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Abstract 

Motivation:  Ether-a-go-go-related gene (hERG) channel blockade by small molecules is a big concern during drug 
development in the pharmaceutical industry. Blockade of hERG channels may cause prolonged QT intervals that 
potentially could lead to cardiotoxicity. Various in-silico techniques including deep learning models are widely used to 
screen out small molecules with potential hERG related toxicity. Most of the published deep learning methods utilize 
a single type of features which might restrict their performance. Methods based on more than one type of features 
such as DeepHIT struggle with the aggregation of extracted information. DeepHIT shows better performance when 
evaluated against one or two accuracy metrics such as negative predictive value (NPV) and sensitivity (SEN) but strug-
gle when evaluated against others such as Matthew correlation coefficient (MCC), accuracy (ACC), positive predictive 
value (PPV) and specificity (SPE). Therefore, there is a need for a method that can efficiently aggregate information 
gathered from models based on different chemical representations and boost hERG toxicity prediction over a range 
of performance metrics.

Results:  In this paper, we propose a deep learning framework based on step-wise training to predict hERG chan-
nel blocking activity of small molecules. Our approach utilizes five individual deep learning base models with their 
respective base features and a separate neural network to combine the outputs of the five base models. By using 
three external independent test sets with potency activity of IC50 at a threshold of 10 µ m, our method achieves better 
performance for a combination of classification metrics. We also investigate the effective aggregation of chemical 
information extracted for robust hERG activity prediction. In summary, CardioTox net can serve as a robust tool for 
screening small molecules for hERG channel blockade in drug discovery pipelines and performs better than previ-
ously reported methods on a range of classification metrics.
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Background
The human ether-à-go-go-related gene (hERG) encodes a 
voltage-dependent ion channel (Kv11.1, hERG) involved 
in controlling the electrical activity of the heart by medi-
ating the re-polarisation current in the cardiac action 

potential [1, 2]. Malfunction or inhibition of hERG-
channel activity by drug molecules can lead to cardiac 
arrhythmias in the form of prolonged QT intervals and 
may lead to sudden cardiac arrest. Therefore, unwanted 
drug-induced arrhythmias are great concern for phar-
maceutical companies and have led to blockbuster drugs 
being withdrawn from the market and discontinuation of 
drugs in late stages of development [3]. To prevent new 
drugs with unwanted hERG-related cardiotoxicity to 
enter the market, guidelines for assessment of potential 
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for QT interval prolongation by non-cardiovascular 
medicinal products were decided at the International 
Conference on Harmonization of Technical Require-
ments for the Registration of Pharmaceuticals for Human 
Use (ICH) [4, 5]. These procedures are time-consuming 
and expensive and therefore, to prevent product deple-
tion due to cardiotoxicity at late preclinical and clinical 
stages, there is focus on preventing drugs with hERG 
channel activity from entering drug discovery pipelines 
in the first instance. To avoid this, computational meth-
ods to predict hERG liability have been established and 
can help prioritise molecules during the early phase of 
drug development [4]. Most of these methods are based 
on either machine learning techniques, including ran-
dom forest (RF), support vector machine (SVM), deep 
neural networks (DNN) and graph convolutional neural 
networks (GCN) or on structure based methods includ-
ing pharmacophore searching, quantitative structure 
activity relationships (QSAR) and molecular docking 
[6–10]. Publicly available high quality datasets consisting 
of molecules classified as hERG and non-hERG blockers 
are available and often utilized by these computational 
tools [6, 8, 11]. The datasets annotate chemical struc-
ture by SMILES strings which is a chemical language 
that describes the chemical structure using ASCII char-
acter strings. The SMILES strings are readable by expert 
chemists and are considered a low-level representation 
of molecular structure [12]. For ease of computational 
processing, chemical structure is encoded using a frag-
mentation scheme into binary vectors of fixed length 
called fingerprints which is another low level representa-
tion [13, 14]. Similarly, high level features such as 2D and 
3D physicochemical descriptors can be computed from 
SMILES strings which are then used in various machine 
learning models [8, 15]. Alternatively, molecular graph 
representations have been used with graph convolutional 
neural networks [16]. This intermediate level molecular 
graph representation offers a compromise between high 
level physicochemical features and low level SMILES and 
fingerprints [17]. Under this category, each molecule can 
be represented via a molecular graph which consists of 
node features and an adjacency matrix.

