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Abstract 

The process of drug discovery involves a search over the space of all possible chemical compounds. Generative 
Adversarial Networks (GANs) provide a valuable tool towards exploring chemical space and optimizing known 
compounds for a desired functionality. Standard approaches to training GANs, however, can result in mode collapse, 
in which the generator primarily produces samples closely related to a small subset of the training data. In contrast, 
the search for novel compounds necessitates exploration beyond the original data. Here, we present an approach to 
training GANs that promotes incremental exploration and limits the impacts of mode collapse using concepts from 
Genetic Algorithms. In our approach, valid samples from the generator are used to replace samples from the training 
data. We consider both random and guided selection along with recombination during replacement. By tracking the 
number of novel compounds produced during training, we show that updates to the training data drastically outper-
form the traditional approach, increasing potential applications for GANs in drug discovery.
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Introduction
From materials design to drug discovery, many scientific 
endeavors with significant practical applications can be 
viewed as a search over the space of all possible chemical 
compounds [1, 2]. Due to the high-dimensional nature of 
the search space, an exhaustive enumeration of possible 
candidates is not feasible [1]. To overcome this difficulty, 
traditional approaches in drug discovery have relied 
upon domain knowledge from physics and chemistry 
to construct synthesis rules to guide the search for new 
compounds. However, reliance on current knowledge 
to generate rules may unnecessarily limit the amount of 
chemical space explored [2].

In recent years, a data driven approach has emerged 
to empower searches over chemical space. Deep learn-
ing models have been constructed to learn lower dimen-
sional representations of data to identify meaningful 
clusters and discover related compounds with a desired 

functionality [3–7]. Of particular interest to drug discov-
ery, machine learning (ML) models have been incorpo-
rated into pipelines for iterative refinement of candidates. 
More specifically, generative models have been utilized as 
a key component for providing novel molecules for tar-
geted experimental investigations [1, 2, 8].

Generative models in machine learning seek to recre-
ate the distribution underlying a given set of data. After 
modeling the distribution, new samples can be drawn 
that extend the original data. One type of generative 
approach, known as a Generative Adversarial Network 
(GAN), has been widely used in many applications from 
image generation to drug discovery [9–12]. Recent stud-
ies have utilized GANs to search the space of possible 
molecules for drug design, developing models that can 
generate compounds with a desired feature set [11, 12].

Although generative models (and GANs) have many 
advantages for finding new molecules, a key limitation 
is the propensity for mode collapse  [8, 13]. In mode 
collapse, the model distribution collapses to cover 
only a few samples from the training data. Beyond 
mode collapse, it is intuitively expected that a given 
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generative model will be limited by the training data 
used (i.e. there is no standard way to guide the gen-
erative model in areas of parameter space that it has 
never encountered in training). This limitation hin-
ders the use of GANs in search applications such as 
drug discovery. To overcome mode collapse, several 
approaches have been investigated including updat-
ing the loss function to promote diversity [12, 14, 15]. 
However, these approaches rely on comparisons to 
a fixed training data set, which continues to hinder 
search applications.

Here, we build upon recent work utilizing GANs 
for small molecule discovery  [11] by introducing a 
new approach for training. Our approach enables 
augmented search through incremental updating of 
the training data set using ideas from Genetic Algo-
rithms [16]. Novel and valid molecules that are gener-
ated by the model are stored during a training interval. 
Then, the training data is updated through a replace-
ment strategy, which can be guided or random. Train-
ing resumes and the process is repeated. Our results 
show that this approach can alleviate the decrease in 
new molecules generated that occurs for a standard 
GAN during training. Furthermore, we utilize recom-
bination between generated molecules and the training 
data to increase new molecule discovery. Introducing 
replacement and recombination into the training pro-
cess empowers the use of GANs for broader searches 
in drug discovery.

Results and discussion
To improve the search capabilities of GANs, we updated 
the training process to include concepts from Evolution-
ary (e.g. Genetic) Algorithms [16]. For a typical Genetic 
Algorithm, a parent population is used to generate a child 
population through mutation and recombination. The 
parent population is then updated (i.e. replaced) using 
selection based on specified fitness criteria. For our pur-
poses, the training data is the population under consider-
ation. The generator from the GAN produces candidates 
for the child population over multiple training epochs, 
and recombination occurs between the new candidates 
and the parent generation. Through replacement, the 
training data adapts to better reflect new areas explored 
by the generator.

