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Abstract 

We present RegioSQM20, a new version of RegioSQM (Chem Sci 9:660, 2018), which predicts the regioselectivities of 
electrophilic aromatic substitution (EAS) reactions from the calculation of proton affinities. The following improve-
ments have been made: The open source semiempirical tight binding program xtb is used instead of the closed 
source MOPAC program. Any low energy tautomeric forms of the input molecule are identified and regioselectiv-
ity predictions are made for each form. Finally, RegioSQM20 offers a qualitative prediction of the reactivity of each 
tautomer (low, medium, or high) based on the reaction center with the highest proton affinity. The inclusion of 
tautomers increases the success rate from 90.7 to 92.7%. RegioSQM20 is compared to two machine learning based 
models: one developed by Struble et al. (React Chem Eng 5:896, 2020) specifically for regioselectivity predictions of 
EAS reactions (WLN) and a more generally applicable reactivity predictor (IBM RXN) developed by Schwaller et al. (ACS 
Cent Sci 5:1572, 2019). RegioSQM20 and WLN offers roughly the same success rates for the entire data sets (without 
considering tautomers), while WLN is many orders of magnitude faster. The accuracy of the more general IBM RXN 
approach is somewhat lower: 76.3–85.0%, depending on the data set. The code is freely available under the MIT open 
source license and will be made available as a webservice (regiosqm.org) in the near future. 
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Introduction
Halogenated derivatives of heteroaromatics and benzene 
derivatives are often applied as substrates in carbon-car-
bon and carbon-heteroatom cross-coupling reactions[1, 
2] and are typically prepared by electrophilic aromatic 
substitution (EAS). However, it is often not a priori 
obvious at which position(s) halogenation will occur for 
compounds in the late stages of the synthesis that con-
tain multiple (hetero)aromatic rings or in compounds 
that contain both heteroarene and benzene rings. Con-
sequently, organic chemists tend to install the halogens 
early in the synthesis, thereby effectively eliminating a 

large number of otherwise promising synthetic routes. 
Furthermore, EAS is also an important tool in late stage 
functionalization [3], which utilizes the C–H bonds of 
drug leads as points of diversification for generating new 
analogs, if the regioselectivity can be predicted.

Several predictive tools have been developed to address 
this problem based on heuristics [4], quantum chemi-
cal calculations (QM),[5] machine learning (ML) [6, 7] 
or a combination of QM and ML [8, 9]. Furthermore, 
ML-based software that predict retrosynthetic pathways 
[10–17] are also implicitly trained to predict the regiose-
lectivity of EAS reactions [14]. However, these methods 
are trained on a much broader dataset and their a gain 
in generality could lead to a loss in single reaction type 
accuracy. One of the former methods is the RegioSQM 
method developed by Kromann et  al. [5] (referred to 
hereafter as RegioSQM18). RegioSQM18 uses the sem-
iempirical PM3 method [18] and the COSMO continuum 
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solvation model [19] implemented in the MOPAC pro-
gram. MOPAC is a closed-source software package that is 
free to academics but not to industry, so we decided to 
investigate open source alternatives for further develop-
ment of RegioSQM. In this paper, we show that the open 
source semiempirical software package xtb can be used 
in place of MOPAC without impacting the accuracy of 
the predictions. We go on to show that the accuracy can 
be increased by considering different tautomeric forms 
of the molecule and offer a qualitative prediction of the 
reactivity of each tautomer. Finally, we compare the accu-
racy of the new version (RegioSQM20) to two ML-based 
models for regioselectivity predictions.

Computational methodology
Figure 1 illustrates the EAS mechanism using the bromi-
nation of fluorobenzene as an example. The mechanism 
is relatively simple and involves the addition of an elec-
trophile to the aromatic ring to form a σ-complex (also 
called a Wheland intermediate or an arenium ion), which 
usually determines the regioselectivity of EAS reactions 
with Br and Cl. Hence, free energy calculations of differ-
ent protonated regioisomers, corresponding to different 
σ-complexes and thereby different reaction pathways, 
can be used to predict the regioselectivity.

