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Abstract 

Background:  Partial atomic charges find many applications in computational chemistry, chemoinformatics, bioinfor-
matics, and nanoscience. Currently, frequently used methods for charge calculation are the Electronegativity Equali-
zation Method (EEM), Charge Equilibration method (QEq), and Extended QEq (EQeq). They all are fast, even for large 
molecules, but require empirical parameters. However, even these advanced methods have limitations—e.g., their 
application for peptides, proteins, and other macromolecules is problematic. An empirical charge calculation method 
that is promising for peptides and other macromolecular systems is the Split-charge Equilibration method (SQE) and 
its extension SQE+q0. Unfortunately, only one parameter set is available for these methods, and their implementation 
is not easily accessible.

Results:  In this article, we present for the first time an optimized guided minimization method (optGM) for the fast 
parameterization of empirical charge calculation methods and compare it with the currently available guided minimi-
zation (GDMIN) method. Then, we introduce a further extension to SQE, SQE+qp, adapted for peptide datasets, and 
compare it with the common approaches EEM, QEq EQeq, SQE, and SQE+q0. Finally, we integrate SQE and SQE+qp 
into the web application Atomic Charge Calculator II (ACC II), including several parameter sets.

Conclusion:  The main contribution of the article is that it makes SQE methods with their parameters accessible to 
the users via the ACC II web application (https://​acc2.​ncbr.​muni.​cz) and also via a command-line application. Further-
more, our improvement, SQE+qp, provides an excellent solution for peptide datasets. Additionally, optGM provides 
comparable parameters to GDMIN in a markedly shorter time. Therefore, optGM allows us to perform parameteriza-
tions for charge calculation methods with more parameters (e.g., SQE and its extensions) using large datasets.
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Introduction
Partial atomic charges are real numbers assigned to indi-
vidual atoms of a molecule that approximate the distri-
bution of electron density among these atoms. Partial 
atomic charges find many applications in computational 
chemistry [1–3], chemoinformatics [4–6], bioinformatics 

[7, 8], and nanoscience [9, 10]. Because the charges are 
not physicochemical observables but a theoretical con-
cept, many methods for their calculation have been 
developed. The most reliable are quantum mechanical 
(QM) methods, because they are calculated according to 
the standard definition of partial atomic charges. Specifi-
cally, they compute the distribution of electrons in orbit-
als (the so-called electron population of the orbitals) and 
divide this electron population among individual atoms 
via a population analysis (e.g., MPA [11, 12], NPA [13, 
14]) or charge calculation scheme (e.g., ESP [15], RESP 
[16]). A substantial disadvantage of QM approaches is 
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their high computational complexity, and therefore a 
long computational time.

Empirical charge calculation methods are faster alter-
natives to QM methods. They calculate charges based on 
common physicochemical laws (e.g., Coulomb law), but 
they include empirical parameters derived from values 
of QM charges or other tabular values or constants. Cur-
rently, frequently used empirical methods are the Elec-
tronegativity Equalization Method (EEM) [17], Charge 
Equilibration method (QEq) [18], and Extended QEq 
(EQeq) [19]. However, even these advanced and popular 
methods have their limitations—e.g., their application 
for peptides, proteins, and other homogeneous mac-
romolecular systems (i.e., systems composed from just 
several types of residues) is problematic. The reason for 
this is that in these macromolecules, individual types of 
atoms (e.g., single-bonded O) have charge values that are 
spread over a small range (or a few small ranges), and 
such disproportional charge distribution is a challenge 
for parameterization approaches. Especially when charge 
differences in the whole molecule are small (no highly 
positive or negative atoms or ions are present), the charge 
ranges are tiny. However, there are promising empirical 
charge calculation methods: the Split-charge Equilibra-
tion method (SQE) [20] and its extension to peptides, 
SQE+q0 [21].

Unfortunately, implementations of these methods and 
their parameters are not easily accessible to the public, so 
their potential usage is limited.

Recently, also machine learning approaches were 
applied in the area of partial atomic charges computation 
[22–25]. However, they are primarily targeted at small 
heterogeneous molecules with a firm conformation. 
Moreover, recent approaches [24, 25] impose limits on 
the size of the molecule (having at most 65 atoms) which 
is the limitation empirical methods don’t have.