Models in most of these previous studies utilize single 
type of features such physicochemical, fingerprints or 
graph features which restricts the model performance 
and its robustness [6, 8, 11, 18]. For instance, CardPred 
used a total of 3456 physicochemical descriptors and fin-
gerprints with six individual machine learning models 
[8] to achieve reasonable performance when evaluated 
against accuracy (ACC) and positive predictive value 
(PPV) but performed poorly when evaluated against 
other metrics such as Matthew correlation coefficient 
(MCC), negative predictive value (NPV), specificity 

(SPE), sensitivity (SEN) (evaluated on external test sets as 
reported in the results section) [19]. A method reported 
by Cai et al. [6] relies on physicochemical descriptors and 
molecular vectors combined together as a single input 
for a fully connected multi-task deep neural network to 
achieve better performance for various metrics except 
NPV (for their internal cross validation datasets). Li et al. 
[11] used 8 different types of machine learning models 
and their ensemble with physicochemical descriptors and 
fingerprints performed well when evaluated against SPE 
and PPV but less so for other metrics. The key to success 
for these previous methods for hERG activity predic-
tion is elucidating correct structure-property relation-
ships from existing data using high level physicochemical 
features along with fingerprints. Recently the DeepHIT 
method was introduced which utilizes physicochemical 
descriptors, fingerprints and graph features with fully 
connected deep neural networks and graph convolution 
neural networks to achieving better performance for 
hERG activity prediction [19]. DeepHIT classifies a mol-
ecule as a hERG blocker if at least one model out of the 
three models used predicts a given molecule as a hERG 
blocker [19], thus enhancing the sensitivity of the model. 
Although DeepHIT utilize reasonably diverse feature set, 
it still lacks in an effective way of combining the outputs 
of individual models for robust performance over a range 
of metrics. There is also substantial literature for com-
bining various types of features and features selection 
for molecular activity prediction, but no clear winner is 
concluded as yet because performance depends on the 
characteristics of the molecules used for modeling [20]. 
In several cases though, it was observed that the accuracy 
of the models can be improved by feature aggregation 
because of complementary information [20–23].

We hypothesize that extraction of chemical informa-
tion from all or the subsets of three levels of features (low, 
high and intermediate) and their variants can improve 
upon the performance over a wide range of accuracy 
metrics for molecular hERG activity prediction For this 
purpose, we propose a step-wise training based deep 
learning framework called CardioTox net, that improves 
upon the previously published best-in-class results in 
most of the performance metrics. For three different 
external test sets, CardioTox net improves Matthew cor-
relation coefficient with a value of (0.599, 0.452, 0.220), 
accuracy (0.810, 0.755, 0.746), positive predictive value 
(0.893, 0.455, 0.113) and specificity (0.786, 0.600, 0.698) 
while keeping the sensitivity same as so far the second 
best in class method, DeepHIT. Our framework consists 
of three stages; a featurization stage which generates base 
features; an individual prediction stage which uses base 
features with the base individual deep learning models 
to generate the outputs also called meta features; and a 
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meta ensemble stage which uses meta features generated 
by the previous stage to classify the molecule as hERG 
blocker or hERG non-blocker.

Materials and methods
Data preparation
A dataset consisting of molecular structures labelled as 
hERG and non-hERG blockers in the form of SMILES 
strings was obtained from the DeepHIT authors [19] and 
was curated from five sources, the BindingDB database 
(3056 hERG blockers, 3039 hERG non-blockers) [24], 
ChEMBL bioactivity database (4859 hERG blockers, 4751 
hERG non-blockers) [25], and literature derived (4355 
hERG blockers, 3534 hERG non-blockers) [6], (1545 
hERG blockers, 816 hERG non-blockers) [7], (2849 hERG 
blockers, 1202 hERG non-blockers) [26] and unlike in the 
DeepHIT procedure, we did not use any in-house data. 
A total of 30000 molecular structures were obtained and 
were standardized using RDkit [27] and MolVS [28] as 
described by Ryu et al. [19]. We further removed incon-
sistently labeled compounds. Thus we obtained total of 
12620 molecules with 6643 labelled as hERG blockers 
and 5977 as hERG non-blockers to constitute our train-
ing set. We evaluated our framework against two exter-
nal independent test sets, one of which was obtained 
from the authors of DeepHIT [19], hereafter called test-
set I which is positively imbalanced (i.e. more blockers 
(30) than non-blockers (14)). We also retrieved other 
two independent test sets, thereafter called test-set II 
from [29, 30] and test set III from [31] as per the crite-
ria of half maximal inhibitory concentration (IC50) val-
ues < 10µM considered to be hERG blockers and (IC50) 
values ≥ 10µM considered to be hERG non-blockers. 
Test-set II is relatively smaller with 11 blockers and 30 
non-blockers whereas Test-set III is relatively larger with 
53 blockers and 786 non-blockers. The Tanimoto similar-
ity [19] criteria was also ensured for all molecules in both 
test and training sets (explained in upcoming section of 
similarity and chemical diversity). The training set was 
subdivided into four sets, 70% for training the base mod-
els, 10% for validating base models, 10% for training the 
meta ensemble model and 10% for validating the meta 
ensemble model. The detailed process of data prepara-
tion is given in  Additional file 1: S1. It should be noted 
that all the three independent data sets are imbalanced 
with higher number of hERG non-blockers. As per our 
knowledge at the time of conducting this research, these 
are most of the molecules available in public repositories 
which are dissimilar to our training data. This also dem-
onstrates the real-world scenario for testing where num-
ber of non-blockers is usually more than the number of 
blockers.

