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Abstract 

Depicting a ligand-receptor complex via Interaction Fingerprints has been shown to be both a viable data visualiza-
tion and an analysis tool. The spectrum of its applications ranges from simple visualization of the binding site through 
analysis of molecular dynamics runs, to the evaluation of the homology models and virtual screening. Here we pre-
sent a novel tool derived from the Structural Interaction Fingerprints providing a detailed and unique insight into the 
interactions between receptor and specific regions of the ligand (grouped into pharmacophore features) in the form 
of a matrix, a 2D-SIFt descriptor. The provided implementation is easy to use and extends the python library, allowing 
the generation of interaction matrices and their manipulation (reading and writing as well as producing the average 
2D-SIFt). The library for handling the interaction matrices is available via repository http://​bitbu​cket.​org/​zchl/​sift2d.
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Introduction
Structural Interaction Fingerprints (SIFts), as described 
by Deng et al.[1], comprise a method for encrypting pro-
tein–ligand interactions in the form of a bit string. Such a 
fingerprint contains repeatable portions of a fixed length, 
with each position encoding a defined type of interaction. 
Our previous implementation of SIFts [2] employed nine 
types of interactions: any, with backbone, with side chain, 
hydrophobic, charged, hydrogen bond donor and accep-
tor, polar and aromatic, repeated for every residue in 
the protein. Interaction fingerprints are protein-centric, 
i.e., all parts of the fingerprint are encoded with respect 
to the residues alone. The ligand is, in fact, treated as a 
homogenous object to some extent because it is not pos-
sible to retrieve any information regarding its structure 
from the fingerprint.

SIFt belongs to the family of interaction fingerprints 
(IFP) [3] comprising a number of approaches to depict 
the protein–ligand interactions, ranging from ligand- to 

target-centric approaches. Ligand-based methods encode 
the interaction data into the ligand descriptor, forming a 
three-dimensional model resembling a pharmacophore 
[4], reducing the ligand structure to a set of interacting 
fragments [5–7] or enriching the compound structure 
with interaction data [8]. Target-oriented descriptors 
mostly follow the initial Deng concept [1], expanding the 
spectrum of the detected interactions [9, 10] and provid-
ing with novel visualization methods allowing easy visual 
inspection [11].

Finally, there is a number of IFP utilizing hybrid 
approach to the description of the protein–ligand com-
plex, e.g. in a form of atom pairs [12, 13] or Extended 
Connectivity Interaction Features [14].

The utility of IFP as well as availability of numerous 
crystal structures enabled the assembly of databases con-
taining structures annotated with interaction fingerprints 
[15–18], providing means to visualize binding pockets 
or screen using pre-generated interaction fingerprints 
Combining IFPs with generative machine learning mod-
els allows for prediction of the interaction fingerprint 
and docking score without the need of computationally 
expensive calculations[19].
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Interaction-based approaches have been shown to be 
very potent tools for post-docking analysis of Virtual 
Screening (VS) results [9, 10, 20–23], performing com-
parably or better than classical ligand-based methods, for 
scoring the ligand-receptor complexes [24]. For instance, 
IFP has shown its potential to analyze the activity cliffs 
[22, 25], allowing identification of novel, potent ligands. 
In addition, the form of the binding site description with 
interaction fingerprints enables its easy visualization. 
Moreover, the use of descriptors that are independent of 
the ligand structure allows the identification of structur-
ally new compounds, which is of extreme importance for 
VS campaigns aimed at the discovery of new potential 
drugs.

Bearing in mind the advantages of the interaction-
based description of a ligand-receptor complex, we 
wanted to enrich the algorithm of SIFt generation  with 
more detailed information about the ligand while main-
taining the notation independent of the explicit ligand 
structure. This process resulted in the development of 
the 2D-SIFt descriptor (an interaction matrix), a matrix 
that depicts interactions per residue, not solely with the 
ligand treated as an object with uniform properties but 
with its different pharmacophore features. Analogously 
to the linear SIFt descriptor, the interaction matrix 
results from the concatenation of submatrices of a fixed 
size that encode interactions with individual amino acids. 
The developed descriptor maintains the potential for the 
rapid portrayal of the binding site, allowing easy extrac-
tion of the interacting residues; however, the use of ligand 
pharmacophore features allows the construction of heat 
maps of binding sites, which facilitate the identification 
of interaction hotspots (residues and dominating interac-
tion types). A collection of individual interaction matri-
ces can be averaged into a profile, providing a generalized 
overview of the binding mode and, concomitantly, of 
the common pharmacophore features of the interacting 
ligands.