The procedure of RegioSQM20 is fully automated 
with the only user input being a SMILES (simplified 
molecular input line entry system) representation of a 
given molecule (see Fig. 2). RegioSQM20 will then gen-
erate tautomers using TautomerEnumerator in RDKit 
2020.03.1 [20] and all tautomers will go into a conforma-
tional search algorithm. Note that if a tautomer is gen-
erated adjacent to a chiral center, the output structure/
SMILES will have that center removed. In this algorithm, 
min(1+ 3 · nrot, 20) conformers are generated for each 
tautomer, where nrot is the number of rotatable bonds. 
The conformers are then optimized in methanol (MeOH, 

dielectric = 33.6) using the fast force-field version of xTB 
called GFNFF-xTB and the generalized Born (GB) model 
with solvent accessible surface area (SASA) termed GBSA 
[21]. Compared to RegioSQM18, this new implementa-
tion generates conformers using EmbedMultipleConfs 
from RDKit with ETversion=2 instead of ETversion=1. 
After this procedure, all conformers with relative total 
energies below 3 kcal/mol are clustered with the Butina 
algorithm in RDKit to find unique conformers using the 
pairwise heavy-atom position root mean square devia-
tion (RMSD) with a threshold of 0.5 Å. The cluster cen-
troids are then re-optimized in MeOH using GFN1-xTB 
and the GBSA solvation model in order to find the low-
est energy conformers [22]. After both optimizations, the 
input and output structures are compared by converting 
the Cartesian coordinate file (.xyz) into a structure-data 
file (.sdf ) using Open Babel 2.4.1 [23]. If the atom con-
nectivity is different, due to e.g. an intramolecular proton 
transfer reaction or a broken/created bond, the energy of 
the molecule is set to 60,000 kcal/mol. In case the force-
field calculation fails, the initial RDKit structure will be 
used as the input structure for the GFN1-xTB calcula-
tion. Hereafter, RegioSQM20 selects all tautomers with 
relative total energies below 15 kcal/mol and locates all 
unique reaction centers to generate single protonated 
forms of the tautomers. These protonated molecules are 
then sent into the conformational search algorithm to 
find their lowest energy conformer. Subsequently, the 
proton affinities are calculated as the energy difference 
between the unprotonated and protonated forms. Note 
that we neglect the energy of the proton in solution, since 
the qualitative reactivity categorization is based on com-
paring the proton affinities to cutoff values where this 
term is also neglected. The predicted EAS sites are then 
identified as the reaction centers with proton affinities 
within 1 kcal/mol (“Corr”-green) and 3 kcal/mol (“Semi”-
red) of the highest proton affinity. Finally, the tautomers 

Fig. 1  The mechanism of an electrophilic aromatic substitution (EAS) reaction using fluorobenzene as an example. RegioSQM approximates the Br 
σ-complex as protonation (shown as blue structures) and determines regioselectivity by finding the protonated isomer with lowest free energy
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are drawn and their respective EAS sites are highlighted 
as seen in Fig. 3. All tautomers are labelled with the rela-
tive energies of the unprotonated forms and the pre-
dicted reactivity based on the highest proton affinity of 
each tautomer.

The CPU timings are obtained on four Intel(R) Xeon(R) 
CPU X5550 @ 2.67GHz cores. The source code is freely 
available on GitHub (https​://githu​b.com/jense​ngrou​p/

Regio​SQM20​) and will be made available as a web service 
at regiosqm.org in the near future.

Results and discussion
Switching from PM3 to GFN‑xTB
RegioSQM18 was developed and tested using 535 EAS 
reactions collected from the literature [5] and we use the 
same data set to guide the development of RegioSQM20. 

Generate 1 + 3 ･ (number of rotatable bonds)
or a maximum of 20 conformers using RDKit,

and save structures as .sdf files.

Run GFNFF-xTB optimizations
in methanol using .xyz as input.

Check input/output connectivity.
If mismatch: E = 60,000 kcal/mol.

Check input/output connectivity.
If mismatch: E = 60,000 kcal/mol.

Convert .sdf to .xyz format
using Open Babel.

Convert output .xyz to
.sdf format using Open Babel.

List of SMILES.

Generate tautomers
for each SMILES using RDKit.

Select all unique conformers (RMSD > 0.5 Å)
with relative energies below 3 kcal/mol.

Run GFN1-xTB optimizations
in methanol using .xyz as input.

Find the lowest energy conformer.

Select all tautomers with
relative energies below 15 kcal/mol.