In this publication, we have reimplemented the SQE 
and SQE+q0 methods and compared them with other 
currently popular empirical approaches. Furthermore, 
we introduce another SQE extension, SQE+qp, adapted 
for peptides. An essential goal of our article is also to 
make SQE and SQE+qp implementation accessible for 
the research community via the web application Atomic 
Charge Calculator II (ACC II) [26], including several 
parameter sets. Finally, this article also presents an opti-
mized guided minimization method (optGM) for the 
fast parameterization of empirical charge calculation 
methods.

Description of SQE and SQE+q0 methods
SQE
SQE is based on the electronegativity equalization 
principle. However, unlike EEM or QEq, it does not 

perform equalization at the level of individual atoms, 
but switches the problem to a bond domain by defin-
ing split-charges, i.e., charges located on the bonds. For-
mally, the atomic charge on atom i is expressed as the 
sum of those split-charges on bonds that a particular 
atom is a part of:

where BA(i) is the set of atoms bonded to atom i, and pi,j 
is the split-charge on the bond i − j.

The SQE method written in the form of a system of lin-
ear equations is described by the equation:

where qsp is the vector of split-charges, T is the incidence 
matrix describing the molecular topology, diag(κ) is the 
diagonal matrix with bond hardnesses, χ is the vector of 
atomic electronegativities, and H is the hardness matrix 
that describes the interactions between the atoms.

To reconstruct the atomic charges q from the split-
charges, the following transformation is made:

SQE+q0
Since the formalism of SQE has no way of setting the 
total charge of a molecule or the formal charge of a 
particular atom, it might not be very well suited to 
accounting for the charged functional groups found, for 
example, in peptides. This shortcoming was addressed 
in SQE+q0 [21], an extension to SQE. SQE+q0 adds 
formal charges to work as initial seeds for the computa-
tion of partial atomic charges. This change is expressed 
in:

where q0 is the vector of initial formal charges, η is the 
vector of atomic hardnesses, and ∗ is the element-wise 
product. The calculation of atomic charges is then trivi-
ally modified to:

Methods
Description of SQE+qp method
Our new method SQE+qp replaces the formal charge q0 
of a SQE+q0 method with the member qp , representing 
the initial charge of the relevant atomic type. Since the 

qi =
∑

j∈BA(i)

pi,j

(

THTT
+ diag(κ)

)

qsp = Tχ

q = TTqsp

(

THTT
+ diag(κ)

)

qsp = T (χ −Hq0 + η ∗ q0)

q = TTqsp + q0
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sum of the initial charges can differ from the total molec-
ular charge, simple normalization must be performed 
before the actual computation. The following equation 
describes this normalization:

where Q is the total molecular charge, and N is the num-
ber of atoms in the molecule. The values of initial charges 
are obtained in the process of parameterization of the 
SQE+qp method.

Implementation of empirical methods for partial charge 
calculation
All the methods which are used in this paper are imple-
mented as modules of ACC II. Specifically, EEM, QEq, 
and EQeq were already present in ACC II, and their 
implementations were based on the descriptions in arti-
cles [17, 18], and [19], respectively. SQE, SQE+q0, and 
SQE+qp were recently added to ACC II as a result of this 
work. SQE and SQE+q0 were implemented according to 
[20, 27]. The implementation of SQE+qp is based on the 
previous works and this article.

ACC II is freely available under the MIT license at 
GitHub [28]. Furthermore, all ACC II charge calculation 
methods can be used via a standalone command-line 
application [29] that enables users to integrate charge 
calculation methods (including SQE-like methods) into 
their own workflows. While the application and all the 
methods are implemented in C++ language to achieve 
the best performance, we also provide Python bindings 
to these methods for convenience. A short description 
of the methods can be found at the ACC II webpage 
[30].

Parameterization of empirical methods
Several key aspects largely influence the parameteriza-
tion process, namely, the differentiation of atoms (and 
bonds) into atomic (and bond) types, the global opti-
mization scheme, and the design of the objective func-
tion that evaluates the parameters’ quality using several 
standard metrics. Note that the implementations of all 
the parameterization schemes mentioned in this section 
are a part of our internal package MACH, available freely 
at GitHub [31].

