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Abstract 

Chemical compounds can be identified through a graphical depiction, a suitable string representation, or a chemi-
cal name. A universally accepted naming scheme for chemistry was established by the International Union of Pure 
and Applied Chemistry (IUPAC) based on a set of rules. Due to the complexity of this ruleset a correct chemical name 
assignment remains challenging for human beings and there are only a few rule-based cheminformatics toolkits avail-
able that support this task in an automated manner. Here we present STOUT (SMILES-TO-IUPAC-name translator), a 
deep-learning neural machine translation approach to generate the IUPAC name for a given molecule from its SMILES 
string as well as the reverse translation, i.e. predicting the SMILES string from the IUPAC name. In both cases, the sys-
tem is able to predict with an average BLEU score of about 90% and a Tanimoto similarity index of more than 0.9. Also 
incorrect predictions show a remarkable similarity between true and predicted compounds.
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network, Attention mechanism, Recurrent neural network
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Introduction
Assigning names to chemical compounds so that an 
author can refer to them in the text of a scientific arti-
cle, book or patent has a long history. In the early days 
and even still today, such names were often chosen based 
on physicochemical or perceptible properties, but also 
named after species, people, named after fictional char-
acters, related to sex, bodily functions, death and decay, 
religion or legend, or other [1]. Usually, this makes it 
impossible to conclude from the name to the chemical 
structure of the compound. To overcome this dilemma, 
the International Union of Pure and Applied Chemis-
try (IUPAC) established a set of rules and guidelines for 
chemical nomenclature [2–5] so that a systematic name 
can be generated from the structure and substructures of 
a chemical compound and vice versa. Often, more than 
one systematic IUPAC name can be generated for the 

same compound: Therefore, the IUPAC introduced the 
IUPAC preferred name in their current edition of the 
Blue Book, preferring one of the possible names over all 
others.

Other types of string representations of molecules, 
such as SMILES [6], InChI [7], SYBYL line notation [8], 
Wiswesser line notation [9], and SMARTS [10] are more 
concise forms of line representations. While in principle 
being human-readable, these representations are primar-
ily designed to be understood by machines. Thus, they 
are not commonly used in text to denominate chemical 
compounds for recognition by human readers, but have 
been incorporated into many major open-source and 
proprietary cheminformatics toolkits.

IUPAC name generation, due to its algorithmic com-
plexity and the large set of rules, is missing in many 
cheminformatics toolkits in general. For a human, IUPAC 
name generation for more than a handful of molecules is 
cumbersome. People, therefore, resort to the few avail-
able automatic tools for IUPAC name generation.

Among the available and reliable solutions are the 
“molconvert” software, a command-line program in 
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Marvin Suite 20.15 from ChemAxon (https://​www.​
chema​xon.​com) [11]. It is available for researchers under 
an academic license. Open-source programs such as the 
Chemistry Development Kit (CDK) [12], RDKit [13], 
or Open Babel [14] do not (yet) provide any algorithms 
that can automate the process of IUPAC naming for 
molecules.

With this work, we report a proof-of-concept applica-
tion of Neural Machine Translation (NMT) for the con-
version of machine-readable chemical line notations into 
IUPAC names and vice versa. A large training set was 
generated with ChemAxon’s molconvert software and we 
would like to emphasise that this work would not have 
been possible without the generous offer by ChemAxon 
for the academic scientific community to use their soft-
ware for free. We also like to point out that the purpose 
of this work is not to make ChemAxon’s tool obsolete. As 
a deterministic tool, it will continue to be the first choice 
for practical naming tasks in databases.

For the work presented here, we were inspired by 
Google’s multiple NMT models and came up with the 
idea to build a SMILES-TO-IUPAC-name translator 
called STOUT. STOUT was developed based on lan-
guage translation and language understanding. We 
treated the two chemical representations as two differ-
ent languages—each SMILES string and corresponding 
IUPAC name was treated as two different sentences that 
have the same meaning in reality.