Generate protonated forms by locating all
unique reaction centers of each tautomer.

Calculate proton affinities for all
reaction centers of each tautomer.

Identify all possible EAS sites within
thresholds of 1 kcal/mol ("Corr" - green) and
3 kcal/mol ("Semi" - red) for each tautomer.

Draw all tautomers for each SMILES
and highlight the predicted EAS sites.

Convert output .xyz to
.sdf format using Open Babel.

1
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Fig. 2  A flowchart describing the procedure of RegioSQM20

https://github.com/jensengroup/RegioSQM20
https://github.com/jensengroup/RegioSQM20
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The dataset includes twenty monocyclic systems ranging 
from pyrrole to 1,2,4-triazine-3,5(2H,4H)-dione and 64 
bicyclic systems. Important aromatic systems like ben-
zene and pyridine as well as indazole and 7-azaindole are 
well-represented with 16-214 examples, but the analysis 
also includes a number of less common heteroaromat-
ics like pyridazin-3(2H)-one and imidazo[1,2-a]pyrimi-
dine with 1 and 2 examples, respectively. See reference 
[5] for more information. RegioSQM18 predicts the cor-
rect regioselectivity for 488 of the 535 reactions, while 
30 and 17 are predicted semi-correctly and incorrectly, 
respectively (Table 1). A correct prediction is one where 
all experimentally observed sites have predicted proton 
affinities within 1 kcal/mol of the highest proton affin-
ity (marked as green in Fig. 4). The definition of a semi-
correct prediction is the same as a correct prediction 
except that the 1 kcal/mol cutoff is changed to 3 kcal/mol 
(marked as red in Fig. 4). Finally, an incorrect (or failed) 
prediction is one where at least one experimentally 
observed site is not predicted correctly. We repeated the 
calculations with GFN1-xTB and GFN2-xTB in combina-
tions with a variety of solvents and found that GFN1-xTB 
and methanol gave the most accurate results with 486, 
27, and 22 correct, semi-correct, and failed predictions 

(Table 1 and Additional file 1: Fig. S1). This result is very 
similar to those obtained with PM3 and shows that an 
open source method can be used instead of PM3.

Using the GFN1-xTB/GBSA method increases the 
median CPU time requirement from 43 to 60 s and the 
total time for all 535 increases from 10 to 17 h. In order 
to mitigate the increased computational cost, we tested 
the use of the GFNFF-xTB force field to pre-screen the 
conformers. If only conformers with GFNFF-xTB/metha-
nol energies within 3 kcal/mol of the lowest energy con-
former are re-optimized using GFN1-xTB/methanol then 
the number of correct, semi-correct, and failed predic-
tions (485, 29, and 21) are essentially unchanged (Table 1) 
while decreasing the median CPU time per molecule to 
33 s and total time to 8 h.

Tautomers
The experimental regioselectivity data we use is collected 
from the literature and the tautomeric forms of the mol-
ecules in that data set are those displayed in the respec-
tive publications. A few exploratory calculations revealed 
that the tautomeric form of the molecule can have an 
impact on the predicted regioselectivity, so we decided 
to address this issue in a more systematic fashion. If we 

Fig. 3  An example of the output of RegioSQM20. Tautomers are depicted with relative energies (only including those below 15 kcal/mol) along 
with an estimate of their reactivity based on the highest proton affinity. The highlighted atoms represent the predicted EAS sites within 1 kcal/mol 
(green circles) and the EAS sites within 3 kcal/mol (red circles)

Table 1  Comparing RegioSQM implementations

The last entry corresponds to RegioSQM20. For the generation of the conformers, a random seed of 90 was used. Furthermore, the RegioSQM18 and GFN1-xTB/
methanol entries uses ETversion=1 and otherwise ETversion=2. Corr/Semi/Fail is defined in Fig. 4
a 4 cores/molecule (Intel(R) Xeon(R) CPU X5550 @ 2.67GHz). bTwo molecules running in parallel

Methodology Corr/Semi/Fail Median CPU time (s)a Mean CPU time (s)a Total CPU 
time (h)a,b

