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Abstract 

Motivation:  Virtual screening, which can computationally predict the presence or absence of protein–compound 
interactions, has attracted attention as a large-scale, low-cost, and short-term search method for seed compounds. 
Existing machine learning methods for predicting protein–compound interactions are largely divided into those 
based on molecular structure data and those based on network data. The former utilize information on proteins and 
compounds, such as amino acid sequences and chemical structures; the latter rely on interaction network data, such 
as protein–protein interactions and compound–compound interactions. However, there have been few attempts to 
combine both types of data in molecular information and interaction networks.

Results:  We developed a deep learning-based method that integrates protein features, compound features, and 
multiple types of interactome data to predict protein–compound interactions. We designed three benchmark 
datasets with different difficulties and applied them to evaluate the prediction method. The performance evaluations 
show that our deep learning framework for integrating molecular structure data and interactome data outperforms 
state-of-the-art machine learning methods for protein–compound interaction prediction tasks. The performance 
improvement is statistically significant according to the Wilcoxon signed-rank test. This finding reveals that the multi-
interactome data captures perspectives other than amino acid sequence homology and chemical structure similarity 
and that both types of data synergistically improve the prediction accuracy. Furthermore, experiments on the three 
benchmark datasets show that our method is more robust than existing methods in accurately predicting interac-
tions between proteins and compounds that are unseen in training samples.
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Introduction
Most compounds that act as drugs bind to target pro-
teins that can cause disease, and these compounds can 
control their functions. Therefore, it is necessary when 
developing new drugs to search for compounds that can 
interact with the target protein, and this process must be 
performed efficiently. However, determining the inter-
action of a large number of protein–compound pairs 

via experiments is expensive in terms of time and cost. 
Virtual screening that can computationally classify the 
presence or absence of protein–compound interactions 
has attracted attention as a large-scale, low-cost, short-
term search method for seed compounds. In particular, 
machine learning for virtual screening is considered to be 
applicable to a wide variety of proteins and compounds.

Machine learning-based methods for predicting pro-
tein–compound interactions are largely divided into 
those based on molecular structure data and those based 
on network data. The former use protein and compound 
data represented in amino acid sequences and chemical 
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structure formulas, and they can be applied to proteins 
when a docking simulation cannot be performed because 
the 3D structure is unknown. In our previous studies 
[1–3], we performed binary classification for predicting 
protein–compound interactions using a support vector 
machine (SVM) on an interaction dataset downloaded 
from DrugBank (a database that contains information 
on existing drug compounds) [4]. A prediction accuracy 
of 85.1% was achieved. Based on this result, we devel-
oped COPICAT, a comprehensive prediction system 
for protein–compound interactions, which enabled us 
to search for lead compounds from a large compound 
database, PubChem [5], consisting of tens of millions of 
compounds.

Deep learning, a method developed in the field of 
machine learning, has been applied in a variety of fields in 
recent years because it achieves high prediction accuracy 
in fields such as image recognition, speech recognition, 
and compound activity prediction [6]. Deep learning-
based protein–compound interaction prediction meth-
ods have been developed based on molecular structure 
data [7–10]. However, as these existing deep learning-
based methods utilize information based on only amino 
acid sequences and chemical structures, the functional 
properties of proteins and compounds have not yet been 
incorporated into prediction models.

The other type of machine learning approach for pro-
tein–compound interaction prediction is based on net-
work data. An interaction network is commonly used to 
comprehensively represent interactions between mol-
ecules. For example, the protein–protein interaction 
network represents the relationships among physically 
interacting proteins. In the protein–protein interac-
tion network, a node is a protein, and an edge is drawn 
between a pair of proteins that interact with each other.

Some previous studies incorporated data from multiple 
interaction networks to predict molecular interactions. 
For instance, multi-modal graphs to handle three types of 
interactions have been proposed: protein–protein, pro-
tein–drug, and polypharmacy side effects. A deep learn-
ing method for multi-modal graphs, Decagon [11], was 
proposed to predict polypharmacy side effects. DTINet 
[12] and NeoDTI [13] were also designed and developed 
as graph-based deep learning frameworks to integrate 
heterogeneous networks for drug–target interaction 
(DTI) predictions and drug repositioning. In particular, 
NeoDTI exhibits substantial improvement in perfor-
mance over other state-of-the-art prediction methods 
based on multiple interaction network data.

In addition to predicting protein–compound inter-
actions, several studies have predicted other types of 
molecular interactions. Protein–protein interactions 
induce many biological processes within a cell, and 

experiential and computational methods have been 
developed to identify various protein–protein interac-
tions. High-throughput experimental methods, such 
as yeast two-hybrid screening, were developed to dis-
cover and validate protein–protein interactions on a 
large scale. Computational methods for protein–protein 
interaction predictions employ various machine learn-
ing methods, such as SVM with feature extraction engi-
neering [14]. The recurrent convolutional neural network 
(CNN), which is a deep learning method, was applied to 
sequence-based prediction for protein–protein interac-
tions [15]. Compounds that can interact with each other 
are often represented as compound–compound interac-
tions (also known as chemical–chemical interactions), 
and interactive compounds tend to share similar func-
tions. Compound–compound interactions, called drug–
drug interactions, can be used to predict side effects 
based on the assumption that interacting compounds 
are more likely to have similar toxicity [16]. A compu-
tational approach to compound–compound interaction 
predictions has been studied with various machine learn-
ing methods, including end-to-end learning with a CNN 
based on the SMILES representation [17].