This paper presents the python library for generat-
ing and manipulation of the 2D-SIFt descriptor along 
with two case studies, demonstrating key advantages of 
extending classical interaction fingerprints: rapid binding 
site description by means of an averaged descriptor, and 
the identification of key residues for binding of different 
types of ligands. In addition, we show that the modular-
ity and flexibility of the interaction matrix format is easy 
to use with generic residue numbers (here: generic resi-
due numbers for G protein-coupled receptors [26]). The 
targets of choice for the study are the G protein-coupled 
receptors (GPCRs) [27], being a superfamily of mem-
brane proteins of great pharmacological relevance [28]. 
GPCRs share a common heptahelical topology of the 
transmembrane domain, encouraging the application of 

generic numbering schemes that describe the positions 
of the residues within the 7TM bundle rather than sub-
sequent sequence numbers and thus permitting com-
parison between different members of the protein family 
[26].

Implementation
The 2D-SIFt descriptor is a matrix of 7 × (9∙N) fields (six 
standard pharmacophore features together with a “wild-
card” feature, nine types of interactions with amino acids, 
N —number of residues, Fig. 1A). The matrix fields can 
have values greater than 1 because there can be more 
than one separate pharmacophore feature of a given 
type within the ligand interacting with one residue (e.g. 
a number of aromatic rings surrounding a phenylala-
nine, Fig. 1B). The pharmacophore features used for the 
construction of the interaction matrix are common to 
every pharmacophore modeling software: hydrogen bond 
donor, hydrogen bond acceptor, hydrophobic group, neg-
atively charged group, positively charged group, aromatic 
ring. In this research, the features were assigned by fit-
ting the SMARTS patterns, as defined in RDKit library 
(http://​www.​rdkit.​org, https://​github.​com/​rdkit/​rdkit/​
blob/​master/​Data/​BaseF​eatur​es.​fdef ). The collection of 
residual contacts consists of the previously described 
types: any, side chain, backbone, hydrogen bond donor, 
hydrogen bond acceptor, charged, hydrophobic and aro-
matic [2].

In the first step of the algorithm, the pharmacophore 
features are assigned to the ligand using the appropriate 
SMARTS patterns. Then, for every amino acid in the ana-
lyzed complex, the interactions between those features 
and the given residue are evaluated and encrypted into 
the fields of the interaction matrix. The concatenation 
of per-residue matrices results in a 2D-SIFt interaction 
matrix (Fig. 1B).

The interactions are evaluated in a similar manner 
to one-dimensional SIFt [2]: residues are grouped into 
classes: aromatic, hydrophobic, polar, negatively and 
positively charged. For charged, hydrophobic and vdW 
contacts, the distance (here no greater than 3.5  Å) and 
the complementarity of interacting features is the basis 
of detection of the interaction. However, for hydrogen 
bonds, the maximum distance is 2.8  Å and in addition, 
the donor (Y-H…X, where X and Y are heavy atoms, H—
hydrogen) must not exceed 120° and acceptor (X…H-Y) 
90°. For π interactions, the distances are 4.4 Å, 5.5 Å and 
6.6 Å for face to face, edge to face and π-cation interac-
tions, respectively. Maximum angle between the aro-
matic rings in face to face interactions was of 30° and the 
minimum angle in edge to face was 60°. To avoid redun-
dancy of information, a set of rules was introduced to 

http://www.rdkit.org
https://github.com/rdkit/rdkit/blob/master/Data/BaseFeatures.fdef
https://github.com/rdkit/rdkit/blob/master/Data/BaseFeatures.fdef
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guide the incrementation of bits in the interaction matrix 
for one residue.

The interaction profiles are calculated by averaging 
every field of the interaction matrix. However, to avoid 
noise and obtain a clear dominating binding mode, values 

lower than the established threshold (0.3 for the case 
studies described herein) are silenced (set to 0).

The algorithm was implemented in Python using the 
RDKit library (http://​www.​rdkit.​org). Curated (cleaned 
and annotated with generic numbers) crystal structures 

Fig. 1  Scheme of construction of the 2D-SIFt descriptor. A Schematic representation of the 2D-SIFt portion depicting the interactions of one amino 
acid. Grayed fields show the incrementable bits. B The symbols in the column headers of the table describe the types of interactions: Any, BB with 
a backbone, SC interaction with a sidechain, P polar, H hydrophobic, A hydrogen bond acceptor, D hydrogen bond donor, C charged interaction, 
R aromatic. Rows denote standard pharmacophore features of the ligand: A hydrogen bond acceptor, D hydrogen bond donor, H hydrophobic, 
N negatively charged group, P positively charged group, R aromatic, vdW any atom. Each ligand-residue interaction is encoded as a 7 × 9 matrix 
of contacts, and the intensity of the gray corresponds to the number of features interacting with a ligand. Subsequent per-residue matrices are 
concatenated to form the 2D-SIFt descriptor. The structure presented is the crystal structure of a β2-adrenoreceptor receptor solved with inverse 
agonist, carazolol (2RH1)

http://www.rdkit.org
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of GPCRs were obtained from GPCRdb [29]. Protein 
Preparation Wizard was used to prepare the receptor 
structures (assignment of the bond order, atom types and 
optimization of the hydrogen bond networks).