Similarity and chemical diversity
A diverse dataset covering a broad chemical space is a 
prerequisite for building predictive models [32]. For all 
SMILES strings in training as well as in both external test 
sets, we computed the 2048 bit Morgan fingerprints using 
RDKit [13]. The t-SNE dimensional reduction technique 
[33] was then used to convert the 2048 dimensional vec-
tor into two t-SNE dimensions for each SMILES string. 
As demonstrated by the chemical space defined by the 
t-SNE components in Fig. 1, diverse chemical space dis-
tributions for classified blockers and non-blockers as well 
as overlap with the external tests sets was observed. We 
computed the Tanimoto mean value for each of the data-
sets separately given in Table 1 and a pairwise Tanimoto 
similarity shown in Fig.  2 for all four datasets [13]. The 
Tanimoto mean value shows the mean Tanimoto similar-
ity within each data set whereas pairwise Tanimoto simi-
larity shows similarity between different datasets. The 
lower the Tanimoto mean value is, the better the diversity 
of the compounds within the data set. As illustrated in 
Table 1, the Tanimoto mean value is 0.124 for the training 
set, 0.126 for the external test-set I, 0.116 for the exter-
nal test-set II and 0.115 for the external test-set III, which 
means all the three data sets are diverse. Pairwise Tani-
moto similarity as shown in Fig. 2 for external test sets, 
with respect to the training set is always less than 0.7. The 
external test-set I is also substantially dissimilar to the 
external test-set II as the maximum pairwise Tanimoto 
similarity value is less than 0.5 as shown in Fig. 2c. Simi-
larly, we can see that external test-set III is also dissimilar 
to the training and other test-set-I and test set-II. We also 

Fig. 1  Two dimensional t-SNE components showing the chemical 
space diversity of training and the three external test sets
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provide top 3 more similar molecules in training data for 
each molecules of all three test sets in Additional file 3. 

Evaluation criteria
In order to measure the classification performance of 
CardioTox net, we used the following metrics: Area 
under curve of receiver operating curve (AUC-ROC), 
specificity (SPE), sensitivity (SEN), negative predictive 
value (NPV), positive predictive value (PPV), accuracy 
(ACC) and Matthew’s correlation coefficient (MCC). The 
details of these metrics are as follows:

•	 Area under curve of receiver operating curve (AUC-
ROC) which takes into account all the thresholds. 
The higher the value of AUC-ROC, the better the 
model is distinguishing between classes (hERG 

blockers and hERG non blockers). It can be com-
puted by taking area under the curve for true posi-
tive rate (TPR) on the y-axis and false positive rate 
(FPR) on the x-axis for a given dataset. It should 
be noted that positive refers to hERG blocker and 
negative refers to non-hERG blocker. TPR which 
is also called sensitivity (SEN) describes how good 
the model is at classifying a molecule as a hERG 
blocker when the actual outcome is also a hERG 
blocker. FPR describes how often a hERG blocker 
class is predicted when the actual outcome is non-
hERG blocker. 

(1)SEN =TPR =
TP

TP + FN

Fig. 2  Pairwise Tanimoto similarity for each molecule in (a) external test-set I with all molecules in training set. b external test-set II with all 
molecules in training set. c external test-set I with all molecules in external test-set II. d external test-set III with all molecules in training set. e 
external test-set III with all molecules in external test-set I. f external test-set III with all molecules in external test-set II

Table 1  Statistical description of data sets

Data set Activity Threshold hERG blockers hERG non-
blockers

Total Tanimoto mean

Training set IC50 10µM 6643 5977 12620 0.124

Test set-I IC50 10µM 30 14 44 0.136

Test set-II IC50 10µM 11 30 41 0.116

Test set-III IC50 10µM 30 710 740 0.115
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 where TP = True Positives, TN = True Negatives, 
FP = False Positives, and FN = False Negatives, SEN 
= Sensitivity.

•	 Specificity (SPE) is the total number of true negatives 
divided by the sum of the number of true negatives 
and false positives. Specificity would describe what 
proportion of the non-hERG blocker class got cor-
rectly classified by our model. 