Atomic and bond types
During the parameterization, each atom is assigned a 
type that shares the same values of individual parameters. 
Multiple schemes for assigning types can be employed, 
from the simplest, in which an atom’s element represents 
the type, to more complex ones. One of the widely used 

qnormp = qp −
1

N

(

1Tqp − Q
)

,

approaches is to differentiate the atoms based on the ele-
ment and the highest bond order of the bond they are 
part of [32–34]. In this text, we use the acronym HBO 
(highest bond order) to denote such classification (e.g., 
a carbon with a double bond would be C/2, an oxygen 
with only single bonds is O/1). The second scheme we 
used describes an atom’s bonded environment, i.e., all the 
bonded atoms (BA). Examples might be C/CCCH for a 
carbon connected to three other carbon atoms and one 
hydrogen, or O/CH for an oxygen connected to a carbon 
and a hydrogen.

Since SQE includes bond parameters, we must also 
categorize each bond. The bond type is based on the 
atomic types of the constituent atoms and the order of 
the bond.

Optimization scheme
We used the guided minimization (GDMIN) [35] 
method to parameterize all the above-mentioned 
empirical methods. Unfortunately, we found that 
GDMIN is very time-consuming for SQE-like meth-
ods, because they require parameters for bonds, which 
are not present in EEM, QEq, and EQeq. Moreover, 
this problem is amplified by the usage of BA atomic 
types, which allows for a greater number of potential 
combinations of bonded atoms. Therefore the number 
of parameters increases significantly. For this reason, 
we developed the method optGM, an improvement of 
GDMIN designed to reach the same or better results in 
a markedly shorter time. The main differences between 
GDMIN and optGM are:

•	 optGM only uses a suitable subset (i.e., a subset of 
molecules containing at least N atoms of each atomic 
type present in the original training set) of molecules 
in several steps of the parameterization process. 
Evaluation of the objective function in these steps is 
therefore significantly faster.

•	 The number of initial samples can be substantially 
higher (since they are only evaluated on a subset) 
than in the original approach developed for EEM, 
which has only two parameters per atomic type. A 
large number of initial samples is necessary to suf-
ficiently cover the parameter space in methods with 
multiple atom and bond parameters.

•	 The number of local optimizations, which are the 
most time-demanding part of the parameterization, 
is limited to just the best candidate samples.

Further details about optGM are described in Additional 
file 1: Section 1.
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Quality metrics
To be able to evaluate the quality of the parameters, 
quality criteria must be defined. All of them describe 
the correspondence between the reference QM 
charges X = (x1, . . . , xN ) and the empirical charges 
Y = (y1, . . . , yN ) produced as a result of the parameter-
ization process. In this work, we use the most common 
quality metrics, specifically:
R2 Squared value of Pearson’s correlation coefficient. 

This metric describes the linear correlation between 
two sets of values. Values close to 1 indicate a strong 
linear correlation, whereas values near zero indicate a 
low correlation.

where x and y represent the mean values of the sets X 
and Y, respectively.
RMSD Root mean square deviation. The lower the 

value of RMSD, the more similar the two sets of values 
are. A zero value indicates that the sets are identical.

R2(X ,Y ) =

(

∑N
i=1(xi − x)(yi − y)

)2

∑N
i=1 (xi − x)2

∑N
i=1(yi − y)2

RMSD(X ,Y ) =

√

√

√

√

1

N

N
∑

i=1

(

xi − yi
)2

RMSDat RMSD for atomic type. This quantity represents 
the worst (i.e., the largest) value of the RMSD values 
computed for individual atomic types.

In this work, the values of R2 and RMSD are com-
puted for each molecule and then averaged over the 
whole set.

Objective function
The evaluation of the objective function guides the steps 
of the global optimization method. In this paper, we used 
the function defined as the sum of averaged RMSD values 
calculated for each molecule and the average of RMSD 
values for each atomic type.

Correlation graphs
In parallel with quality metrics, a correlation between ref-
erence (QM) and empirical charges can also be evaluated 
using a correlation graph. The X-axis of the graph con-
tains QM charges and the Y-axis empirical charges. Each 
point of the graph represents one atom and pairs its QM 
and empirical charges. Moreover, individual points are 
colored according to their atomic type. Therefore it can 
be directly seen which type of atoms correlates weakly. 
An example of a correlation graph can be found in Fig. 1.