RegioSQM18 488/30/17 42 127 10

GFN1-xTB/methanol 486/27/22 60 230 17

FF Optimization 485/29/21 33 110 8

Tautomers (canonical RDKit) 477/28/30 33 110 8

Tautomers (lowest energy) 483/27/25 39 163 12

Tautomers (15 kcal/mol) 496/21/18 49 223 17
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instead use the tautomer with the lowest GFN1-xTB/
methanol energy the number of correct predictions is 
483 (Table 1), which is slightly lower than that obtained 
without considering tautomers. The most probable expla-
nation is that GFN1-xTB/methanol is not sufficiently 
accurate to identify the most stable tautomer and/or that 
this property is more sensitive to the choice of solvent. 
We therefore investigated the effect of including all tau-
tomers within a certain cutoff of the lowest energy form 
and the results are shown in Additional file 1: Fig. S2. The 
figure shows that a relatively large cutoff (> 8 kcal/mol) is 
needed in order for the inclusion of tautomers to have a 
significant effect on the accuracy.

A correct prediction is one where all the experimentally 
observed sites are predicted (with a green dot) by at least 
one of the tautomers, so one worry is that the high cutoff 
simply leads to a large number of tautomers each with a 
different site being predicted as most reactive. However, 
an analysis of the data (Additional file 1: Fig. S3) shows 
that 91% of the molecules in our data set have only one 
or two tautomers, even for a cutoff of 15 kcal/mol. This 
statistic is reflected in the 12 molecules for which the 
predictions improve using a cutoff of 15 kcal/mol (Addi-
tional file  1: Fig. S4). Of these 12 molecules only three 
have more than two tautomers and in all but one case the 
increase in accuracy is a result of only one new position 
being predicted as most reactive (Additional file  1: Fig. 
S4). Thus, RegioSQM20 uses a 15 kcal/mol cutoff for tau-
tomers, which increases the number of correct predic-
tions to 496 molecules (Table 1) and the median and total 
CPU time to 49 s and 17 h, respectively.

The CPU time can be significantly reduced by using 
GFN2-xTB with only a relatively minor decrease in accu-
racy. For example, GFN2-xTB/water has a median CPU 

time of only 29 s and total time of 10 h, while the num-
ber of correct and incorrect predictions are 493 and 24, 
respectively. Thus, this method can be selected if compu-
tational efficiency is a greater concern than accuracy.

Comparison to machine learning models
Several machine learning (ML) based models predict 
regioselectivity of EAS reactions and have been com-
pared to RegioSQM18, such as the Weisfeiler-Lehman 
neural network (WLN) based method by Struble et al. [6] 
and the molecular transformer (MolTrans) by Schwaller 
et al. [14].

Struble et  al. compared the top one, two, and three 
predictions of the WLN-based method, which pre-
dicts a reaction probability for each atom, to those of 
RegioSQM18 and found success rates of 85.0–95.7% 
for WLN, compared to 79.7–93.3% for RegioSQM18. 
However, this approach does not consider the differ-
ences in the reaction probabilities (in the case of WLN) 
nor relative energies of the protonated isomers (in the 
case of RegioSQM). For example, a top-2 prediction 
would be correct even if the second reaction probabil-
ity is extremely low, like for instance 98% and 6% for the 
first and second position, and similarly for protonated 
isomers with relative energies of 0 and 15 kcal/mol for 
RegioSQM. Conversely, a top-1 prediction would be 
considered incorrect even if the top two reaction prob-
abilities are 99% and 98%, and the reaction is observed 
to occur at the site with a 98% reaction probability. Or, 
in the case of RegioSQM, if the reaction is observed to 
occur at a site where the corresponding isomer is 0.2 
kcal/mol higher than the isomer with the lowest energy. 
Instead, we therefore define a correct WLN prediction 
if the observed reaction site has a reactivity score that is 

OH
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O
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Fig. 4  Definition of correct, semi-correct, and incorrect predictions of regioselectivity. RegioSQM correlates proton affinity with EAS reactivity. The 
green and red dots indicate the atoms with proton affinities within 1 and 3 kcal/mol of the highest value, respectively. The black dots indicate the 
experimentally observed sites for EAS. All experimentally observed sites must be predicted by green dots to be counted as correct
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within 15% of the highest score, and a semi-correct oth-
erwise as long as the prediction probability is >5% (the 
cutoff the authors used to classify non-reactive atoms). 
With these definitions, and without considering tautom-
ers, the number of correct and incorrect WLN-based 
predictions are 477 and 32, respectively, compared to 
485 and 21 for RegioSQM20* (“FF optimization” entry in 
Table 1, i.e. without considering tautomers). This corre-
sponds to a success rate of 89.1% and 90.7% for WLN and 
RegioSQM20*, respectively, while the corresponding fail-
ure rates are 6.0% and 3.9% (Table 2). For comparison the 
success and failure rates for RegioSQM20 with tautomers 
are 92.7% and 3.4%, respectively.