•	 Negative predictive value (NPV) describes the prob-
ability of a molecule predicted as non-hERG blocker 
to be actually as non-hERG blocker. 

•	 Positive predictive value (PPV) describes the prob-
ability of a molecule predicted as hERG blocker to be 
actually as hERG blocker. 

•	 Accuracy (ACC) is the fraction of prediction our 
model got right. i.e it predicted hERG blocker and 
non-hERG blocker correctly. 

•	 Matthews Correlation Coefficient (MCC) has a range 
of −1 to 1 where −1 indicates a completely wrong 
binary classifier while 1 indicates a completely cor-
rect binary classifier. 

Featurization stage
The featurization stage of our framework consists of vari-
ous types of featurizers which takes SMILES string as an 
input and produce fixed length base features as shown in 
Fig. 3a.

Descriptors
A total of 995 high level features such as 2D and 3D 
physicochemical descriptors (DESC) were computed 
using Mordred [34], names of which are also given in 
Additional file  2: S5. These features are numerical in 

(2)FPR =
FP

FP + TN

(3)SPE =
TN

TN + FP

(4)NPV =
TN

TN + FN

(5)PPV =
TP

TP + FP

(6)ACC =
TP + TN

TP + TN + FP + FN

(7)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

nature and describe the physical and chemical proper-
ties of molecules [35]. 2D descriptors represents infor-
mation related to size, shape, distribution of electrons, 
octanol-water distribution coefficient (LogP) which is 
a measure for lipophilicity, nAromAtom which shows 
number of aromatic atoms, nHeavyAtom which shows 
number of heavy atoms, nBondsT shows number of tri-
ple bonds. 3D descriptors relates to the 3D conformation 
of the molecules such as moment of inertia along Y axis 
(MOMIY) [35]. The value of each descriptor was normal-
ized between 0 and 1.

Molecular graph featurizer
Topological information of molecules can be intuitively 
and concisely expressed via molecular graph features. 
This intermediate level featurizer computes molecular 
graph features such as node vectors which represents 
atoms in the SMILES string and an adjacency matrix 
which shows the bonds between atoms [17]. In this study, 
we extracted the same graph features as were extracted 
for DeepHIT [19], i.e a [50 × 65] node vector and a [50 
× 50] adjacency matrix, details of which are also given 
in Additional file 2: S6. Here 50 refers to the maximum 
number of atoms and 65 refers to the one hot-encoded 
feature vector computed from atom descriptors [19].

Molecular fingerprint generator
The third featurizer deals with fingerprints where struc-
tural features are represented by either bits in a bit string 
or counts in a count vector [36, 37]. 1024 extended-
connectivity fingerprints with a maximum diameter 
parameter of 2 (EFCP2) fingerprints and 881 pubchem 
fingerprints were computed using using the Python 
package PyBioMed [19, 38]. EFCP are also referred to 
as circular fingerprints and are specifically designed for 
structure-activity relationship modeling [39] whereas 
pubchem fingerprints are mainly designed for similarity 
neighboring and similarity searching [40].

SMILES vectorizer
We also computed two variants of low level features, 
SMILES strings embedded vectors (SeV) [41, 42] and 
fingerprint based embedded vectors (FPeV) [14] which 
themselves do no directly describe any biological attrib-
ute of the molecules, but has proven to have a reasonable 
predictive power in various quantitative structure-activ-
ity relationship (QSAR) tasks. In the SMILES vector-
izer, we created a vocabulary based on the valid SMILES 
tokens (procedure described in Additional file  1: S2). A 
total of 64 unique tokens were determined based on the 
training data. The longest SMILES string in the data con-
sidered for this study was 97. Each SMILES string was 
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converted into a one-hot encoded vector based on the 
SMILES vocabulary.

Fingerprints vectorizer
In the fingerprint vectorizer, SMILES string are con-
verted into 1024 bit Morgan (or circular) fingerprints 
with a radius of 2 via RDKit [13]. As per the previously 
published technique [14], we extracted fingerprint indi-
ces which were marked 1 in the fingerprint generated. 
Thus we obtained a vector of length 93 which consisted of 
integers representing presence of specific substructures 

in a molecule. The procedure for fingerprint embedding 
vector is described in Fig. 1 of FP2VEC [14].