All these language models can only achieve greater 
than 90% accuracy with sufficient data to train them 
on. The majority of state-of-the-art language translation 
models are trained on millions of words and sentences 
to achieve such high levels of accuracy. Moreover, to 
train such large models in an adequate amount of time 
dedicated and powerful machine learning hardware is 
required. In this work, we report substantially shortened 
training times for our models using Google’s Tensor Pro-
cessing Units (TPU).

Methods
Using deep machine learning methods such as NMT 
for SMILES-to-IUPAC-name translation is a completely 
data-driven task so that high-quality data from a reliable 
source is mandatory. In this work, datasets were created 
for SMILES-to-IUPAC-name translation as well as for 
IUPAC-name-to-SMILES translation respectively.

Data
All molecules were obtained from PubChem [15], one 
of the openly available large small molecule databases, 
where the entire PubChem database was downloaded 
from its FTP site in SDF format. Using the CDK, explicit 
hydrogens were removed from the molecules and their 

topological structures were converted to canonical 
SMILES strings. The obtained 111 million molecules 
were filtered according to the ruleset of our previous 
DECIMER work [16], i.e. molecules must

•	 have a molecular weight of fewer than 1500 Da,
•	 not possess any counter ions,
•	 contain only C, H, O, N, P, S, F, Cl, Br, I, Se and B,
•	 not contain any hydrogen isotopes (D, T),
•	 have between 3 and 40 bonds,
•	 not contain any charged group,
•	 contain implicit hydrogens only, except in functional 

groups,

to arrive at a dataset of 81 million molecules. These 
selected SMILES strings were converted into IUPAC 
names using Chemaxon’s molconvert software, a com-
mand-line program in Marvin Suite 20.15 from Che-
mAxon (https://​www.​chema​xon.​com).

Using SMILES strings directly for training Neural Net-
works (NN) may cause various problems due to their 
intricate structure which is difficult to split into separate 
meaningful tokens necessary for the machine input. To 
tackle this problem, two other representations are avail-
able, DeepSMILES [17] and SELFIES [18]. For a dis-
cussion of the problems of string tokenization for deep 
learning, we refer our readers to those two publications. 
Our results confirm the superiority of SELFIES for the 
task discussed here and in our work on Optical Chemical 
Entity Recognition [16]. Thus, for this work all SMILES 
strings were converted into SELFIES using a custom 
python script (Fig. 1).

Two datasets were constructed, a 30 million and 60 
million molecule set with SELFIES and corresponding 
IUPAC names, where the 60 million sets contained all 
30 million molecule entries of the former. Every SELFIES 
string and IUPAC name was split into separate tokens 
using the space character as a delimiter. SELFIES were 
split according to a closed square bracket “]” and an open 
square bracket “[”. For IUPAC names a small set of rules 
was applied to split them uniformly: After every,

•	 open bracket “(”, “{” and “[”,
•	 close bracket “)”, “}” and “]”,
•	 dash symbol “-”,
•	 full stop “.”,
•	 comma “,”

and after every word in the following list,

•	 mono,di,tri,tetra,penta,hexa,hepta,octa,nona
•	 deca,oxo,methyl,hydroxy,benzene,oxy,chloro,cyclo,a

mino,bromo,hydro,fluoro

https://www.chemaxon.com
https://www.chemaxon.com
https://www.chemaxon.com
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•	 methane,cyano,amido,ethene,phospho,amide,butane,
carbono,hydro,sulfane,butane,sulfino

•	 iodo,ethane,ethyne,bi,imino,nitro,butan,idene,sulfo,c
arbon,propane,ethen,acetaldehyde,benzo,oxa,nitroso,
hydra,iso

a space character was added as a delimiter. After add-
ing the delimiter, the dataset was padded to fit the maxi-
mum length of 48 characters for SELFIES strings and 
78 characters for IUPAC name strings, a “start” token 
was added to each string to indicate its beginning, and 
an “end” token was added at the end of the string. The 
strings were tokenized and saved into small TFRecord 
files for training with GPUs or TPUs. Finally, two SELF-
IES-to-IUPAC-name datasets and two IUPAC-name-to-
SELFIES datasets—with 30 million (exactly 30,000,128) 
and 60 million (exactly 60,000,256) molecules each - were 
generated.