As a first step in using adaptive training data for GANs, 
we consider replacement without recombination on a 
training set from QM9  [17]. In this case, we have three 
different types of training: control, random, drug. For 
control, the training data is held fixed while the GAN 
is trained. For random, the training data is updated by 
the generated molecules. For drug, the training data is 
updated only by generated molecules that outperform 
the current samples on quantitative estimation of drug-
likeness score (i.e. drug-likeness) [18, 19]

As shown in Fig.  1a, the control GAN produces 
new molecules during the initial stage of training, but 
quickly reaches a plateau. Intuitively this is expected, 
as the generator learns to mimic the training data, the 

Fig. 1  New molecules produced for different replacement strategies. For control (blue), the training data is fixed. For random (red), molecules from 
the generator randomly replace molecules in the training data. For drug (green), molecules from the generator only replace training samples if they 
have a higher drug-likeness score. a As training progresses, control stops producing a substantial number of new molecules, but random and drug 
replacement strategies continue production. Plot shows average over three training runs for each selection type. b Although drug produces less 
overall new molecules than random, it generates more top performers. Plot shows average over three runs for each selection type with error bars 
showing one standard deviation
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number of novel molecules produced decreases. Alter-
natively, for random and drug replacement, the GAN 
continues to produce new molecules over the entire 
training period as the training data is updated.

Although the number of new molecules produced is 
an important metric for drug discovery, when optimiz-
ing for some feature (e.g. drug-likeness), the quality of 
the generated samples is also key. As shown in Fig. 1b, 
drug replacement is able to generate the most top per-
formers even though it generates fewer new molecules 
than random. Here, we define top performers as having 
a drug-likeness score above a threshold of 0.6, corre-
sponding to the approximate mean value of optimized 
molecules in previous work [11, 12]. Similar results are 
shown for additional metrics (i.e. synthesizability and 
solubility) in Additional file  1: Figures  S1, S2. Notice 
that the metric-specific selection strategy generates the 
most top performers for each metric considered.

In addition to selection/replacement, another com-
mon mechanism in Genetic Algorithms to intro-
duce diversity into a population is recombination. We 
included recombination into our approach by taking 
half of the generated molecules and applying crossover 
with a sample from the current training data. As shown 
in Fig.  2a, the same hierarchy as the case without 
recombination is observed. Recombination, however, 
does increase the absolute number of new molecules 
produced drastically. The increase in new molecules 
also translates to many more high performers (Fig. 2b. 
Similar results are shown for additional metrics (i.e. 

synthesizability and solubility) in Additional file 1: Fig-
ures S3, S4.

Beyond the bulk performance metrics shown in 
Fig. 2, Fig. 3 shows specific examples of top performers 

Fig. 2  New molecules produced for different replacement strategies with recombination. For control+re (blue), the training data is fixed. For 
random+re (red), molecules from the generator randomly replace molecules in the training data. For drug+re (green), molecules from the 
generator only replace training samples if they have a higher drug-likeness score. a Similar to the case without recombination, random and drug 
replacement strategies outperform control as training progresses. Plot shows average over three training runs for each selection type. b Although 
drug+re produces less overall new molecules than random+re, it generates more top performers. Plot shows average over three runs for each 
selection type with error bars showing one standard deviation

Fig. 3  6 sample top performers produced by the GAN with drug 
replacement strategy and recombination. Quantitative estimation of 
drug-likeness score and synthesizability score computed using rdkit 
are shown
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for the generator trained using drug replacement strat-
egy and recombination. It is illustrative to consider the 
closest (as measured by Morgan fingerprints  [20] and 
Tanimoto similarity) training set molecule for each 
example (Additional file 1: Figure S5). For most of the 
example top performers, only small rearrangements 
(e.g.  changing an atom type or extending a chain) are 
necessary to provide a boost in the drug-likeness. The 
prevalence of small rearrangements in the generated 
molecules, however, is intuitively expected due to con-
straining the search space to molecules with 9 atoms or 
less.