Fig. 1  Correlation graphs for CCD_gen dataset. Empirical charges are calculated using the parameters obtained by GDMIN and by optGM
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Results and discussions
To assess the empirical methods and the parameteri-
zation schemes described in the previous section, we 
devised a series of experiments. First, the choice of data-
sets and reference charges had to be made.

Datasets
In this paper, we utilized three datasets of molecules, 
described in Table 1. The first two datasets are composed 
of organic molecules and were also used for the compari-
son and parameterization of empirical charge calculation 
methods in previous publications [33, 34]. DTP_small 
is a simple set (a low number of small-sized molecules 
with low variability) while CCD_gen is more complex. 
DTP_small contains organic molecules used as drugs; 
CCD_gen includes organic molecules acting as protein 
ligands. The last dataset, PUB_pept, was created directly 
for this publication. It contains small peptides obtained 
from the PubChem database [36]. It represents a dataset 
of molecules with homogeneous atomic types. The meth-
odology of how this dataset was prepared is described in 
Additional file 1: Section 2.

Each dataset was divided into two subsets: a training 
set and a test set containing 80% and 20% of the mole-
cules, respectively. The division was done randomly, and 
the stratification was included during the separation. 
The list of molecules that comprised the training and 
test set can be found in Additional file 2. For all the data-
sets, molecules in SDF format are provided in Additional 
file 3.

Reference charges
The QM charge calculation approach B3LYP/6-311G/
NPA was selected for calculating the QM reference 
charges (i.e., charges used for the parameterization and 

evaluation of all the compared empirical methods) on 
datasets DTP_small and CCD_gen. These charges were 
used because the combination of the B3LYP theory 
level, the 6-311G basis set, and NPA proved to be very 
suitable for parameterizing empirical charge calculation 
methods [4, 5, 33, 38]. For the dataset PUB_pept, the 
QM charge calculation approach B3LYP/6-31G*/NPA 
was selected. The method and the population analysis 
are the same as for the first two datasets, but the basis 
set 6-31G* was used. The reason for this is that 6-311G 
is too complex and not applicable for peptide mole-
cules. The basis set 6-31G* represents a robust enough 
and feasible replacement, and was also often used to 
parameterize empirical charge calculation methods [32, 
39, 40]. The QM charges for all the datasets were calcu-
lated with Gaussian 09 [41]. The files with QM partial 
atomic charges for molecules from all the datasets are 
available in Additional file 4.

Comparison of parameterization approaches GDMIN 
and optGM
As the first step of our study, we proved the applicability 
of the optGM method. For this purpose, a parameteriza-
tion of the SQE method was performed via GDMIN and 
optGM for training subsets of all three datasets (with 
HBO atomic types). The parameterization times are 
summarized in Table 2. Further details about the param-
eterization process (setup, convergence criteria) are in 
Additional file 5: Section 2.

This parameterization was only done for SQE, because 
other empirical methods have a low number of param-
eters; thus their parameterization is considerably less 
time demanding, making GDMIN sufficient for them. 
The HBO atomic type was chosen because it is frequently 
used and only creates a small number of atomic classes. 
Thus the calculation of parameters is markedly less time 

Table 1  Summary information about datasets used in this work

Dataset

Denotation DTP_small CCD_gen PUB_pept

Source database DTP NCI wwPDB CCD PubChem

Number of molecules 1,956 4,443 60

Number of atoms 62,977 204,760 2,636

Atomic types (elements and bond orders) H/1, C/1, C/2, N/1, N/2, O/1, O/2, S/1 H/1, C/1, C/2, C/3,
N/1, N/2, N/3, O/1, O/2,
F/1, P/2, S/1, S/2, Cl/1, Br/1

H/1, C/1, C/2, N/1, N/2, O/1, O/2, S/1

Size of molecules (number of atoms) 6-176 3-305 20-70

The main type of molecules Organic molecules (drug-like) Organic molecules (ligands) Di- and tripeptides

Source of 3D structures Generated by CORINA From PubChem (generated by 
OEOmega)

Reference to publication [34, 37] [34] -
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demanding than for BA atomic types, and can even be 
done by GDMIN in a reasonable time (a few days). After-
ward, the parameters computed for each dataset were used 
to calculate empirical charges for this dataset (i.e., using its 
training subset and also using its test subset). The values of 
obtained empirical and reference QM charges were com-
pared via standard metrics (i.e., R2 , RMSD , and RMSDat ). 
The values of these metrics for the training subsets are 
summarized in Table 2. Other values of quality metrics are 
provided in Additional file 5: Section 2. Fig. 1 also shows 
correlation graphs for the whole CCD_gen dataset. Other 
correlation graphs are in Additional file 5: Section 3.