Since the chosen cutoffs are somewhat arbitrary, we 
also investigate the subset of 426 molecules with only 
one unique experimentally observed reaction site and 
where RegioSQM20* only predicts one unique (green) 
reactive site. Here, RegioSQM20* is compared to the 
top-1 WLN prediction and the success rates for WLN 
and RegioSQM20* are 96.0% and 92.0%, respectively. A 
similar comparison to RegioSQM18 by Struble et al. for 
a different set of molecules (not used to train the WLN 
method) yielded 87.9% and 86.7%, respectively. The rela-
tively large difference in success rates observed for WLN 
for these two sets of molecules could indicate that many 
of the molecules used in the current data set are included 
in the WLN-training set. Overall, the success rates of 
RegioSQM20 and the WLN-based method are thus com-
parable, while the latter is orders of magnitude faster.

The development of the techniques underlying Mol-
Trans has been continued in the IBM RXN for Chem-
istry (IBM RXN) package [15] so this is the package we 
compare to RegioSQM20. We use N-bromosuccinimide 
(NBS) as the reagent since this is the source of Br for 
most of the reactions in our data set and, as before, we 
use the tautomeric form found in the data set. With IBM 
RXN we only have access to the most likely prediction 
and with this limitation the success rate is 76.3% using 

the entire data set. This is somewhat lower than the top-1 
success rate of 83% reported for MolTrans by Schwaller 
et  al. for a different data set. It is not clear whether the 
difference is due to differences in the data set or differ-
ences between MolTrans and IBM RXN. However, the 
corresponding success rate for the 426 molecules with 
only one unique experimentally observed reaction site 
and where RegioSQM20* only predicts one unique 
(green) reactive site is 85.0%, which is closer to the value 
reported by Schwaller et al. and somewhat lower than the 
96.0% and 92.0% observed for WLN and RegioSQM20*.

Prediction of reactivity
The original inspiration for using proton affinities to pre-
dict regioselectivity came from the observation by Stre-
itwieser and others that the rates of many EAS reactions 
correlate well with the proton affinity of the reacting car-
bon [24]. While RegioSQM18 only predicts the relative 
proton affinities (i.e. the relative energies of the proto-
nated isomers), the proton affinity (i.e. the energy differ-
ence between the unprotonated and protonated forms) 
can be calculated at no additional cost since the energy 
of the unprotonated form of the molecule is computed to 
identify low energy tautomers. The proton affinities are 
more difficult to obtain accurately than relative proton 
affinities, so we only expect these values to give a quali-
tative indication of reactivity. Figure 5a shows the high-
est proton affinity of the most stable tautomer computed 
for a series of substituted benzene analogs familiar to all 
organic chemists together with a qualitative ranking of 
their reactivities. There is a clear separation in the proton 
affinities of the most (80–91 kcal/mol) and least (51–67 
kcal/mol) reactive molecules. An example from each of 
these classes along with the proton affinities of all the 
unique reaction centers can be seen in Fig. 5b.

Having established a qualitative correlation between 
reactivity and proton affinity computed by GFN1-xTB/
methanol, we computed the highest proton affinity of the 
most stable tautomer for the 535 molecules in our data 
set. The results (5c) show that 92% of the molecules have 
proton affinities in the range 70–100 kcal/mol— a range 
similar to that found for most of the reactive (ortho-para 
directing) molecules shown in 5a. Molecules with higher 
and lower proton affinities are thus deemed unusually 
high and low reactivity, respectively. RegioSQM20 there-
fore uses these cutoffs to classify a molecule as having 
low, medium, or high reactivity and displays this infor-
mation in the output (Fig. 5d).