Network
The NMT network follows the implementation reported 
by Google for their language translation models, which 
itself is built on the network designed by Luong et  al. 
[19] for neural machine translation, using a soft atten-
tion mechanism developed by Bahdanau et  al. [20]. It 
is based on an autoencoder–decoder architecture and 
is written on Python 3 with Tensorflow 2.3.0 [21] at the 
backend. The encoder network and the decoder network 
use Recurrent Neural Networks (RNNs) with Gated 
Recurrent Units (GRU). The input strings are passed to 
the encoder and the output strings to the decoder. The 
encoder network generates the encoder output and the 
encoder hidden state. The attention weight is calculated 
by the attention mechanism implemented in the network. 
Encoder output with attention weights then creates the 

context vector. Meanwhile, the decoder output is passed 
through an embedding layer. The output generated by the 
embedding layer and the context vector is concatenated 
and passed on to the GRUs of the decoder. An Adam 
optimizer with a learning rate of 0.0005 is applied and 
sparse categorical cross-entropy is used to calculate the 
loss with a modified loss function. A batch size of 256 
Strings is used for a GPU and a global batch size of 1024 
Strings for a TPU where the global batch size is divided 
between the nodes.

For SELFIES-to-IUPAC-name and IUPAC-name-
to-SELFIES translation the same network architecture 
is used with the input/output datasets simply being 
swapped. Figure  2 shows the STOUT architecture for 
SMILES-to-IUPAC-name translation.

Model training
For large datasets, training a neural network efficiently 
is a challenging task. As an initial test, the network 
was trained with 15 million molecules on a server with 
an nVidia Tesla V100 GPU, 384GB of RAM, and two 
Intel(R) Xeon(R) Gold 6230 processors. The average 
training epoch was evaluated to be about 27 h so that 
training of larger datasets appeared to be prohibitive. 
With more than 100 epochs of training time used in our 
training described below, those 27 h per epoch translate 
into almost 4 months of training time, with multiples of 
that for training with 30 million or 60 million structures. 
Thus, the training scripts were modified to use Tensor 
Processing Units (TPUs) available on the Google cloud 
using the Tensorflow distributed training API. A cor-
responding training with TPU V3-8 units (with 8 nodes 
each) reduced the average training epoch to about 2 h.

Model testing
To evaluate the models’ performance, a test set of 2.2 Mil-
lion molecules was used, which was not present in the 30 

Fig.1  SMILES, DeepSMILES and SELFIES split into tokens which are separated by a space character
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million and the 60 million molecules training sets. A uni-
form and highly similar frequency distribution of unique 
SELFIES tokens in training and test data were ensured by 
corresponding test molecule selection. The SELFIES-to-
IUPAC-name translation and the reverse IUPAC-name-
to-SELFIES translation were tested with the same set.

To assess the predictive accuracy BLEU scoring [22] 
was used (see Appendix for details). Also, Tanimoto simi-
larities were calculated between original and predicted 
strings using PubChem fingerprints. For the predictions 
of IUPAC names as an output, the IUPAC names were re-
converted to SMILES using OPSIN 2.5 [23] and canoni-
calised using the CDK, with the resulting SMILES being 
utilized for Tanimoto similarity calculations.

Results and discussion
Computational considerations
Table  1 shows the number of unique SELFIES/IUPAC-
name tokens for both data sets. Note that the 30 million 
and the larger 60 million molecules datasets have the 
same number of tokens. To keep the same number of 
tokens we removed the least occurring tokens from both 

sets using a cutoff. In contrast, the SELFIES token set size 
is smaller than that of the IUPAC name tokens because 
the IUPAC names cover a far greater language space.

We used a 15 Mio training dataset to compare the 
training speed between a GPU and TPUs. Training 15 
Million molecules on a TPU V3-8 requires 2 h per epoch 
which is 13 times faster than using a GPU V100. Using 
a TPU V3-32 allows for an additional 4 times faster per-
formance in comparison to a TPU V3-8 and is 54 times 
faster compared to a GPU V100, see Fig. 3.