Table 2 shows that the parameters obtained by optGM 
provide charges, which correlate with QM comparably 
or slightly better than the charges calculated using the 
parameters obtained by GDMIN. The metrics for the 

test set show the same trend. This conclusion is also con-
firmed by the correlation graphs (see Fig. 1).

Moreover, Table 2 shows that optGM provides results 
significantly faster than GDMIN. Therefore, optGM 
proved to be a more appropriate parameterization 
approach and was used for the subsequent examinations 
presented in this work.

Comparison of empirical charge calculation methods
As the second step of our study, we compared SQE, 
SQE+q0, and the newly developed SQE+qp method 
with the common approaches (i.e., EEM, QEq, and 
EQeq). For this comparison, a parameterization of all 
the methods was performed via optGM on the train-
ing subsets of all three datasets. HBO atomic types were 
used for all the datasets. Additionally, BA atomic types 

Table 2  Comparison of GDMIN and optGM parameterization of SQE with HBO atomic types

DTP_small R
2 RMSD RMSDat Param. time [h:m:s]

 GDMIN 0.9941 0.0256 0.0599 19:47:22

 optGM 0.9945 0.0249 0.0399 0:40:07

CCD_gen R
2 RMSD RMSDat Param. time [h:m:s]

 GDMIN 0.9934 0.0334 0.0884 40:03:11

 optGM 0.9950 0.0292 0.0406 10:27:05

PUB_pept R
2 RMSD RMSDat Param. time [h:m:s]

 GDMIN 0.9875 0.0519 0.0756 18:37:16

 optGM 0.9875 0.0518 0.0746 0:04:58

Table 3  Comparison of empirical methods on training subsets

DTP_small (HBO) CCD_gen (HBO)

Method R
2 RMSD RMSDat R

2 RMSD RMSDat

EEM 0.9728 0.0557 0.0957 0.9790 0.0599 0.1559

QEq 0.9732 0.0552 0.0956 0.9793 0.0594 0.1565

EQeq 0.9824 0.0444 0.1014 0.9839 0.0523 0.1591

SQE 0.9952 0.0233 0.0394 0.9953 0.0282 0.0414

SQE+q0 0.9924 0.0290 0.0671 0.9928 0.0350 0.0804

SQE+qp 0.9957 0.0220 0.0398 0.9962 0.0253 0.0442

PUB_pept (HBO) PUB_pept (BA)

Method R
2 RMSD RMSDat R

2 RMSD RMSDat

EEM 0.9790 0.0672 0.0858 0.9963 0.0281 0.0527

QEq 0.9792 0.0669 0.0851 0.9950 0.0327 0.0742

EQeq 0.9831 0.0603 0.0767 0.9962 0.0285 0.0524

SQE 0.9877 0.0513 0.0760 0.9958 0.0302 0.0510

SQE+q0 0.9936 0.0373 0.0536 0.9984 0.0188 0.0414

SQE+qp 0.9968 0.0264 0.0480 0.9992 0.0133 0.0322
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were also used for the dataset PUB_pept. The reason 
for this is that the PUB_pept dataset is homogeneous, 
since its atoms are parts of amino acids. Therefore, they 
have only several combinations of neighboring atoms 
(e.g., S can only have the following atom pairs as neigh-
bors: C and C, C and H, C and S). Because of this, BA 
atomic types do not divide atoms into too many groups 
(which could have only a small number of atoms), which 
would negatively affect the parameterization process. 
Vice-versa, DTP_small and CCD_gen are heterogene-
ous datasets, and BA is not appropriate for them due to 
the small number of samples for the individual atomic 
types.