The purpose of this study was to improve prediction 
accuracy by integrating molecular structure data and 
heterogeneous interactome data into a deep learning 
method for predicting protein–compound interactions. 
In addition to the molecular information (amino acid 
sequence and chemical structure) itself, protein–protein 
interaction network data with similar reaction pathways 
or physical direct binding and compound network data 
linking compounds with similar molecular activities are 
incorporated into the deep learning model as multi-inter-
actome data. To the best of our knowledge, there are no 
deep learning-based solutions for predicting protein–
compound interactions that integrate multiple hetero-
geneous interactome data along with the direct input of 
amino acid sequences and chemical structures.

This study proposes a method for predicting protein–
compound (drug-target) interactions by combining pro-
tein features, compound features, and network context 
for both proteins and compounds. The network context 
is in the form of protein–protein interactions from the 
STRING database [18], and the compound–compound 
interactions are derived from the STITCH database 
[19]. The protein–protein interaction network and com-
pound–compound interaction network are processed 
using node2vec [20] to generate feature vectors for each 
protein node and each compound node in the interac-
tion networks in an unsupervised manner. Each network-
based representation is then combined with additional 
features extracted from a CNN applied to the amino acid 
sequence of a protein and from the extended-connectivity 
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fingerprint (ECFP) of a compound. The final combined 
protein and compound representations are used to 
make a protein–compound interaction prediction with 
an additional fully connected layer. The overall learning 
architecture is illustrated in Fig. 1.

We designed three benchmark datasets with different 
difficulties and evaluated the performance of the model 
using these datasets. In these performance evaluations, 
we demonstrated that integrating the molecular struc-
ture data and multiple heterogeneous interactome data 
synergistically improves the accuracy of protein–com-
pound interaction prediction. Furthermore, performance 
comparisons with state-of-the-art deep learning methods 
based on molecular information [10] and those based on 
interaction network data [13], as well as the traditional 
machine learning methods (SVM and random forest), 
showed that our model yields significant performance 
improvements for the most important evaluation meas-
ures: area under the receiver operating characteristic 
curve (AUROC), area under the precision-recall curve 

(AUPRC), F-measure and accuracy. Other methods have 
low values for these measures. The improvement was 
verified as statistically significant according to the Wil-
coxon signed-rank test. Finally, we analysed whether pro-
tein–protein interactions capture a different perspective 
than amino acid sequence homology and whether com-
pound–compound interactions capture a different per-
spective than chemical structure similarity.

Methods
1D‑CNN for encoding protein data
First, the protein data were applied to a one-dimensional 
convolutional neural network (1D-CNN). For the protein 
input, a one-hot vector was used for the distributed rep-
resentation of an amino acid sequence of 20 dimensions 
at a height and width of 5762 dimensions with the maxi-
mum length of amino acid sequences.

An amino acid sequence is a linear structure (1-D grid). 
In this study, a filter (kernel) with a 1D convolution oper-
ation was applied to the linear structure. Here, a “1D” 
convolutional operation for linear structures is inter-
preted as scanning the input structure in only one direc-
tion along the linear structure with a filter of the same 
height (dimension) as that of the distributed representa-
tion of the input.

One‐dimensional (1D) convolutional layer
We denote an input vector sequence that corresponds 
to the one-hot vector representation of an amino acid 
sequence by A = [a

(1)
1 ,a

(1)
2 , . . . ,a

(1)
q ] (as illustrated in 

Fig. 1). For a filter function in the l-th hidden layer of the 
CNN, the input is the set of feature maps in the (l-1)-th 
hidden layer x(l−1)

i:i+r−1,j = c
(l−1)
i,j ∈ R

m×n , where r is the 
size of the filter, m is the size of the feature map, and n 
is the number of feature maps. The output of the k-th fil-
ter is a feature map of the l-th layer c(l,k)i ∈ R

m , which is 
defined as follows:

where f is an activation function (Leaky-ReLU), 
W

(l,k) ∈ R
m×n×d is the weight matrix of the k-th fil-

ter in the l-th convolutional layer, and b(l,k) is the bias 
vector. The average-pooling mechanism is applied to 
every convolution output. To obtain the final output 
y =

{

y(t,1), y(t,2), . . . , y(t,s)
}

 , global max-pooling is used as 
follows:

where t represents the last layer of the CNN, and s rep-
resents the number of filters in the last layer.

c
(l,k)
i = f

(

W
(l,k)c

(l−1)

i,j + b
(l,k)

)