Figure 4 shows the different training times per epoch 
of the different datasets on TPU V3-8 units where all 

Fig. 2  STOUT architecture for SMILES-to-IUPAC-name translation

Table 1  Number of unique SELFIES and IUPAC-name tokens for 
each dataset

Dataset size Number of SELFIES tokens Number 
of IUPAC 
tokens

30 Million 27 1190

60 Million 27 1190
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models were trained for more than 100 epochs until 
convergence. The difference between the SELFIES-to-
IUPAC-name and IUPAC-name-to-SELFIES training is 
caused by the different number of I/O tokens of each 
dataset: For the SELFIES-to-IUPAC-name translation, 
the output tokens are derived from the IUPAC names 

whereas for the IUPAC-name-to-SELFIES transla-
tion the output tokens are taken from SELFIES strings. 
Since SELFIES strings are smaller and less complex 
than IUPAC name strings the IUPAC-name-to-SELF-
IES translation is faster.

Test results
SELFIES‑to‑IUPAC‑name translation
Table  2 summarizes the average and individual BLEU 
scores for the 30 million and the 60 million molecules 
dataset. A predicted string with a BLEU score of 1.0 
means a score of 1.0 using the NLTK sentence BLEU 
scoring function[24] and they are mostly identical 
strings (see Appendix).

Fig. 3  Average training time per epoch on different hardware (lower is better)

Fig. 4  Average training time per epoch for different datasets using 
TPU V3-8

Table 2  BLEU scores analysis

Training dataset size 30 Mio 60 Mio

Average BLEU score 0.89 0.94

Total number of strings with BLEU 1.0 52.48% 66.65%

BLEU-1 0.92 0.95

BLEU-2 0.90 0.94

BLEU-3 0.88 0.93

BLEU-4 0.86 0.92
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Compared to the 30 million molecules dataset, a model 
trained with 60 million molecules makes better predic-
tions, as demonstrated by all BLEU score types.

To assess the network’s ability to learn “chemis-
try” we calculated the Tanimoto similarities between 
the predicted and the original molecules by translat-
ing the original and the predicted IUPAC names back 
to SMILES strings using OPSIN and canonicalised the 
retranslated SMILES using the CDK. We used the CDK 
with Pubchem fingerprints to calculate the Tanimoto 
similarity indices. The IUPAC names that OPSIN was 
able to translate back to SMILES strings were counted 
as valid IUPAC names while the others were counted as 
invalid. Only the valid IUPAC-name-to-SMILES transla-
tions were used for the Tanimoto similarity calculations. 
The average Tanimoto similarity was measured on valid 
IUPAC-name-to-SMILES translations. Additionally, both 
Tanimoto similarity calculations were readjusted to the 
number of data points present on the test dataset (see 
Table  3). We also computed full isomorphism matches 
using InChIs and found that 98% of all Tanimoto similar-
ity 1.0 cases were full graph isomorphisms.

The invalid IUPAC names are the ones that were 
rejected by OPSIN and could not be converted into 
SMILES. This inability is the result of errors of the IUPAC 
names being predicted. In most cases, the IUPAC-name-
to-SMILES translation failed because

•	 they did not contain a comma,

•	 some of them were missing a close bracket symbol 
corresponding to the open bracket symbol,

•	 the valence of an atom was wrong,
•	 a certain block of text was uninterpretable,
•	 they failed to assign all bonds correctly,
•	 of a disagreement between lengths of bridges and 

alkyl chain length
•	 of long names with repeating words.

Table 4 presents a few examples of IUPAC names that 
could not be converted to SMILES strings with an expla-
nation of the failure.

The Tanimoto similarity index 1.0 count with 72% (60 
million molecules set) of the test data is already remark-
able but the average Tanimoto similarity of 0.83 (60 mil-
lion molecules set) suggests that an “understanding” of 
the “language of chemistry” emerged. Also, it becomes 
obvious that the number of predictions with a Tanimoto 
similarity of 1.0 is greater than the number of predictions 
with a BLEU score of 1.0, see Table  5: Although there 
are different IUPAC names, using OPSIN to re-translate 
these names led to SMILES representations with simi-
lar or even identical chemical graphs, see Figure 5. This 
also illustrates the extent to which the model is capable 
to successfully generalise the information of the training 
data. We found that only five predictions had a Tanimoto 
similarity index less than 1.0 but a BLEU score of 1.0, see 
Table 6 and Fig. 6.