Individual prediction stage
The individual prediction stage consists of base models 
which are trained on respective base features from the 
featurization stage. All of the base models were trained at 
a learning rate of 10e−4 with an Adam optimizer and 100 
epochs with a batch size of 32. Selection of parameters, 
hyper-parameters and network architecture of base mod-
els were inspired from the previous published research in 

Fig. 3  a CardioTox framework: End to end flow diagram of all the stages of proposed framework. b Architecture specifications of fully connected 
neural network for 995 2D and 3D descriptors as base features. c Architecture specifications of graph convolutional neural network for node vector 
of size 50x65 and adjacency vector of size 50x50 as base features. d Architecture specifications of fully connected neural network for 1024 EFCP and 
881 pubchem fingerprints as base features (e) Architecture specifications of 1D convolution neural network for SMILES and fingerprints embedding 
vectors as base features. f Architecture specifications of meta ensemble fully connected neural network for meta features
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this area [8, 14, 15, 19, 41–43]. Each of these base models 
produce an output which is a single probability of a mol-
ecule being a hERG blocker. Here we describe each base 
model in the individual prediction stage also shown in 
Fig. 3b–e. The Keras deep learning framework and Spek-
tral package was used in developing base models for the 
individual prediction stages [44, 45].

Fully Connected Neural Network for Descriptors (FCNND)
A fully connected deep neural network with 4 hid-
den layers was trained and validated on 995 2D and 3D 
physicochemical descriptors. The input layer consists of 
995 nodes as per the number of total physicochemical 
descriptors and an output layer with 1 unit. All the lay-
ers in FCNND are densely connected and receives input 
from all the units present in the previous layer. The num-
ber of units in each hidden layer is decreased gradually 
and a ReLu activation [46, 47] is applied at the end of 
each layer. Kernel regularizer and bias regularizer of val-
ues 0.01 were used in training [47, 48] to reduce the over-
fitting during optimization. Kernel regularizer applies 
penalties to the Kernel (main units in layer) and bias 
regularizer applies penalties to the bias units. We also 
applied a drop-out rate of 0.5 to the middle layers [49].

Graph Convolutional Neural Network for Graph features 
(GCNN)
A graph convolutional neural network (GCNN) was 
trained using the graph features as shown in Fig.  3c. 
GCNN consists of two graph convolution layers [50], one 
global attention pool layer [51] and a dense layer before 
the output. Each of the graph convolutional layers were 
initiated with 64 channels with a Kernel regularization 
value of 0.01 and a ReLu activation. The number of chan-
nels in the global attention pool layer was made equal to 
the number of units in the following dense layer, i.e 1024.

Fully Connected Neural Network for Fingerprints (FCNNF)
A fully connected neural network was used with fin-
gerprints (FCNNF) as the base feature. Unlike FCNND, 
FCNNF uses a much smaller number of units in each 
layer. Except the number of units, other parameters were 
kept the same as in FCNND. The number of input nodes 
in the input layer were kept at 1905 to match the sum of 
1024 EFCP fingerprints and 881 pubchem fingerprints as 
shown in part Fig. 3d.

Convolution 1D Neural Network for SMILES and Fingerprint 
embedding vectors (C1D)
For models where SMILES and fingerprint embedding 
vectors were used as base features, we used a variant of a 
Convolution 1D Neural Network (C1D) as base model as 
shown in Fig. 3e. The only difference was in the number 

of input-layer nodes which was 97 for SMILES embed-
ding vectors and 93 for fingerprint embedding vectors. 
Input vectors were converted to a trainable embedding 
matrix of the size [97 or 93 × 200] which was then fed 
into a series of three 1D convolution layers. Each of these 
1D convolution layers used ReLu activation, 192 filters 
with a Kernel size of 10, 5 and 3 respectively. Two densely 
connected layers with the parameters shown in Fig.  3e 
are also used to before the output layer.

Meta ensemble stage
The outputs of each of the base models in the individual 
prediction stage were concatenated to produce meta fea-
tures for the meta ensemble model. The Meta ensemble 
model is a fully connected neural network (FCNNM) 
with an input, output and two hidden layers as shown 
in Fig. 3f. It is trained at a learning rate of 10e−3 with an 
Adam optimizer and 300 epochs with a batch size of 32.

Results and discussion
Our proposed framework employs step-wise training to 
produce the final classification of molecules as hERG or 
non-hERG blockers. For this purpose, data was divided 
into four sets, base training set: 70% for training base 
models , base validation set: 10% for validating base mod-
els, meta training set: 10% for training meta-ensemble 
model and meta validation set: 10% for validating the 
meta-ensemble model. In the first step of training, all 
the base models were trained on the base training set 
and validated using the base validation set. In the second 
step, the outputs of the best performing base models for 
the base validation set were used as meta features to train 
the meta ensemble model with the meta training set. 
We used the meta validation set to obtain the best meta 
ensemble model and also to select which combination of 
the base models ensembling produces better results. We 
performed consecutive splitting 10 fold cross validation 
[52] to obtain results given in the following subsection. 
For each time, we divided the data into 10 parts. Seven 
parts were used for base training, one part for base vali-
dation, one part for meta training and one part for meta 
validation.