Conclusions and outlook
We present RegioSQM20, a new version of RegioSQM 
[5], which predicts the regioselectivities of electro-
philic aromatic substitution (EAS) reactions by finding 

Table 2  Comparison of  RegioSQM to  two ML-based 
models. Tautomers are not  considered so “RegioSQM20*” 
(note the “*”) corresponds to  the “FF Optimization” entry 
in Table 1

 “One reactive atom” refers to the subset of the full data set with only one unique 
experimentally observed reaction site and where RegioSQM20* only predicts 
one unique (green) reactive site

Methodology Full data set One reactive atom
Corr/Semi/Fail Corr/Fail

RegioSQM20* 90.7%/5.4%/3.9% 92.0%/8.0%

WLN 89.1%/4.9%/6.0% 96.0%/4.0%

IBM RXN 76.3%/23.7% 85.0%/15.0%
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the atomic center with the highest proton affinity. The 
following improvements have been made: The open 
source semiempirical tight binding program xtb is 
used instead of the closed source MOPAC program; 
specifically GFN1-xTB/methanol is used instead of 
PM3/chloroform. Any low energy tautomeric forms 
of the input molecule are identified and regioselectiv-
ity predictions are made for each tautomeric form. The 
increase in CPU time associated with this capability is 
offset by pre-screening low energy conformations with 
the GNFF-xTB force field without significant loss of 

accuracy. The median CPU time requirements of Regi-
oSQM20 is 49 s per molecule on four Intel(R) Xeon(R) 
CPU X5550 @ 2.67GHz cores, but the computational 
cost depends heavily on the number of possible reac-
tion sites and number of low energy tautomeric forms. 
Finally, RegioSQM20 offers a qualitative prediction of 
the reactivity of each tautomer (low, medium, or high) 
based on the highest proton affinity, i.e. the energy dif-
ference between the unprotonated and most stable pro-
tonated form using the most stable tautomer.

RegioSQM20 is developed and tested on 535 mol-
ecules for which the regioselectivity of bromination by 

a b

c d
Fig. 5  a The highest proton affinity of the most stable tautomer computed for a series of substituted benzene analogs familiar to all organic 
chemists together with a qualitative ranking of their reactivities. The values are given in units of kcal/mol. b Two examples from a showing the 
proton affinities of the unique reaction centers. c Computed proton affinities for the 535 molecules in our data set as the energy difference 
between the unprotonated and most stable protonated form using the most stable tautomer. d Examples of molecules with predicted low, 
medium, and high reactivity based on the highest proton affinities
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EAS has been reported in the literature. The accuracy 
of the predictions with xTB and PM3 are roughly the 
same (ca. 91%), indicating that the same accuracy can 
be achieved with an open source approach. The inclu-
sion of tautomers increases the success rate from 90.7% 
to 92.7%.

RegioSQM20 is compared to two machine learning 
based models: one developed by Struble et  al. [6] spe-
cifically for regioselectivity predictions of EAS reactions 
(WLN) and a more generally applicable reactivity predic-
tor developed by Schwaller et al. [14]. (IBM RXN). Regi-
oSQM20 and WLN offers roughly the same success rates 
for the entire data sets (without considering tautomers), 
while WLN is many orders of magnitude faster. The accu-
racy of the more general IBM RXN approach is some-
what lower: 76.3%-85.0%, depending on the data set.

While the WLN based method is considerably faster, 
the RegioSQM approach may perform better for ring 
systems that are not well represented in the training set. 
Unfortunately, the training sets used to develop the WLN 
based method is not publicly available, so this hypothesis 
is difficult to check. Another difference is that RegioSQM 
finds two or more atoms with roughly equal reactivity 
in about one fourth of the molecules while this almost 
never happens with the WLN based method. This could 
reflect the possibility that the literature and especially 
patents tend to report only the desired product even if 
other products are observed. This “bias” is then intro-
duced to machine learning models since they are devel-
oped based on data that are extracted from these sources. 
For example, 21 out of the 32 molecules that fail with 
WLN (without considering tautomers) has more than 
one experimentally observed reactive site, compared to 6 
out of 21 for RegioSQM20*. In fact, out of the 38 mol-
ecules in our data set with two or more experimentally 
observed reaction sites, WLN makes correct prediction 
for only two molecules, while RegioSQM20* makes cor-
rect predictions for 25. RegioSQM20 thus could offer a 
useful complement to machine learning based methods 
in some cases.
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