IUPAC‑name‑to‑SELFIES translation
The IUPAC-name-to-SELFIES translation was tested 
with the same 2.2 million test molecules as the SELFIES-
to-IUPAC-name model before, but in reverse order. To 
use OPSIN as a performance measure, we analyzed our 
test set using OPSIN. It was able to convert 98.31% of 
IUPAC names generated by the molconvert algorithm 
back to SMILES and 96.24% were found to show a Tani-
moto 1.0 similarity, see Table 7 for details. Table 8 sum-
marizes the average BLEU score, the calculated BLEU 

Table 3  Tanimoto similarities

Training dataset size 30 Mio 60 Mio

Invalid IUPAC names 21.41% 14.50%

Valid IUPAC names 78.59% 85.50%

Tanimoto 1.0 count on the total test dataset 58.36% 72.33%

Tanimoto 1.0 count on valid IUPAC names 74.26% 84.59%

Average Tanimoto (measured for total test dataset) 0.75 0.83

Average Tanimoto (measured for valid IUPAC names) 0.96 0.98

Table 4  Failed IUPAC-name-to-SMILES translations

IUPAC names Reason for failure (OPSIN error messages)

1. N-[6-(2,3-diaminopropylidene)-1-methyl-1,2,4a,5,6,8a-hexahydroquinolin-6-yl]-
N-methylpropanamide

Atoms are in an unphysical valency state. Element: C valency: 5

2. 2-[({[(3-ethoxypropyl)amino]({[2-(2-fluorophenyl)ethyl]amino})methylidene}
amino)-N,N-dimethylacetamide

Unmatched opening bracket found

3. 3’-(propan-2-yl)-2’,3’,4’,5’,6’,7’,8’,8’a-octahydro-2’H-spiro[imidazole-4,1’-indolizin]-2-
amine

The following being uninterpretable: 2’,3’,4’,5’,6’,7’,8’,8’

4. ({2’,6’-difluoro-2’,6’-dimethyl-[1,1’-biphenyl]-4-yl}methyl)(propyl)amine Failed to assign all double bonds

5. 1,4,5-trimethyl-1-[1,2-dimethylpropyl)-2-methyl-1-propylbicyclo[12.2.1]tetradeca-
1,5-diene

Disagreement between lengths of bridges and alkyl chain length
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Fig. 5  Chemical structures depicted with the CDK depiction generator for predictions with Tanimoto similarity 1.0 but low BLEU score

Table 6  Predicted IUPAC name strings with a BLEU score of 1.0 but a low Tanimoto similarity index

No. IUPAC names BLEU Score IUPAC names translated into SMILES using OPSIN Tanimoto 
similarity 
IndexOriginal Predicted Original Predicted

1 4-[(4-amino-2,3,6-trimeth-
ylphenyl)methyl]-2,3,5-
trimethylaniline

4-[(4-amino-2,3,5-trimeth-
ylphenyl)methyl]-2,3,6-
trimethylaniline

1.0 NC=1C=C(C(=C(C1C)C)
CC=2C(=CC(N)=C(C2C)
C)C)C

NC1=C(C=C(C(=C1C)C)
CC2=CC(=C(N)C(=C2C)
C)C)C

0.97

2 3-[(3-amino-2,6-diethyl-
phenyl)methyl]-2,4-di-
ethylaniline

3-[(3-amino-2,4-diethyl-
phenyl)methyl]-2,6-di-
ethylaniline

1.0 NC1=CC=C(C(=C1CC)
CC=2C(=CC=C(N)C2CC)
CC)CC

NC=1C(=CC=C(C1CC)
CC2=CC=C(C(N)=C2CC)
CC)CC

0.92

3 2-{4-[(dimethylamino)
methyl]-6-[(2,6-dimeth-
ylphenoxy)methyl]-
6-hydroxycyclohexa-
2,4-dien-1-yl}acetonitrile

2-{4-[(2,6-dimethyl-
phenoxy)methyl]-
6-[(dimethylamino)
methyl]-6-hydroxycy-
clohexa-2,4-dien-1-yl}
acetonitrile

