

HIV (40748) 852.312 23.653 14.118 215.965 867.148 1122.126 1867.602 677.536
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DGL), and more details can be accessed from the foot-
note of Table 10. The choice of one-core, multi-cores or 
GPU largely depends on the inherent nature and com-
mon usage scenarios of algorithms, and what we try to 
present here is more likely a kind of rough users’ experi-
ence under the common usage scenarios, not the exactly 
CPU or GPU-time.

As shown in Table  10, the training speed for the 
descriptor-based models is overwhelmingly faster than 
that of the graph-based models. For the three tradi-
tional descriptor-based models, only a few seconds were 
needed to finish the training of a model to most datasets. 
Among them, XGBoost and RF are the two most efficient 
algorithm and they are also able to manage big data with 
high proficiency. As expected, SVM performs efficiently 
on the relatively small datasets but its practicability will 
become much worse for large datasets. The descriptor-
based DNN models show higher computability than 
GCN, GAT, MPNN and Attentive FP, but all the NN-
based models are highly dependent on GPU acceleration 
as mentioned above. Here, the top-performing graph-
based algorithm, Attentive FP, demonstrates affordable 
computational efficiency compared with its counterparts. 
Among the four graph-based models, the vanilla GCN 
model is the most efficient algorithm and MPNN model 
is the worst one, which is in line with the common sense 
where the frameworks of vanilla GCN model are much 
simpler than that of MPNN model. Actually, the total 

wall-clock time including the hyper-parameter selection 
for each model was also analyzed but the conclusions are 
basically similar to the results discussed above (data are 
not shown).

Briefly, in terms of computational cost, the descrip-
tor-based models are basically more efficient than the 
graph-based models. Among them, XGBoost and RF 
give the best computational efficiency and it only needs 
a few seconds to train a model even for a large dataset. 
The descriptor-based DNN method is the most efficient 
one in its counterparts including GCN, GAT, MPNN and 
Attentive FP, but the training of them largely depends on 
GPU acceleration.

The interpretation of XGBoost Model
To check whether the learned knowledge from XGBoost 
is interpretable and reasonable, the SHAP method 
was used to analyze and interpret the developed mod-
els. Here, the XGBoost models for a regression dataset 
(ESOL) and a classification dataset (BBBP) were used 
as the examples. The top 20 representative molecular 
descriptors and the corresponding SHAP values are pre-
sented in Fig. 2.

ESOL: ESOL is a small regression dataset for aqueous 
solubility. As can be seen from Fig. 2a, the most impor-
tant descriptor given by the XGBoost model is h_logS, 
which represents the logarithm of aqueous solubility 
(mol/L). The feature value and SHAP value in Fig.  2a 

Fig. 2  Importance of the representative molecular descriptors (the top 20) and the corresponding SHAP values given by XGBoost for the a ESOL 
and b BBBP datasets. One molecule gets one dot on each descriptor’s line and dots stack up to show density
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illustrate a clear positive correlation between the values 
of h_logS and the values of aqueous solubility, that means 
a higher h_logS will increase the aqueous solubility of a 
compound and vice versa, which is well in line with the 
expert knowledge. In Fig. 2a, h_logD (the octanol/water 
distribution coefficient at pH = 7), which is related to the 
hydrophobicity of molecules, is the second most impor-
tant descriptor, and it presents a clear negative correla-
tion with the value of aqueous solubility. This finding also 
well accords with the general phenomenon that higher 
hydrophobicity means lower solubility. In addition, the 
most significant parameter in the linear regression model 
for estimating the aqueous solubility of a compound 
developed by Delaney et  al. is also a descriptor highly 
related to hydrophobicity (logPoctanol) [71]. Other two 
significant descriptors, including vsurf_D1 and vsurf_D7 
that measure the hydrophobic volume of a molecule, are 
highly related to hydrophobicity. Similar to h_logD, both 
of them have negative correlations with aqueous solubil-
ity, which is also well explainable where a higher hydro-
phobic volume will decrease the solubility of molecules.