Validation of base model performance
The 10 fold cross validated results for individual base 
models of our framework on base validation set are 
shown in Table  2. Each base model is trained and vali-
dated with its own respective base features indepen-
dently. In the Table 2, DESC refers to high level features 
such as 2D and 3D descriptors feeding the FCNND, MGF 
refers to intermediate molecular graph features fed into 
GCNN, MFP refers to low level molecular fingerprints 
fed into FCNNF, SeV refers to one of the low level variant 
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i.e, SMILES embedding vectors when used with C1D and 
FPeV refers to low level variant i.e, fingerprint embedding 
vectors when used with C1D. 

As shown in Table 2, DESC performed better in MCC, 
ACC and PPV whereas MFP performed better in NPV, 
SEN and AUC. The possible reason might be the direct 
biological relevance of these base features (descriptors 
and fingerprints) to the activity prediction. Interestingly, 
SeV and FPeV showed better performance than MGF 
despite no biological relevance of the features used. FPeV 
and SeV achieved almost similar performance in most 
the of performance metrics. MGF legs behind in most of 
the metrics except SEN where it achieved slightly better 
performance than DESC.

Meta validation performance
The overall goal of this study is to aggregate the chemi-
cal information extracted from various base features for 
cardio-toxicity data set so that the classification perfor-
mance can be improved over a wide range of metrics. 
For that purpose, the outputs of the base models are con-
catenated to produce meta features for the use of a meta 
ensemble model as shown in Fig.  3a. A separate meta 
training set and meta validation set is used for training 
and validating the meta ensemble model. Table 3 demon-
strates 10 fold cross validation results for the meta valida-
tion set for ensembling all possible unique combinations 
of base features ranging from 1 to 5. For instance, M1 
represents single type of base features used in creating 
meta features whereas M2, M3, M4 and M5 represents 
any two, three, four and 5 different types of the base fea-
tures with no repetitions.

It can be seen from Table  3 that meta features in M3 
and M4 show overall better performance for most of the 
metrics. In the M4 meta-feature category, M4-5 achieves 
the best results of MCC: 0.720, ACC: 0.860, PPV: 0.871 
and AUC: 0.930. In the M3 meta-feature category, M3-2 
achieves the best results for NPV: 0.855 and SEN: 0.874. 
M3-5 also achieves similar performance of 0.874 for SEN 

to that of M3-2. Similarly for AUC, M3-7 achieves a simi-
lar performance of 0.930 compared to that of M4-5. For 
SPE however, none of the base-feature combinations 
(ranging from M2 to M5) improves the performance over 
M1-1 which is 0.868. Interestingly for SPE, the individual 
lower performance of MGF, FPeV and SeV (M1-2: 0.792, 
M1-4: 0.795 and M1-5: 0.791) is improved substantially 
with meta features comprised of any of the combina-
tions (M2-3: 0.830, M2-4: 0.833 and M2-10: 0.835). This 
improvement offers some perspective on potentially bet-
ter ensembling performance even if the individual per-
formance is relatively lower for MGF, FPeV and SeV.

Effectiveness of meta features
In order to investigate the effectiveness of meta features 
(M2–M5) as compared to the ones which use only single 
individual base features (M1), we computed % improve-
ment of each of the meta feature ranging from M2 to 
M4 over best M1 on the meta validation set as shown 
in Fig.  4a. An overall improvement can be observed in 
MCC, NPV, ACC, SEN and AUC. For PPV, more fluctua-
tions across zero axis are observed for various meta fea-
tures. For SPE, there is overall decrease in performance 
with relatively bigger fluctuations on the negative side. It 
can be observed from Fig. 4a and Table 3 that for meta 
feature M4-5, 4 out of 7 metrics shows improvement as 
compared to best M1. Thus we select meta feature M4-5 
as the final unique combination of base features for our 
CardioTox net framework for further analysis and final 
evaluation against external test sets. 