1.0 N#CCC1C=CC(=CC1(O)
COC=2C(=CC=CC2C)C)
CN(C)C

N#CCC1C=CC(=CC1(O)
CN(C)C)
COC=2C(=CC=CC2C)C

0.93

4 4-[4-(3-hydroxycyclo-
hepta-1,3,6-trien-1-yl)
phenyl]-N-(7-methylcy-
clohepta-1,4,6-trien-1-yl)
butanamide

4-[4-(3-hydroxycyclo-
hepta-1,4,6-trien-1-yl)
phenyl]-N-(7-methylcy-
clohepta-1,3,6-trien-1-yl)
butanamide

1.0 O=C(NC1=CCC=CC=C1C)
CCCC=2C=CC(=CC2)
C=3C=CCC=C(O)C3

O=C(NC1=CC=CCC=C1C)
CCCC=2C=CC(=CC2)
C=3C=CC=CC(O)C3

0.95

5 (but-1-en-2-yl)(prop-1-en-
1-yl)amine

(but-1-en-1-yl)(prop-1-en-
2-yl)amine

1.0 C=C(NC=CC)CC C=C(NC=CCC)C 0.97
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scores, and the Tanimoto similarities that were carried 
out on the test molecules for IUPAC-name-to-SELFIES 
translation.

The larger 60 million molecules dataset again performs 
better than the 30 million molecules dataset. Invalid SELF-
IES do not occur because all the predicted SELFIES were 
retranslated into SMILES without any error. Again, the pre-
dictions with Tanimoto similarity index 1.0 exceed those 
with BLEU scores 1.0. The reason for this is that BLEU is 

calculated by mapping word to word for an original and 
predicted SELFIES string while Tanimoto similarity is cal-
culated according to the corresponding chemical structure, 
see Table  9 and Figure  7. To improve these results, more 
molecules with the same set of unique tokens would be 
needed. We also saw that 860 out of 2.2 million molecules 
(0.0003%) had BLEU 1.0 but a slightly lower Tanimoto sim-
ilarity index because of slight differences in the chemical 
structures.

Conclusion
With this work, purely data-driven deep learning models 
for translation between different chemical entity represen-
tations are reported. We show that deep learning models 
are able to capture the essence of SMILES to IUPAC name 
string conversion (and vice versa) with reaching the 90% 
accuracy threshold. Despite this promising finding, any 
large scale and uncurated application should be currently 
handled with care.

With more data and additional training epochs STOUT 
is expected to further improve its prediction accuracy in 
the future. At best, it may finally play in the ballpark of the 
rule-based systems which further on define the possible 
top performance. Using the TPU platform will enable the 
models to be trained in an acceptable amount of time in the 
order of a few weeks. In addition, STOUT may be extended 
to alternative sophisticated models used in language trans-
lation and understanding, such as BERT [25].

During our revisions, there were two similar preprints, 
Struct2IUPAC [26] and Translating the Molecules [27], 
which has been published, reflecting an increase of interest 
in the translation of SMILES into IUPAC names and vice 
versa.

Fig. 6  Chemical structures depicted with the CDK depiction 
generator for predictions with BLEU score 1.0 but Tanimoto similarity 
less than 1.0

Table 7  Analysis on test set using OPSIN

OPSIN analysis on test set Values

Invalid IUPAC names 1.69%

Valid IUPAC names 98.31%

Tanimoto 1.0 count on the total test dataset 97.89%

Tanimoto 1.0 count on valid IUPAC names 96.24%

Average Tanimoto (measured for total test dataset) 0.99

Average Tanimoto (measured for valid IUPAC names) 0.98

Table 8  Average BLEU scores, BLEU Scores, and Tanimoto 
similarity calculations

30 Mio 60 Mio

Average BLEU score 0.90 0.94

Total number of predicted strings with BLEU 1.0 46.78% 68.47%

BLEU-1 0.94 0.97

BLEU-2 0.91 0.95

BLEU-3 0.89 0.94

BLEU-4 0.85 0.92

Tanimoto calculations

 Average Tanimoto similarity index 0.89 0.94

 Number of predicted strings with Tanimoto 1.0 52.27% 73.26%
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Appendix
BLEU scoring for machine translations is a scoring 
metric introduced in 2002 used to compare a predicted 
sentence with the original sentence. Each predicted 
word is compared with the original, and each word is 
called an unigram or a 1-gram. In longer sentences we 
can also compare word pairs or bigrams. Here, we cal-
culated BLEU-1 for unigram comparison, BLEU-2 for 
the bigram comparison, BLEU-3 for 3-gram compari-
son and BLEU-4 for 4-gram comparison.