,

y(t,k) = max
i

(c
(t,k)
i ),
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Fig. 1  Deep learning architecture that integrates molecular 
structure data and interactome data to predict protein–compound 
interactions. It integrates graph- and sequence-based representations 
for the target protein and compound. The amino acid sequence 
of the protein input was embedded into a one-hot vector of 20 
dimensions in height. The ECFP representation of the compound 
input was embedded into a 1024-dimensional vector. The 
feature vectors were also extracted from the protein–protein and 
compound–compound interaction network using node2vec, a 
feature representation learning method for graphs. These feature 
vectors were combined as a protein vector and a compound vector. 
The interaction was predicted in the output unit
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Extended‑connectivity fingerprint (ECFP) for compound 
data
The extended-connectivity fingerprint (ECFP, also known 
as the circular fingerprint or Morgan fingerprint) [21] is 
the most commonly used feature representation for rep-
resenting a property of the chemical structure of a com-
pound. This algorithm first searches the partial structures 
around each atom recurrently, assigns an integer identi-
fier to each partial structure and then expresses this as a 
binary vector using a hash function. Potentially, an infi-
nite number of structures exist in the chemical space; 
consequently, the ECFP requires vectors with a large 
number of bits (usually 1024−2048 bits). In this study, we 
employed an ECFP with 1024 bits as the feature repre-
sentation for the chemical structure of a compound.

Feature representation learning for protein–protein 
and compound–compound interactions
A protein–protein interaction network that connects 
physically interacting proteins and a compound–com-
pound interaction network that connects compounds 
with similar molecular activities were input as multi-
interactome data. First, each network was represented 
as a graph. A node is a protein in the protein–protein 
network and a compound in the compound–compound 
network. An edge is drawn between a pair of proteins 
(compounds) that interact with each other. By applying 
this graph to “node2vec” [20], the feature vector of each 
node was obtained in an unsupervised manner; node2vec 
is a deep learning method that learns the feature repre-
sentation of nodes in a graph and obtains a feature vector 
for each node. Node2vec is a graph-embedding algorithm 
that can be applied to any type of graph, and it can learn 
a feature vector such that nodes that are nearby on the 
graph are also close in the embedded feature space. In 
other words, the inner product of the feature vectors of 
the nearby nodes is high. It is known that the accuracy of 
the node classification task and the link prediction task 
using the obtained feature representations of nodes is 
higher than that of the existing methods.

The node2vec algorithm was applied to the pro-
tein–protein interaction network and the compound–
compound interaction network. Using a protein and a 
compound as vertices, the interaction networks were 
converted into graphs with edge weights based on the 
reliability of the experimental data and the similarity in 
molecular activity. Node2vec (version 0.2.2) from the 
Python library, which implemented the node2vec algo-
rithm, was applied to the converted graph. The node2vec 
parameters used the default values (embedding dimen-
sions: 128; number of nodes searched in one random 
walk: walk_length = 80; number of random walks per 

node: num_walk = 10; control of probability of revis-
iting a walk node: p = 1; control of the search speed 
and range: r = 1; whether to reflect the graph weight: 
weight_key = weight).

Let a protein–protein interaction network be expressed 
by a weighted graph Gprotein =

(

Vprotein,Eprotein
)

 and a 
compound–compound interaction network be expressed 
by a weighted graph Gcompound =

(

Vcompound ,Ecompound

)

 . 
By applying node2vec to these graphs, the fea-
ture representations can be obtained and are 
denoted as N protein = node2vec

(

Gprotein

)

∈ R
d and 

N compound = node2vec
(

Gcompound

)

∈ R
d for a dimension 

of d.

Deep learning model structure for integrating molecular 
information and the interaction network
The feature vectors obtained from the 1D-CNN for the 
amino acid sequence and node2vec for the protein–pro-
tein interaction network were concatenated and fed to 
the final output layer. Similarly, the feature vectors from 
the ECFP for the chemical structure and node2vec for the 
compound–compound interaction network were concat-
enated and fed to the final output layer.

We designed an output layer consisting of an element-
wise product calculation followed by a fully connected 
layer, which is an extension of cosine similarity. The 
architecture is illustrated in Fig. 2. First, the feature vec-
tors for the proteins and compounds were mapped onto 
the same latent space with a fixed dimension d by apply-
ing fully connected layers. The similarity between the 
vector for proteins and the vector for compounds on the 
latent space was calculated by the element-wise product 
calculation method followed by a fully connected layer. 
When a pair of proteins and compounds was input, it 
was predicted that there was an interaction between the 
input pair if the similarity was higher than a predefined 
threshold (where the default was 0.5); if the similarity 
was lower, no interaction was predicted. This model is 
denoted as the “integrated model”.