BBBP
BBBP is a classification dataset for the blood–brain bar-
rier (BBB) penetration of compounds. As we can see 
from Fig. 2b, a number of the representative descriptors 
show clearly inverse correlations with BBB permeability, 
especially the descriptors a_don, SlopP_VSA2, h_ema 
and PubchemFP659 (2-(methylamino)ethan-1-ol sub-
sturcture), implying higher values of such descriptors 
will block molecules to cross the BBB. Here, compared 
with the SHAP value distributions of other descriptors, 
that of opr_leadlike (Oprea’s lead-like test) shows a huge 
difference due to the clear and successive blue dots on 
the left part of Fig.  2b, indicating that opr_leadlike has 
positive correlations with BBB permeability. That’s to 
say, compounds with more lead-likeness would be more 
likely to cross the BBB. Here, most of those descrip-
tors with inverse correlations with BBB permeability 
are polar-related descriptors, such as a_don (number of 
hydrogen bond donor atoms), h_ema (sum of hydrogen 
bond acceptor strengths) and PubchemFP659 (2-(meth-
ylamino)ethan-1-ol substurcture). This is consistent with 
the well-known fact that highly polar compounds have 
very low BBB permeation.

Virtual screening profile analysis of different ML methods
Many efforts have been dedicated to improving the pre-
diction accuracy of different ML algorithms for molecu-
lar property prediction. In reality, these models can be 
served as VS tools to search for potential candidates from 
large chemical libraries and promote the discovery pro-
cess. In our opinion, the efforts to improve the predictive 

accuracy and explore the VS profiles of different ML 
methods have the same priority because different ML 
models may offer quite different predictions in practical 
VS campaigns even they have similar predictive accuracy, 
which may directly determine what kinds of candidates 
are experimentally tested. To this end, a case study was 
conducted by identifying potential inhibitors towards 
HIV replication through the four descriptor-based and 
four graph-based models, and the small molecule drugs 
deposited in DrugBank (Version: 5.1.5) were virtually 
screened by these models. All the explored models were 
developed based on the training set of the HIV dataset, 
optimized by the corresponding validation set and vali-
dated by the corresponding test set (the data folds were 
kept the same as those used in the first evaluation stage). 
The choice of this dataset was considered because of its 
relatively large data size and a more realistic propor-
tion between inhibitors and noninhibitors. Prior to the 
screening, the polymers, inorganics, mixtures, salts were 
removed from the DrugBank small molecule drug data-
base. The duplicated compounds between the DrugBank 
database and the training set were also eliminated from 
the database. Finally, the remaining 1960 small molecule 
drugs were used for screening. The output probabil-
ity given by the optimal model was used as the score to 
measure the HIV replication inhibition ability (Fig.  3). 
The higher the prediction score is, the greater the likeli-
hood of being a HIV inhibitor is, and vice versa.

It can be observed that the distributions of the pre-
diction scores for the 1960 molecules given by the eight 
models vary from one to another although these models 
have similar prediction accuracy (Table 4). If an arbitrary 
threshold of 0.5 was used to classify inhibitors and non-
inhibitors, the number of potential inhibitors given by the 
eight models are 7, 7, 45, 329, 86, 90, 158 and 284 respec-
tively, highlighting the large difference of the predictions 
among different models. It seems that the conventional 
descriptor-based models (SVM, XGBoost and RF) are 
inclined to give more conservative predictions and the 
NN-based models are opposite. Among the eight mod-
els, SVM and XGBoost are the most two conservative 
models where only seven inhibitors were predicted by 
them. Inversely, the descriptor-based DNN model is the 
most radical one and about 17% compounds (329/1960) 
in the DrugBank database were predicted as inhibitors. 
Furthermore, the Euclidean distance of the prediction 
score distributions for the 1960 drugs given by any two 
models was used to investigate the VS profile similarity 
of model pairs, and the lower this distance is, the more 
similar between the VS profiles of two models is, and vice 
versa (the minimum and maximum of this distance here 
are 0 and 44.27, respectively). As shown in Fig.  4, with 
the exception of the SVM and XGBoost model pair, it is 
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apparent that the Euclidean distances of the prediction 
scores between any two of the eight models are relatively 
high, demonstrating that different ML models could per-
form very differently in practical VS campaigns.

In order to uncover the structural features of the poten-
tial HIV inhibitors predicted by different ML models. 
The top 20 compounds with the highest scores given 
by each model were decomposed into different struc-
tural fragments and analyzed using Pipeline Pilot 2017. 