In Figure  4b, we show the % difference of CardioTox 
and DeepHIT from their respective best base model 
performances for various performance metrics. The val-
ues in Fig. 4b are retrieved from Table 2 of the DeepHIT 
publication [19] and Table 3 for CardioTox. As shown in 
Table  2 of DeepHIT, the best performance is shown by 
Descriptor-based DNN for all metrics. DeepHIT is opti-
mized for SEN and NPV with a substantial sacrifice of 
MCC, ACC, PPV and SPE. It improves SEN by 12.48% 

Table 2  10 fold cross validated performance of the base models in individual prediction stage on base valid set using their respective 
base features

Standard deviation value for each split for the above table is given in Additional file 1: S3

Highest values are underlined

Base features MCC NPV ACC​ PPV SPE SEN AUC​

DESC 0.689 0.813 0.845 0.870 0.868 0.822 0.911

MGF 0.620 0.805 0.810 0.817 0.794 0.826 0.888

MFP 0.683 0.830 0.841 0.855 0.837 0.845 0.915

FPeV 0.638 0.814 0.818 0.826 0.802 0.835 0.899

SeV 0.636 0.811 0.817 0.827 0.809 0.826 0.889
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and NPV by 9.59% with a sacrifice of 4.47% MCC, 2.87% 
ACC, 10.63% PPV and 18.09% SPE. On the other hand, 
CardioTox net improves MCC by 5.7%, NPV by 2.34%, 
ACC by 2.37%, PPV by 1.15% and SEN by 2.52% with a 
sacrifice of 1.39% in SPE only. With an overall improve-
ment in nearly all the metrics for a relatively little sac-
rifice of SPE as compared to DeepHIT, CardioTox net 
performance can be considered more robust.

Comparative landscape using the external independent 
test sets
We compared CardioTox net results with state of the art 
methods such as DeepHIT [19], CardPred [8], OCHM 

Predictor-I and OCHM Predictor-II [11] and Pred-hERG 
4.2 [18] on three external test sets given in Table 4. For 
test set-I and test set-II, CardioTox net achieves improved 
performance for all metrics except SEN where its perfor-
mance is the same as achieved by second best method 
DeepHIT. The achieved performance for MCC is (0.599, 
0.452), PPV is (0.893, 0.455) and SPE is (0.786, 0.600) over 
DeepHIT for test set-I and test set-II respectively. The 
SEN is 0.833 for test set-I and 0.909 for test set-II which 
is the same as achieved by DeepHIT. For ACC and NPV, 
the performance for test set-I and test set- II is (0.810, 
0.755), and (0.688, 0.947) which is also better than Deep-
HIT. OCHM-Predictor I, II achieves better performance 

Table 3  10 fold cross validation results for various meta features on meta validation set

Standard deviation value for each split for the above table is given in Additional file 1: S4

Highest values in each metric is given in bold

Meta Features Base features MCC NPV ACC​ PPV SPE SEN AUC​

M1-1 DESC, DESC 0.676 0.829 0.838 0.862 0.868 0.819 0.909

M1-2 MGF, MGF 0.599 0.784 0.799 0.815 0.792 0.806 0.878

M1-3 MFP, MFP 0.682 0.829 0.840 0.853 0.838 0.843 0.909

M1-4 FPeV, FPeV 0.636 0.820 0.817 0.819 0.795 0.839 0.897

M1-5 SeV, SeV 0.621 0.806 0.809 0.816 0.791 0.828 0.880

M2-1 MGF, MFP 0.691 0.826 0.846 0.864 0.850 0.842 0.919

M2-2 MGF, DESC 0.683 0.818 0.842 0.865 0.848 0.835 0.914

M2-3 MGF, SeV 0.685 0.837 0.842 0.848 0.830 0.854 0.916

M2-4 MGF, FPeV 0.682 0.828 0.841 0.854 0.833 0.848 0.916

M2-5 MFP, DESC 0.710 0.843 0.855 0.866 0.855 0.855 0.928

M2-6 MFP, SeV 0.698 0.838 0.849 0.861 0.844 0.853 0.921

M2-7 MFP, FPeV 0.690 0.831 0.845 0.859 0.840 0.850 0.920

M2-8 DESC, SeV 0.707 0.847 0.853 0.860 0.846 0.861 0.926

M2-9 DESC, FPeV 0.715 0.848 0.857 0.867 0.859 0.856 0.929

M2-10 SeV, FPeV 0.680 0.828 0.840 0.853 0.835 0.845 0.918

M3-1 MGF, MFP, DESC 0.707 0.851 0.853 0.857 0.841 0.866 0.924

M3-2 MGF, MFP, SeV 0.711 0.855 0.855 0.857 0.835 0.874 0.927

M3-3 MGF, MFP, FPeV 0.701 0.849 0.850 0.853 0.833 0.867 0.921

M3-4 MGF, DESC, SeV 0.710 0.847 0.855 0.864 0.849 0.861 0.926

M3-5 MGF, DESC, FPeV 0.706 0.853 0.852 0.855 0.831 0.874 0.928

M3-6 MGF, SeV, FPeV 0.697 0.844 0.849 0.854 0.838 0.859 0.925

M3-7 MFP, DESC, SeV 0.718 0.854 0.859 0.865 0.850 0.868 0.930
M3-8 MFP, DESC, FPeV 0.710 0.850 0.855 0.861 0.846 0.864 0.926