More precisely, let aprotein denote the feature vector 
output by the 1D-CNN for an amino acid sequence, 
and let bcompound denote the feature vector of the ECFP 
for the chemical structure of a compound. Let N protein

and N compound denote the feature representations 
obtained from node2vec for the protein–protein inter-
action network and the compound–compound interac-
tion network. Two feature vectors aprotein and N protein 
were concatenated as one vector vprotein for the protein 
multi-modal feature. Two feature vectors bcompound and 
N compound were concatenated as one vector vcompound 
for the compound multi-modal feature. The concate-
nated feature vectors vprotein and vcompound were mapped 
onto the same latent space with a fixed dimension d by 
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applying the fully connected layers f and g. From this, 
the similarity between the two vectors for the latent 
space was calculated.

As described above, to handle data from differ-
ent modalities, such as proteins and compounds, 
we adopted a method of embedding data of differ-
ent modalities into a common latent space. Defining 
the similarity in the obtained latent space enables the 
measurement of the similarity between the data for dif-
ferent modalities. Visual semantic embedding (VSE) is 
a typical example of a method that handles data from 
different modalities and can associate images with text 

vprotein = contact
(

aprotein,N protein

)

,

vcompound = contact
(

bcompound ,N compound

)

,

(x1, x2, . . . , xd) = f
(

vprotein
)

,

(y1, y2, . . . , yd) = g
(

vcompound

)

,

outputintegrated = h(x1 · y1, x2 · y2, . . . , xd · yd).

data in acquiring these multi-modal representations 
[22]. VSE was developed to generate captions from 
images (image captioning). The image feature and the 
sentence feature are linearly transformed and embed-
ded into a common latent space.

Single‑modality models
To see the effect of integrating multi-modal features, two 
baseline models were constructed for the performance 
comparison. One was based on molecular structure data 
and used only amino acid sequence and chemical struc-
ture information, and the other was based on interaction 
network data and used only protein–protein interaction 
and compound–compound interaction information. The 
single-modality model based on molecular structure data, 
denoted the “single-modality model (molecular)”, is defined 
as follows:

(x1, x2, . . . , xn) = f
(

aprotein
)

,

(y1, y2, . . . , yn) = g
(

bcompound

)

,

outputmolecule = h
(

x1 · y1, x2 · y2, . . . , xn · yn
)

,

similarity

Latent Space

…

Element-wise
product

Fully connected 
layer

output

Fully connected 
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Protein
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Fig. 2  The output layer architecture. The integrated model predicts the protein–compound interactions by embedding the protein and compound 
data from different modalities into a common latent space. The feature vectors for the proteins and compounds are mapped onto the same latent 
space by applying a fully connected layer. Then, their similarity in the latent space is calculated with an element-wise product calculation followed 
by a fully connected layer
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and the single-modality model based on interaction 
network data, denoted the “single-modality model (net-
work)”, is defined as follows:

Loss function
For the similarity output x of the model, the output value 
was restricted to the range 0 to 1 by the sigmoid function, 
and cross entropy was applied as the loss function L(θ) to 
calculate the training error.

Hyperparameter optimization
The hyperparameters, the number and size of the filters 
in the convolutional layers in the 1D-CNN, and the num-
ber of units in the fully connected output layers were 
optimized by the Bayesian optimization tool Optuna 
[23], which is an automatic hyperparameter optimization 
software framework specifically designed for machine 
learning. For the hyperparameter optimization, the vali-
dation dataset was obtained by dividing the training sam-
ples into a set for training and a set for validation.

Regularization
Regularization is important for avoiding overfitting and 
improving the prediction accuracy in deep learning for 
complex model architectures with a large number of 
parameters. Regularization is especially important in our 
deep learning model, which integrates multiple datasets 
of different modalities; hence, we employed several regu-
larization methods.

We employed batch normalization [24], which allowed 
us to use much higher learning rates and be less careful 
about initialization, after each convolutional layer. We 
also inserted dropout [25] after the fully connected lay-
ers. Furthermore, we added an L2 regularization term 
to the training-loss function L(θ) . When incorporating 
weight decay, the objective function to be optimized is as 
follows:

where w refers to the parameters of the entire model, 
and the second term of the above equation is the sum of 
the squared values of all the parameters divided by 2. λ is 
a parameter that controls the strength of regularization. 
Adding this term to the objective function has the effect 

(x1, x2, . . . , xn) = f
(

N protein

)

,

(y1, y2, . . . , yn) = g
(

N compound

)

,

outputnetwork = h(x1 · y1, x2 · y2, . . . , xn · yn).

L(θ)+ �
1

2

∑

w

�w�2,

of preventing the absolute value of the network weight 
from becoming too large, which helps prevent overfitting.

Comparison with existing state‑of‑the‑art methods
The prediction performance of the proposed models was 
compared with that of state-of-the-art deep learning 
methods based on molecular structure data and interac-
tion network data. The first method was based on a graph 
CNN for protein–compound prediction [10]. It employed 
a graph CNN for encoding chemical structures and a 
CNN for n-grams of amino acid sequences. The second 
method was NeoDTI [13], which demonstrated supe-
rior performance over other previous methods based on 
multiple-interaction-network data. We also compared 
our method with the traditional machine learning meth-
ods, namely, SVM and random forest [26], as the baseline 
prediction methods. These traditional methods require 
structured data as input. For the protein information, the 
3-mer (3-residue) frequency in the amino acid sequence 
was used as the feature vector for 8000 dimensions. For 
the compound information, an ECFP with a length of 
1024 and a radius of 2 was used. The radial basis func-
tion (RBF) was used as the kernel function of SVM, and 
all other parameters of SVM and random forest used the 
default values. In implementing these machine learning 
methods, scikit-learn (version 0.19.1) and chainer (ver-
sion 5.0.0) were used.