The success of guided training data replacement and 
recombination, as seen in the over 10x improvement 
over control (see Figs. 1, 2), motivated us to apply our 
approach to a more realistic data set for drug discov-
ery. Therefore, we extended the training procedure to 
molecules with 20 or less atoms and added 10k mol-
ecules from the ZINC  [21] rings data set (see "Meth-
ods" section). Our results (see Fig.  4) show that our 
approach again provides a drastic improvement over 
the traditional GAN for search. The total number of 
molecules produced increases over the control run 
(i.e. no replacement, no recombination) by an order 

of magnitude ( ∼10
5 to ∼10

6 ). Furthermore, the distri-
bution of drug-likeness scores is altered drastically to 
favor high scoring compounds (Fig. 4a, b).

A sample of some of the top performers are shown in 
Figure  4c. The closest molecule from the training set 
for each top performer is shown in Figure S6. Unlike 
the data constrained to 9 atoms or less, the examples 
show substantial rearrangements of functional groups 
compared to the training set. Furthermore, the rear-
rangements result in a substantial boost in drug-like-
ness, which reflects the large shift in the histogram for 
produced molecules (Fig. 4a, b).

To more systematically understand the change in 
properties for molecules produced using selection and 
recombination compared to the traditional approach, 
we computed the distributions for additional metrics 
(Additional file 1: Figures S7–S11, Table S1). Additional 
file  1: Figure S7 shows the fraction of each molecule 
occupied by a given atom type (C, N, O, F). The mol-
ecules produced by the drug+re strategy show a shift 
towards higher C, F content and lower O, N content 
compared to the training data and control strategy. 
Additional file 1: Figure S8 shows the number of atoms, 
number of rings, and length of rings for the molecules. 
Again, the distributions for the drug+re strategy show 

Fig. 4  Training runs with molecules of 20 atoms or less. Results are shown for control (blue) and drug replacement with recombination (green). a 
Histogram showing number of new molecules produced in control run for different drug-likeness scores. b Histogram showing number of new 
molecules produced in our approach using updates to the training data for different drug-likeness scores. c A few sample new molecules from the 
drug replacement with recombination run
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a noticeable shift from the training data, with larger 
molecules, more rings, and larger rings.

An additional 3 metrics (number of rotatable bonds, 
polar surface area, and Crippen LogP [22]) are shown in 
Additional file  1: Figure S9. It is important to note that 
these metrics are commonly utilized to filter drug candi-
dates [18, 23]. Both number of rotatable bonds and Crip-
pen LogP show a substantial increase for the molecules 
from drug+re compared to the training data. The shifts 
for these metrics can be anticipated as they are both used 
to determine the drug-likeness score. Polar surface areas 
is also used in the drug-likeness score provided by rdkit 
but with a much smaller weight.

The shift of the drug+re distribution away from the 
original training data can also be quantified using finger-
print similarity. To determine the distance of produced 
molecules from the original data, we computed the Mor-
gan fingerprints for each molecule in rdkit. We then 
found the closest molecule based on Tanimoto similar-
ity (and corresponding distance). Additional file 1: Figure 
S10 shows the distributions of the minimum distance for 
both control and drug+re strategies. In agreement with 
the other metrics, molecules produced by the drug+re 
strategy on average have a larger minimum distance than 
the control molecules. Therefore, the drug+re strategy 
not only produces more molecules than control, it pro-
duces more distinct molecules relative to the training set.

As a final comparison, Additional file  1: Figure S11 
shows the drug-likeness distributions across different 
selection and recombination strategies. The drug+re 
strategy shows a clear shift towards high scoring drug 
molecules compared to all other options. It is interesting 
to note that although recombination does provide a clear 
benefit in producing higher scoring molecules alone (i.e. 
compare control to control+re), updating the training 
data through selection generates a substantial shift in the 
probability density towards high performers.

The difficulty of mode collapse presents a major chal-
lenge to researchers using GANs for discovery. Previous 
attempts to prevent mode collapse have altered the loss 
function  [14, 15], however, the issue has still remained 
in drug discovery efforts  [11, 12]. Our approach, updat-
ing the training data, eliminated the plateau in new mol-
ecule discovery compared to the control case without 
any updates to the minimax loss function. Furthermore, 
recombination amplified the increase in new molecules 
for all replacement strategies. Together, these results sug-
gest that replacement and recombination can drastically 
accelerate the use of GANs for drug discovery.