In summary, four combinations of datasets and atomic 
types were used (see Table  3). Further details about the 
parameterization process are in Additional file  6: Sec-
tion 1. All the obtained parameter sets are in Additional 
file 7.

Afterwards, the parameters computed for each data-
set and atomic types were used to calculate empirical 
charges for this dataset (i.e., using its training subset and 
its test subset).

The values of obtained empirical and reference QM 
charges were compared via standard metrics. The val-
ues of these metrics for the training subsets are sum-
marized in Table 3, and the remaining values of quality 
metrics are in Additional file 6: Section 2. Figure 2 shows 
selected correlation graphs for the heterogeneous data-
set CCD_gen, and Fig.  3 presents selected correlation 

graphs for the homogeneous dataset PUB_pept. The 
remaining correlation graphs are in Additional file  6: 
Section 3.

Comparison of methods for heterogeneous datasets
All methods perform well for datasets of drug-like 
organic molecules (see Table  3 and the high values of 
R2 ). However, even though the quality metrics are rea-
sonable for non-SQE approaches, the correlation graphs 
in Fig.  2 show examples proving that SQE describes 
individual atomic types better than EQeq, which proved 
to be the best of the traditional methods. Moreover, 
SQE+qp is comparable or slightly better than SQE and 
SQE+q0.

Comparison of methods for a homogeneous dataset
When considering peptides, we included both HBO 
and BA atomic types. Whereas the HBO types are 
usable for every method, the BA atomic types are not 
suited for EEM, QEq, and EQeq. For example, see 
Fig.  3, where EQeq, combined with BA atomic types, 
gives constant empirical charges for almost every 
atomic type (see X-axis parallel lines of points for 
most atomic types). EEM and QEq exhibit the same 
behavior (see correlation graphs in Supplementary 
information).

SQE-like methods, on the other hand, can utilize 
the more fine-grained division of BA atomic types and 

Fig. 2  Correlation graphs for the DTP_small dataset. Empirical charges are calculated using the parameters obtained by EQeq and SQE
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generates high-quality empirical charges. However, even 
with these methods, we can find differences between 
them. See the example comparison of SQE+q0 and 
SQE+qp in Fig. 4. Our method SQE+qp outperforms the 
earlier two models for peptides and seems to be promis-
ing for other homogeneous datasets.

The complete results for all the methods and datasets 
are presented in Table 3.

Fig. 3  Correlation graphs for PUB_pept dataset and EQeq and SQE methods. Empirical charges in the left graphs were calculated using HBO atomic 
types, and in the right graphs using BA atomic types. The top graphs include empirical charges calculated by EQeq and the bottom graphs by SQE
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Conclusions
First, we developed and tested the optGM parameteriza-
tion scheme. This scheme produces parameters compara-
ble to the GDMIN method, but in a significantly shorter 
time. Therefore, optGM is also applicable for large 
datasets and charge calculation approaches with more 

parameters (i.e., SQE, SQE+q0, and SQE+qp). An imple-
mentation of optGM is available on GitHub.

Then, we developed the SQE+qp empirical charge 
calculation method and compared this method with the 
empirical methods EEM, QEq, EQeq, SQE, and SQE+q0. 
We found that for heterogeneous datasets with drug-
like organic molecules, SQE-like methods performed 

Fig. 4  Correlation graphs for PUB_pept dataset and SQE+q0 and SQE+qp methods. Empirical charges in the left graphs were calculated using 
HBO atomic types, and in the right graphs using BA atomic types. The top graphs include empirical charges calculated by SQE+q0 and the bottom 
graphs by SQE+qp
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comparably and improved upon the traditional elec-
tronegativity equalization approaches. For a homogene-
ous dataset with peptides, SQE+qp provided the best 
results and outperformed all other approaches, including 
SQE+q0. We also introduced a new atom classification 
type, BA, tailored to peptides and likely other homo-
geneous datasets. The combination of SQE+qp with 
BA atomic types proved to be an excellent solution for 
peptides.

The main contribution of the article is that it makes 
SQE, SEQ+q0 and its extension SEQ+qp together with 
their parameter sets accessible to the users via ACC II 
web application and also via a command-line applica-
tion. Therefore, all these methods are now available for 
the broad research community for quick and precise 
empirical atomistic charge calculation.
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