Three types of structural fragments were used, includ-
ing Murcko Assemblies (contiguous ring systems plus 
chains that link two or more rings), Ring Assemblies 
(contiguous ring systems), and Bridge Assemblies (con-
tiguous ring systems that share two or more bonds). The 
generated fragments were counted and the representa-
tive fragments whose counts are higher than or equal to 
four (not consider the common benzene component) for 
each model are shown in Fig. 5 (descriptor-based models) 
and Fig. 6 (graph-based models). As expected, the struc-
tural features of the potential inhibitors given by different 
models are highly diverse, demonstrating that different 
ML models are inclined to identify different sets of candi-
dates and their diverse performances may be contributed 
from the different features used in training and the dif-
ferent principles of the algorithms. In addition, in the top 
160 compounds given by the eight ML models (20 com-
pounds for each model), 116 compounds are unique, and 
only a small fraction of compounds (10) were ranked in 
the top 20 in any three models, which also supported the 
aforementioned argument. Among the 10 compounds, 
it is pleasurable to observe that one compound used 
to combat HIV/AIDS, zidovudine, was predicted as a 
promising HIV inhibitor by all the eight models (Fig. 6e). 
Here we found that the inhibitors predicted by the eight 
models share some nitrogen or oxygen heterocyclic 
components, four models including SVM, XGBoost, RF 
and GAT have the tetrahydrofuran component in their 

Fig. 3  The distributions of the prediction scores for the 1960 screened molecules predicted by the four descriptor-based models including a SVM, 
b XGBoost, c RF, d DNN and the four graph-based models including e GCN, f GAT, g MPNN and h Attentive FP

Fig. 4  The heat map of the Euclidean distances of the prediction 
scores for different model pairs
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predicted inhibitors and two models including GCN 
and MPNN have the tetrahydro-2H-pyran component 
in their predicted inhibitors. The structural features 
given by the SVM and GAT models are highly overlap-
ping. However, for all the eight ML models, no common 
structural component was found and the representative 
structural features given by the Attentive FP model show 
a high diversity. All in all, the structural features of the 
identified candidates by different ML models are diverse 
from each other. 

Washing results of the benchmark datasets
As described above, three washing steps were developed 
to automatically eliminate the incorrect or inappropri-
ate structures from the original datasets. The washed 
datasets containing the original columns coupled with 
the canonical SMILES column were output as the final 
datasets. All of them are available in Additional file 1 and 
the detailed information of them are listed in Additional 
file 3: Table S5. As shown in Additional file 3: Table S5, 
several datasets, including BBBP, ClinTox, SIDER, Tox21, 
and ToxCast, contain relatively large numbers of incor-
rect or inappropriate structures (the ratio of the number 
of the removed compounds to its original number is large 
than 4%). In order to check the effect of the eliminated 
structures on model performance, two representative 

algorithms (i.e., XGBoost and Attentive FP) were used 
to build the prediction models for the washed datasets 
of BBBP, Tox21, ToxCast, and SIDER. The same hyper-
parameters described above were used in model build-
ing. Similarly, the models were validated by 50 times 
independent runs and the statistical results are listed in 
Additional file  3: Table  S6. It can be observed that the 
predictions of the models to the washed datasets do not 
show large difference compared with those to the original 
datasets. The predictions to the washed datasets of BBBP 
become slightly better for both models, while those to the 
washed datasets of ToxCast and SIDER become slightly 
worse for both models. And the predictions to the 
washed datasets of Tox21 get slightly better for XGBoost 
and slightly worse for Attentive FP. However, it should be 
noted that our purpose is not highlighting the impact of 
incorrect or inappropriate structures on the predictive 
accuracy of models but merely points out that the quality 
of the public datasets should be carefully checked.

Conclusion
GNN has gained great interest in molecular property 
prediction due to its ability to learn molecular repre-
sentations automatically. It appears that most studies 
reported so far have drawn the conclusion that GNN 
is more promising than traditional descriptor-based 

Fig. 5  The structural features of the potential inhibitors given by the four descriptor-based models including a SVM, b XGBoost, c RF and d DNN
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models. In this study, we demonstrated that on average 
the descriptor-based models outperform the graph-based 
models in the predictions of a variety of molecular prop-
erties in terms of predictive accuracy and computational 
efficiency. SVM generally gives the best predictions to 
regression tasks. Both XGBoost and RF can give reli-
able predictions to classification tasks, and graph-based 
methods, such as GCN and Attentive FP, can offer out-
standing performance on a fraction of larger or multi-
task datasets. In terms of computational efficiency, 
XGBoost and RF have fast computability and only need 
a few seconds to train a model even for a large dataset. 
Moreover, descriptor-based model can be well inter-
preted by the SHAP method. Finally, the ML models 
were used to conduct a VS study towards HIV, and the 
results demonstrate that different ML algorithms offer 
diverse VS profiles. In conclusion, our study illustrates 
that the descriptor-based models are able to achieve bet-
ter or comparable predictions to the highly-intricate and 
specialized graph-based models in terms of prediction 
accuracy, computability and interpretability.
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