In order to compare the predicted IUPAC name with 
the original IUPAC name a sentence to sentence com-
parison should be done, so we used the sentence BLEU 
scoring function inbuilt in Python Natural Language 
Toolkit [28]. We use the original IUPAC name as the 
reference string and the predicted IUPAC name as the 
candidate string to calculate the BLEU scores.

For all BLEU calculations we used the NLTK sentence 
BLEU scoring function [24].

Weight distributions for different BLEU scores,

•	 BLEU-1: weights = (1.0, 0, 0, 0)
•	 BLEU-2: weights = (0.5, 0.5, 0, 0)
•	 BLEU-3: weights = (0.3, 0.3, 0.3, 0)
•	 BLEU-4: weights = (0.25, 0.25, 0.25, 0.25).

BLEU score can reduce according to the following,

–	 each wrong word match
–	 each wrong n-gram matches
–	 length of the candidate string is longer/shorter than 

reference string
–	 order of the predicted words are wrong.

For these a penalty will be awarded so the overall score 
will decrease. A few examples are given below.

Reference: 1,3,7-trimethylpurine-2,6-dione
Candidate: 1,3,7-trimethylpurine-2,6-dione
BLEU score: 1.0
BLEU-1: 1.00

Fig. 7  Chemical structures depicted with the CDK depiction generator for predictions with Tanimoto similarity 1.0 and low BLEU score
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BLEU-2: 1.00
BLEU-3: 1.00
BLEU-4: 1.00

Wrong word
Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-2,6-tri one
BLEU score: 0.87
BLEU-1: 0.94
BLEU-2: 0.90
BLEU-3: 0.90
BLEU-4: 0.88

Wrong word pair
Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-2,6,tri one
BLEU score: 0.81
BLEU-1: 0.88
BLEU-2: 0.84
BLEU-3: 0.84
BLEU-4: 0.81

Shorter prediction
Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-2
BLEU score: 0.63
BLEU-1: 0.63
BLEU-2: 0.63
BLEU-3: 0.63
BLEU-4: 0.63

Longer prediction
Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-2,6-di one, 6-di one, 
6-di one

BLEU score: 0.52
BLEU-1: 0.63
BLEU-2: 0.59
BLEU-3: 0.59
BLEU-4: 0.52

Wrong order of predictions
Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-6,2-di one
BLEU score: 0.71
BLEU-1: 1.00
BLEU-2: 0.86
BLEU-3: 0.80
BLEU-4: 0.71
For the BLEU score calculation, we are using the default 

settings of sentence BLEU. This corresponds to a four-
gram comparison. The weights are distributed evenly. 
In very few cases as reported in the Results section, we 

encountered the predictions with BLEU 1.0 where the 
strings were not identical. The problem can be rectified 
using more N-gram comparisons with different weight 
distributions. In our results these cases were very low in 
number so we used the default settings.

Reference: 4-[(4-amino-2,3,6-tri methyl phenyl) 
methyl]-2,3,5-tri methyl aniline

Candidate: 4-[(4-amino-2,3,5-tri methyl phenyl)
methyl]-2,3,6-tri methyl aniline

With sentence BLEU, 4-gram (weights = 
(0.25,0.25,0.25,0.25))

BLEU score: 1.00
With sentence BLEU, 5-gram (weights = 

(0.2,0.2,0.2,0.2,0.2))
BLEU score: 0.98
With sentence BLEU, 8-gram (weights = (0.125,0.125,

0.125,0.125,0.125,0.125,0.125,0.125))
BLEU score: 0.88.
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