Datasets
The protein–compound interaction data and compound–
compound networks were retrieved from the database 
STITCH [19], and the protein–protein networks were 
retrieved from the database STRING [18].

Protein–compound interaction data
Protein–compound interaction data were obtained 
from the STITCH database [19]. STITCH contains 
data on the interaction of 430,000 compounds with 
9.6  million proteins from 2031 species. The STITCH 
data sources consist of (1) structure-based prediction 
results, such as the genome context and co-expression; 
(2) high-throughput experimental data; (3) automatic 
text mining; and (4) information from existing data-
bases. When a protein–compound dataset is down-
loaded from STITCH, a score based on the reliability 
is created for each of the above four items for each pro-
tein–compound pair. For the protein–compound inter-
action data used in this study (as a “positive” example), 
the threshold value for the reliability score of item (2) 
was set to 700, and the data with a reliability score of 
700 or higher were extracted from STITCH such that 
interologs were eliminated and the data were com-
posed of only experimentally reliable interactions; data 
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that did not meet this threshold were removed. For the 
STITCH data, interactions with a confidence score of 
700 or more were determined based on the criterion 
that they were at least highly reliable [27]. Of the com-
binations of proteins and compounds, only pairs not 
stored in the STITCH database were taken as “negative” 
examples. In general, protein–compound pairs that are 
not stored in STITCH have very low confidence, with a 
score of 150 or less for their interaction [28]; these are 
thus considered to be non-interacting negative exam-
ples. The ratio of the positive and negative examples 
was 1 to 2.

Protein–protein interaction data
The protein–protein interaction information was 
obtained from the STRING database [18], which con-
tains data for protein–protein interactions covering 
24.6  million proteins from 5090 species. The STRING 
data sources consist of (1) experimental data; (2) path-
way databases; (3) automatic text mining; (4) co-expres-
sion information; (5) neighbouring gene information; 
(6) gene fusion information; and (7) co-occurrence-
based information. In particular, item (1) is interaction 
data obtained from actual experiments, which include 
biochemical, biophysical, and genetic experiments. 
These are extracted from databases organized by the 
BioGRID database [29] and the International Molecular 
Exchange (IMEx) consortium [30]. When the protein–
protein interaction data from STRING were down-
loaded, a score based on the reliability was created for 
each of the above seven items for each protein–protein 
pair. Regarding the protein–protein interaction net-
work, the threshold value for the reliability score of 
item (1) was set to 150. Data that did not satisfy this 
criterion were removed.

Compound–compound interaction data
The compound–compound interaction data were also 
obtained from the STITCH database. The compound–
compound interaction data in STITCH are based on (1) 
the chemical reactions obtained from the pathway data-
bases; (2) structural similarity; (3) association with pre-
vious literature; and (4) correspondence between the 
compounds based on molecular activity similarity. For 
the similarity of the molecular activities in item (4), the 
activity data obtained by screening the model cell line 
NCI60 were used. When the compound–compound 
interaction data were downloaded from STITCH, a 
score based on the reliability was created for each of the 
above four items for each compound pair. For the com-
pound–compound interaction data used in this study, the 

threshold value for the reliability score in item (4) was 
set to 150. Data that did not satisfy this criterion were 
removed.

Construction of the baseline, unseen compound‑test, 
and hard datasets for evaluation
From the STITCH and STRING databases, a total of 
22,881 protein–compound interactions, 175,452 pro-
tein–protein interactions and 69,231 compound–
compound interactions were downloaded. Using the 
downloaded dataset in which the protein–protein inter-
action, compound–compound interaction and protein–
compound interaction data were all available, the three 
types of datasets below were constructed to perform five-
fold cross-validation.

In typical k-fold cross-validation, all positive and nega-
tive examples are randomly split into k folds. One of them 
is used as a test sample, and the remaining k − 1 folds are 
used as training samples; then, the k results obtained are 
averaged. We call the cross-validation dataset the base-
line dataset. As more difficult and more practical tasks, 
we constructed two more cross-validation datasets, 
called the unseen compound-test dataset and the hard 
dataset. In the unseen compound-test dataset, we split 
the data into k folds such that none of the folds contained 
the same compounds as the others. In the unseen com-
pound-test dataset, the compounds in the test sample 
did not appear in the training sample. In other words, the 
interaction of new (unseen) candidate compounds with 
the target proteins must be accurately predicted. In the 
hard dataset, we split the data into k folds such that none 
of the folds contain the same proteins and compounds as 
the others. In the hard dataset, neither the proteins nor 
the compounds in the test sample appear in the training 
sample. In other words, interactions in which neither the 
proteins nor the compounds are found in the training 
sample must be accurately predicted.