One limitation of the current approach is that a defi-
nition for valid generated samples must be given. In 
the current context, valid molecules are determined 
by the ability of rdkit to parse and create the proposed 

molecule. However, in other contexts, the definition of 
valid may not be so straightforward (e.g. what defines 
a valid image). In these cases, some scoring function 
must be introduced to determine replacement/valid-
ity. This highlights the importance of developing useful 
domain specific metrics for ML applications, including 
drug discovery [2].

Allowing updates to the training data provides much 
needed flexibility towards utilizing GANs in drug dis-
covery. This can be seen in our search for drug-like 
compounds with 20 atoms or less. The initial training 
set only contained 10% of molecules with more than 9 
atoms (the rest coming from QM9), however, through 
replacement and recombination, the search adapted to 
explore regions of parameter space with higher scores. 
The ability to adapt relieves some of the pressure in 
generating large data sets for each new desired task, as 
an incremental approach can be used.

Updates to the training data can be placed within 
a broader context of data augmentation for GANs. 
Recent work  [24, 25] has explored ways to improve 
GAN training on images by augmenting labeled data 
while preserving the underlying target distribution. 
Data augmentation techniques are particularly rele-
vant due to the inherent costs associated with manual 
labeling. In the context of drug discovery, our results 
show that search for novel compounds is broadened 
by allowing the GAN to explore regions of parameter 
space outside the original training set through incre-
mental updates. The key tradeoff is that features of 
the original distribution may be lost as the training 
data shifts. The type of application and diversity of the 
training data can then be used to determine the costs 
and benefits associated with training data updates. In 
cases where labeled data is abundant and diverse, tra-
ditional approaches to training can be used. In cases 
with limited initial data, or limited initial data with 
desired characteristics, training updates can be used to 
improve search performance.

Our approach in updating the training data also has 
many connections to previous searches over chemical 
space using genetic algorithms  [26–28]. For a genetic 
algorithm, hand-crafted rules are created for mutation 
(e.g. switch an atom type, delete an atom, add an atom) 
and recombination (e.g. swap functional groups between 
two molecules). Iterations of mutations and recombina-
tion are then performed on an initial population, with 
selection occurring to improve fitness in subsequent 
populations. In this context, the current work serves as a 
step towards automating the manual creation of rules for 
mutation. The generator network serves to produce can-
didate molecules based on the current training popula-
tion, which is updated over time. Automating the process 
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of recombination (in addition to mutation) is an interest-
ing direction for future work.

Previous work has explored a possible way to incor-
porate genetic algorithms into GAN training [29]. More 
specifically, mutation and recombination were applied 
directly to the generator output in order to stabilize 
the training of the discriminator. This approach can be 
broadly categorized with other efforts to promote diver-
sity during GAN training through data augmentation [24, 
25] in contrast to our approach of updating the training 
data. It is important to note that improvements to model 
architecture and approaches to prevent overfitting, such 
as dropout, would not alleviate the need for updates to 
the training data in search. Approaches to prevent over-
fitting, by design, would enable the model to more fully 
reproduce the distribution underlying the training data, 
however, they would not promote exploration beyond the 
training data as needed in search applications.

Many of the advances in training GANs [14, 15] should 
be complementary to our approach. Here, we have uti-
lized a relatively simple architecture, i.e. fully connected 
networks with a few layers for both generator and dis-
criminator, and the standard GAN loss function. By 
adding replacement and recombination, however, large 
gains were seen in both the number and quality (i.e. drug 
score) of new molecules produced. The addition of more 
sophisticated networks (e.g. GCN [30]) to scale the cur-
rent approach to larger molecules is an interesting direc-
tion for future investigations.

Conclusions
Generative machine learning models, including GANs, 
are a powerful tool towards searching chemical space for 
desired functionalities. Here, we have presented a strat-
egy for promoting search beyond the original training 
set using incremental updates to the data. Our approach 
builds upon the concepts of selection and recombination 
common in Genetic Algorithms and can be seen as a step 
towards automating the typically manual rules for muta-
tion. Our results suggest that updates to the data enable 
a larger number of compounds to be explored, leading to 
an increase in high performing candidates compared to a 
fixed training set.