M3-9 MFP, SeV, FPeV 0.699 0.837 0.849 0.862 0.848 0.851 0.925

M3-10 DESC, SeV, FPeV 0.712 0.846 0.856 0.866 0.854 0.858 0.928

M4-1 MGF, MFP, DESC, SeV 0.711 0.850 0.855 0.861 0.841 0.869 0.927

M4-2 MGF, MFP, DESC, FPeV 0.719 0.851 0.860 0.869 0.853 0.867 0.929

M4-3 MGF, MFP, SeV, FPeV 0.705 0.846 0.852 0.859 0.846 0.859 0.921

M4-4 MGF, DESC, SeV, FPeV 0.707 0.849 0.853 0.859 0.841 0.865 0.926

M4-5 MFP, DESC, SeV, FPV 0.720 0.849 0.860 0.871 0.856 0.864 0.930
M5-1 MGF, DESC, SeV, FPeV, MFP 0.717 0.853 0.858 0.864 0.850 0.867 0.925
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for PPV and SPE but lags behind significantly in all other 
metrics for both test sets. Pred-hERG 4.2 performs rea-
sonably well for SEN in both tests but performs worse 
in other metrics. Interestingly for test-set II, OCHEM-
Predictor I and II performs reasonably well for PPV and 
SPE with less sacrifice in other metrics as compared to its 
performance on test set-I. For test set-III which is rela-
tively larger, our method achieves better performance for 
all metrics as compared to DeepHIT except SEN where it 
achieves same performance as DeepHIT. For test set-III 
as well, OCHEM Predictor-I achieves better performance 
for PPV and SPE only while legging behind signifi-
cantly in other metrics. For SEN though, Pred-hERG 4.2 
achieves the highest value. 

DeepHIT is specifically designed and trained to obtain 
better NPV and SEN by using physicochemical descrip-
tors, fingerprints and graph features with three deep 
learning base models. CardPred used an individual neu-
ral network model (out of six other models) with phys-
icochemical descriptors and fingerprints. OCHMI and 

OCHMII used range of machine learning models trained 
on various types of high level physicochemical descrip-
tors. Pred-hERG 4.2 used fingerprints and molecular 
descriptors with support vector machines to classify the 
molecules for hERG blocking activity. By using a step-
wise training strategy with base and meta ensemble mod-
els, CardioTox net shows robust performance against a 
range of accuracy metrics as compared to the state of the 
art methods on three independent test sets.

We also compared our results with three classical 
machine learning methods such as random forest [53], 
support vector machines [54] and gradient boosting algo-
rithm [55] as shown in Table  4. We first converted all 
SMILES training as well as test data into 995 2D and 3D 
physicochemical descriptors (DESC) using Mordred [34]. 
For all of the three classical methods, we used scikit-learn 
[56] machine learning library with default settings. For 
the test set-I which has more positive samples, all three 
classical machine learning performs the worst of all other 
methods in nearly all metrics. Support vector machines 
performs randomly for test set-I. Random forest and gra-
dient boosting performs slightly better than a random 
classifier. For test set-II and III which have more negative 
samples, classical methods performance is comparable to 
other deep learning based methods as shown in Table 4. 
It should be noted that our model assigns a probability to 
each molecule under test. The value of the probability if 
greater than or equal to 0.5 declares the molecule to be 
hERG blocker.

Conclusion
In this study, we introduced a deep learning based frame-
work called CardioTox net for classifying drug-like mol-
ecules as hERG blockers and hERG non blockers. Our 
approach is based on step-wise training of base and meta 
ensemble deep learning models. In the first step, 5 deep 
learning base models are trained and validated. Each of 
these base models use different types of base features 
ranging from high level to low level descriptors and their 
variants. In the second step of training, the output of base 
models is concatenated to form meta features for train-
ing and validating the meta ensemble model. We found 
that high level physicochemical, low level fingerprints, 
SMILES embedding vectors and fingerprint embed-
ding vectors when used to create meta features for the 
meta ensemble model, enhance the performance over a 
wide range of metrics for the cardio toxicity prediction 
task. We evaluated our framework against various clas-
sification metrics using three independent test sets and 
obtained a robust performance compared to state of the 

Fig. 4  a shows the affect of various meta features in terms of % 
improvement over the base features using an ensemble stage of 
CardioTox framework on meta valid set. b shows the % difference 
of CardioTox and DeepHIT from their respective best base models 
performance for various performances metrics
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art methods. Our framework is a robust method for clas-
sifying small drug-like molecules as hERG blockers and 
hERG non blockers.
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