Results
The following measures were used for the performance 
evaluation criteria: AUROC, AUPRC, F-measure, and 
accuracy.

 where TP is the number of true positives, TN is the 
number of true negatives, FP is the number of false posi-
tives, and FN is the number of false negatives; the recall is 

F-measure =
2× Recall× Precision

Recall+ Precision
,

Accuracuy =
TP + TN

TP + FP + FN + TN
,
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defined by TP/(TP + FN), and the precision is defined by 
TP/(TP + FP).

 The experiment was performed on a computer 
equipped with an Intel(R) Xeon CPU (E5-2698-v4, 2.20 
GHz, 512 GB memory) with one NVIDIA Tesla V100 
GPU. The computational time of our deep learning algo-
rithm was approximately 27  s (CPU time) per epoch in 
the process of constructing the integrated model. The 
number of epochs required for the learning process to 
converge varied greatly from tens to hundreds.

Effectiveness of integrating molecular structure data 
and interaction network data
The performance of our three models was evaluated to 
determine the effectiveness of integrating the molecular 

structure data and the interaction network data. The 
results derived from the three datasets are shown in 
Tables  1, 2 and 3. In the tables, the mean and standard 
deviation (SD) for the five folds are shown. Furthermore, 
the symbol “*” indicates that there was a significant dif-
ference compared with the integrated model based on 
the Wilcoxon signed-rank test, with a p-value p < 0.05.

Compared with the two single-modality models, the 
integrated model significantly improved the prediction 
accuracy in all evaluation measures. For example, in 
terms of AUPRC, which is a more informative evalua-
tion index in a dataset that is imbalanced between posi-
tive and negative samples, the integrated model showed 
significant improvements of 3.0%, 7.1 and 8.3% over the 
single-modality model (molecular) and 3.7%, 10.9 and 

Table 1  Performance comparison of three proposed models with existing methods on the baseline dataset

AUROC AUPRC F-measure Accuracy

Integrated model (molecular + network) 0.972 ± 0.004 0.954 ± 0.005 0.900 ± 0.006 0.933 ± 0.004

Single-modality model (molecular) 0.956 ± 0.004* 0.927 ± 0.006* 0.868 ± 0.009* 0.911 ± 0.006*

Single-modality model (network) 0.947 ± 0.008* 0.920 ± 0.010* 0.853 ± 0.015* 0.904 ± 0.009*

Graph CNN-based method [10] 0.917 ± 0.006* 0.850 ± 0.006* 0.794 ± 0.014* 0.864 ± 0.008*

NeoDTI [13] 0.956 ± 0.005* 0.905 ± 0.016* 0.872 ± 0.006* 0.917 ± 0.004*

SVM 0.805 ± 0.009* 0.651 ±0.012* 0.743 ± 0.012* 0.837 ± 0.006*

Random forest 0.873 ± 0.009* 0.767 ± 0.015* 0.837 ± 0.012* 0.895 ± 0.007*

Table 2  Performance comparison on the unseen compound-test dataset

AUROC AUPRC F-measure Accuracy

Integrated model (molecular + network) 0.890 ± 0.039 0.842 ± 0.050 0.727 ± 0.085 0.843 ± 0.038

Single-modality model (molecular) 0.869 ± 0.027 0.786 ± 0.023* 0.657 ± 0.053 0.802 ± 0.017

Single-modality model (network) 0.831 ± 0.053 0.759 ± 0.055* 0.661 ± 0.073* 0.809 ± 0.030*

Graph CNN-based method [10] 0.804 ± 0.037* 0.679 ± 0.031* 0.637 ± 0.027 0.773 ± 0.009*

NeoDTI [13] 0.823 ± 0.067 0.773 ± 0.064* 0.621 ± 0.062* 0.805 ± 0.024*

SVM 0.765 ± 0.020* 0.603 ± 0.029* 0.689 ± 0.029 0.810 ± 0.016

Random forest 0.770 ± 0.023* 0.635 ± 0.026* 0.697 ± 0.036 0.828 ± 0.014

Table 3  Performance comparison on the hard dataset

AUROC AUPRC F-measure Accuracy

Integrated model (molecular + network) 0.882 ± 0.035 0.834 ± 0.041 0.714 ± 0.064 0.836 ± 0.030

Single-modality model (molecular) 0.851 ± 0.023 0.770 ± 0.023* 0.662 ± 0.038* 0.806 ± 0.020*

Single-modality model (network) 0.780 ± 0.051* 0.706 ± 0.040* 0.601 ± 0.057* 0.784 ± 0.023*

Graph CNN-based method [10] 0.707 ± 0.038* 0.563 ± 0.083* 0.427 ± 0.132* 0.719 ± 0.043*

NeoDTI [13] 0.790 ± 0.039* 0.715 ± 0.046* 0.297 ± 0.084* 0.719 ± 0.018*

SVM 0.652 ± 0.019* 0.500 ± 0.023* 0.481 ± 0.044* 0.755 ± 0.012*

Random forest 0.605 ± 0.033* 0.452 ± 0.046* 0.364 ± 0.075* 0.728 ± 0.026*
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18.1% over the single-modality model (network) in the 
baseline dataset, unseen compound-test dataset and hard 
dataset, respectively. These results demonstrate that inte-
grating multiple heterogeneous interactome data with 
molecular structure data brought a synergistic effect in 
improving the accuracy of protein–compound interac-
tion prediction.