Methods
Data
The original training data used for all models was taken 
from QM9 [17], a subset of the GDB-17 chemical data-
base [31], as reported in a previous study [11]. The data 

was downloaded from deepchem1 and then processed 
using rdkit  [19], with any molecules that caused errors 
during sanitization removed. Only the first 100k (out of 
∼ 133k ) compounds were then used in training.

To modify the training data to include larger molecules 
(i.e. up to 20 atoms), a subset of the ZINC [21] rings data 
set was used. Smiles data was downloaded from ZINC2 
and filtered to include molecules with between 10 and 20 
atoms that contain only C, N, and O. The first 10k mole-
cules were then used to replace the first 10k entries from 
the original training data. The resulting training data had 
100k molecules, with 90k from QM9 [17] and 10k from 
Zinc [21].

Models
The GAN was implemented using pytorch [32], with both 
the discriminator and generator consisting of 4 fully con-
nected layers. The generator received as input normally 
distributed random vectors with dimension 8. The out-
put of the generator was an adjacency matrix with the 
off-diagonal elements specifying the bond order and the 
on-diagonal elements specifying the atom type. The dis-
criminator received as input the one hot representation 
of the adjacency matrix and output a single real number. 
We utilized the standard GAN minimax loss for train-
ing [9]. The Adam optimizer[33] was used with a learning 
rate of 10−4 for all runs.

Updates to training data
All models were trained in intervals of 5 epochs. During 
each epoch 10k samples were collected from the genera-
tor. Samples that were both novel and valid were aggre-
gated over the 5 epochs. Then, a replacement strategy 
(random or drug) was applied to the original training 
data. For random replacement, current training samples 
were randomly selected and replaced. For drug replace-
ment, current samples were sorted in ascending order 
of drug-likeness score. Updates were only made if the 
new sample had a greater score than the sample being 
replaced. Additional metrics (i.e. synthesizability and sol-
ubility) used the same update procedure as drug-likeness.

For both replacement strategies, we also considered 
recombination. In recombination, half of the 10k genera-
tor sample was combined with the current training data 
using crossover. In crossover, a sample is selected from 
the current training data and copied into a new adjacency 
matrix. Then, a random integer is uniformly sampled 
between 1 and the length of the adjacency matrix. The 
corresponding slice from the generated matrix (e.g. first 
5 rows and columns) overwrites the same region of the 

1  http://deepc​hem.io.s3-websi​te-us-west-1.amazo​naws.com/datas​ets/gdb9.tar.
gz.
2  https​://zinc.docki​ng.org/rings​.smi?count​=all.

http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/gdb9.tar.gz
http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/gdb9.tar.gz
https://zinc.docking.org/rings.smi?count=all
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copied matrix to produce a new candidate molecule. For 
the drug replacement strategy, samples were drawn from 
the training set weighted by drug score. The weights were 
determined by taking the softmax of the current metric 
scores for the training data. Replacement then proceeded 
as previously stated. Additional metrics (i.e. synthesiz-
ability and solubility) used the same update procedure as 
drug-likeness.

Metrics
To track the performance of each GAN during train-
ing, we relied upon two key metrics: the number of new 
molecules generated and the quantitative estimation of 
drug-likeness score [11, 18, 19]. Determining that a mol-
ecule is new was accomplished by comparing the canoni-
cal smiles representation of the compound with the full 
training set and any molecules produced up to that point. 
Generation of a canonical smiles string for a given mol-
ecule was performed using rdkit  [19]. To show that the 
results are not unique to drug-likeness, we also included 
runs for selection of synthesizability and solubility. 
The metrics calculations were performed as previously 
reported [11, 12, 18, 34].

Additional metrics for analysis as shown in Additional 
file  1: Figures  S7-S11 were all computed using built-in 
functionality from rdkit [19]. Similarity (and correspond-
ing distance) between molecules was computed by gen-
erating Morgan fingerprints  [20] and using Tanimoto 
similarity as preformed in a previous study [11].
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