Performance comparison with other existing methods
The prediction performance of our three models was 
compared with that of state-of-the-art deep learning 
methods and traditional machine learning methods 
based on molecular structure data and interaction net-
work data. The results for the three datasets are shown in 
Tables 1, 2 and 3.

The integrated model yielded superior prediction per-
formance compared with the other existing methods. For 
the baseline dataset, the integrated model achieved sig-
nificant improvements compared with the graph CNN-
based method [10], NeoDTI [13] and the traditional 
machine learning methods (SVM and random forest) 
(Table  1). In fact, Wilcoxon signed-rank test [31] verifi-
cation showed that the difference in performance was 
statistically significant, with a p-value p < 0.05, thereby 
proving the superiority of the integrated model.

For the unseen compound-test and hard datasets, a 
more marked difference in the performance of the inte-
grated model was confirmed. We compared the inte-
grated model with the graph CNN-based method and 
NeoDTI in terms of AUROC, AUPRC and F-measure. 
The integrated model greatly outperformed the oth-
ers, with significant improvements (10.7% in terms of 
AUROC, 24.0% in terms of AUPRC and 14.1% in terms 
of F-measure for the unseen compound-test dataset, and 
24.8% in terms of AUROC, 48.1% in terms of AUPRC and 
67.2% in terms of F-measure for the hard dataset) over 
the graph CNN-based method. Compared with NeoDTI, 
significant improvements were also confirmed: 8.1% in 
terms of AUROC, 8.9% in terms of AUPRC and 17.1% in 
terms of F-measure for the unseen compound-test data-
set, and 11.6% in terms of AUROC, 16.6% in terms of 
AUPRC and 140.4% in terms of F-measure for the hard 
dataset. Based on the above results, the integrated model 
can predict protein–compound interactions with stable 
accuracy, regardless of the difficulty of the dataset and 
the types of proteins and compounds that constitute the 
test data, compared with other existing methods. This is 
due to the use of features based on sequence informa-
tion and compound structure information by the inte-
grated model and features obtained from the interaction 
network, as well as the effect of using the element-wise 
product of the protein and compound feature vectors in 
the output layer.

The single-modality model also yielded superior pre-
diction performance compared with that of the existing 
methods using the same-modality input data. The graph 
CNN-based method [10] yields a compound feature vec-
tor by converting the chemical structure into a graph and 
applying it to the graph CNN, and it generates a protein 
feature vector by splitting the amino acid sequence into 
n-grams and applying it to the CNN. Therefore, the graph 
CNN-based method can be defined as having the same 
molecular structure data-based prediction model as the 
single-modality model (molecular). For the baseline data-
set, the unseen compound-test dataset and the hard data-
set, the single-modality model (molecular) outperformed 
the graph CNN-based method. As an example, the single-
modality model (molecular) achieved an improvement of 
20.4% in terms of AUROC, 36.8% in terms of AUPRC and 
55.0% in terms of F-measure for the hard dataset over 
the graph CNN-based method (Table  3). Based on this 
result, in protein–compound interaction prediction, it is 
sufficient to use the ECFP as a feature representation for 
the compound structure; in contrast, in the graph CNN-
based method, the compound structure is converted into 
a graph structure, and a graph CNN is applied.

NeoDTI takes protein–protein interaction and com-
pound–compound interaction information as input and 
predicts whether an edge is drawn between the com-
pound and protein nodes by learning to reconstruct 
the network. Therefore, NeoDTI can be defined as an 
interaction network-based prediction model, which is 
the same as the single-modality model (network). The 
difference is that the single-modality model (network) 
first uses unsupervised deep learning (node2vec) to 
automatically learn feature representations for nodes in 
the given heterogeneous interaction networks and then 
applies supervised learning to predict protein–com-
pound interactions based on the learned features, while 
NeoDTI simultaneously learns the feature representa-
tions of nodes and protein–compound interactions in a 
supervised manner. In the three datasets, the prediction 
performance of the single-modality model (network) was 
comparable to that of NeoDTI.

Discussion
To interpret the accuracy improvement obtained by inte-
grating multi-interactome data with molecular structure 
data, which was shown in the previous section, we ana-
lysed whether the protein–protein interaction captured 
a different perspective than amino acid sequence homol-
ogy and whether the compound–compound interaction 
captured a different perspective than chemical structure 
similarity. More concretely, we investigated the relation-
ship between the amino acid sequence homology and 
similarity of proteins in the protein–protein interaction 
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network, as well as the relationship between the chemical 
structure similarity and the similarity in the compound–
compound interaction network.

For every pair of proteins in the dataset used in the 
experiments, the amino acid sequence similarity was 
calculated using DIAMOND, and the cosine similar-
ity between two vectors of the pair output by node2vec 
using the protein–protein interaction network was cal-
culated. All of the protein pairs were plotted with the 
amino acid sequence similarity on the x-axis and the 
cosine similarity in the protein–protein interaction net-
work on the y-axis. The scatter plot is shown in Fig. 3 
(top). Similarly, for every pair of compounds, the Jac-
card coefficient of the ECFPs of the two compounds 
and the cosine similarity between the two vectors out-
put by node2vec using a compound–compound inter-
action network were calculated. All of the compound 
pairs were plotted with the Jaccard coefficient on the 
x-axis and the cosine similarity in the compound–com-
pound interaction network on the y-axis, as depicted 
in Fig.  3 (bottom). However, no clear correlation was 
observed these scatter plots. In fact, the correlation 
coefficients for each scatter plot were 0.127 and 0.0346, 
respectively. In other words, it was confirmed that the 
amino acid sequence similarity and the similarity in the 
protein–protein interaction network were not propor-
tional; it was also confirmed that the chemical structure 
similarity and the similarity in the compound-com-
pound interaction network were not proportional. 
Therefore, we concluded that the protein–protein inter-
action network captured a different perspective than 
the amino acid sequence homology and compensated 

for it. The compound–compound interactions captured 
a different perspective than the chemical structure sim-
ilarity and compensated for it.

For example, the protein “5-hydroxytryptamine (ser-
otonin) receptor 6, G protein-coupled (HTR6)” and the 
compound “Mesulergine” in the test sample in the “hard 
dataset” have a positive interaction [32], and our model 
succeeded in correctly predicting it. Nevertheless, the 
single-modality model (molecular) and graph CNN-
based method failed to predict a positive interaction; 
that is, both predicted that the pair would not interact. 
The most similar protein–compound pair in the train-
ing sample to the pair HTR6 and Mesulergine was the 
protein “adrenoceptor alpha 2A (ADRA2A)” and the 
compound “Pergolide” [33]. The protein ADRA2A and 
the compound Pergolide exhibited a positive interac-
tion in the training sample. The sequence similarity 
score between HTR6 and ADRA2A was rather low at 
100.5, but the similarity of the two proteins in the pro-
tein–protein interaction network was relatively high at 
0.805. Part of the protein–protein interaction network 
around HTR6 and ADRA2A is displayed in Fig. 4 (left). 
Similarly, the Jaccard coefficient of the ECFPs between 
Mesulergine and Pergolide is relatively low at 0.273 (in 
general, compound pairs with Jaccard coefficients for 
ECFPs below 0.25 are considered not to have chemi-
cally similar structures [34]), but the cosine similarity 
of the two compounds in the compound–compound 
interaction network is high at 0.735. Part of the com-
pound-compound interaction network around Mesul-
ergine and Pergolide is displayed in Fig. 4 (right).

Fig. 3  (Left) Relationship between the amino acid sequence similarity and the similarity in the protein–protein interaction network. (Right) 
Relationship between the chemical-structure similarity and the similarity in the compound–compound interaction network. The amino acid 
sequence similarity was calculated using DIAMOND, and the chemical structure similarity was calculated as the Jaccard coefficient of the ECFPs of 
the two compounds. The correlation coefficients are 0.127 and 0.0346, respectively
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Conclusions
This study aimed to improve the performance of protein–
compound interaction prediction by integrating molecu-
lar structure and interactome data, which was achieved 
by integrating multiple heterogeneous interactome data 
into predictions of protein–compound interactions. An 
end-to-end learning method was developed that com-
bines a 1D-CNN for amino acid sequences, an ECFP rep-
resentation for compounds, and feature representation 
learning with node2vec for protein–protein and com-
pound–compound interaction networks. The proposed 
integrated model exhibited significant performance dif-
ferences with respect to accuracy measures compared 
with the current state-of-the-art deep learning methods. 
This improvement in performance was verified as statis-
tically significant by the Wilcoxon signed-rank test. The 
results indicated that the proposed model is able to more 
accurately predict protein–compound interactions even 
in a hard dataset, whereby neither the proteins nor com-
pounds in the test sample are included in the training 
sample.

An important future task is to integrate the gene 
regulatory network as additional interactome data to 
further improve protein–compound interaction pre-
diction. A large number of gene expression profiles 
for various tissues and cell lines are available in pub-
lic databases, and gene regulatory networks can be 
effectively inferred from gene expression profiles. For 
example, the effectiveness of utilizing gene expression 
data for drug repositioning was reported in a summary 
review [35]. Gene expression profiles can be effective 
in restoring connections between genes, drugs, and 

diseases involved in the same biological process. We 
have obtained a promising preliminary result of inte-
grating gene expression data reposited in DrugBank 
into our deep learning model to improve the prediction 
accuracy for protein–compound interactions.
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