Case study: common antagonist binding site for Class 
A GPCRs
As previously indicated, the generic numbering scheme 
for the transmembrane residues of the GPCRs allows 
comparison between different proteins within the fam-
ily. This approach has been utilized previously [30] to 
estimate common binding site for the Class A GPCRs 
based on crystallographic data. In this case study, analy-
sis of the binding modes was conducted based solely on 
the crystalline ligand-receptor complexes obtained from 
GPCRdb [29]. A set of 33 unique Class A targets crys-
talized with small molecules in the presumably inactive 
conformation (no G protein nor nanobody bound) was 
taken into the study. For multiple crystals with differ-
ent ligands, the antagonists were of preference, however, 
in case of serotonin receptors 1B and 2B, only agonist-
bound structures were available. Among crystals of the 
same target with antagonists, the structure of the best 
resolution was used. For a comparison, a similar study 
was performed on the set of 154 crystal structures of the 
Class A GPCRs co-crystalized small molecule ligand (out 
of 173 Class A crystals annotated in GPCRdb in June 
2017).

Case study: agonist and antagonist binding modes 
for β2‑AR
The comparison of the binding modes for antagonists and 
agonists was based on the interaction matrices (2D-SIFt) 
generated for nine complexes of β2-AR (Additional file 1: 
Table  S2) [31–36]. To provide the consistency of the 
structural data, agonists binding mode was analyzed for 
the active structures of the β2-AR. The conformation was 
assumed active whenever the receptor was bound to an 
agonist along with a cofactor stabilizing the active state, 
either a G protein (3SN6) or a nanobody. In addition, the 
crystal structure of β2-AR with irreversible agonist was 
included into the study. In the case of multiple crystals 
with an identical ligand, a structure with higher resolu-
tion was selected for the study. An inactive receptor was 
defined as a structure with either an antagonist or an 
inverse agonist bound. Analogously, a higher resolution 
was preferred for multiple structures that crystalized 
with the same compound.

Results
Case study: common antagonist binding site for G 
protein‑coupled receptors
Analysis of the binding sites resulted in 67 GPCRdb 
residue positions [26] interacting with ligands; however, 
a low interaction frequency was observed for most of 
them. Setting the contact threshold to more than 30% of 
the crystals resulted in 21 positions (Table 1, Additional 
file  1: Fig. S1) that were hotspots for ligand-receptor 
interactions. The residue positions forming the most fre-
quent contacts, 3 × 32, 3 × 33, 3 × 36, 6 × 48, 6 × 51 and 
7 × 38 (corresponding to 7.39 in Ballesteros-Weinstein 
notation [37]), occurring in over 70% structures, form 
previously reported [30] consensus framework for inter-
actions with ligands across Class A GPCRs. Here, addi-
tional positions, 5 × 43, 5 × 461, 6 × 55 and 7 × 42, also 
appeared as ligand anchors (scoring at least 70% contact 
frequency). All those residue positions were also identi-
fied as Orthosteric Binding Site (OBS) [38]. Interestingly, 
the study also revealed the populations of residue posi-
tions belonging to the Secondary Binding Pockets (SBPs) 
[38], spanning TM2 (2 × 60, 2 × 63) and TM7 (7 × 34, 
7 × 35 and 7 × 41) and being the extension of the OBS. 
Secondary binding pockets play a role in subtype selec-
tivity, as the SBP residues are less conserved. Indeed, 
2D-SIFt descriptors indicated distinct interaction profiles 
within secondary pockets for different receptor subtypes 
(e.g. opioid receptors, angiotensin receptor or muscarinic 
receptors—Table 1). Tabular visualization of the interact-
ing ligand features also facilitated the selection of outli-
ers—receptors accommodating distinct type of ligands 
and showing distinct interaction pattern (LPA1 receptor, 
4Z35) or having unusually located binding site (e.g. P2Y1 
receptor, 4XNV, binding ligand outside of the OBS).

Similar analysis performed for the full set of available 
crystal structures of GPCRs bound to small molecules 
resulted in 19 common interaction hotspots (Additional 
file 1: Table S1), lacking the TM2 residues identified for 
representative structures. Again, the set of the residue 
positions the most frequently interacting with ligands 
matches the one elucidated for representative structures 
(3 × 32, 3 × 33, 3 × 36, 5 × 43, 5 × 461, 6 × 48, 6 × 51, 
6 × 55, 7 × 38 and 7 × 42 found to be interacting in over 
70% crystals). On the other hand, the redundancy of the 
interactions in the full set of crystal structures (e.g. 17 
crystals of β2-AR) does not allow detecting all of the sec-
ondary binding pockets but only provides the dominating 
interacting positions.

List of the common interacting residues was extracted 
from 35 distinct small molecule (antagonist)-bound crys-
tal structures of GPCRs. Positions that interacted with 
less than 30% of the structures were excluded. Residue 
positions were encoded using a GPCRdb numbering 
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scheme, and the contact frequency shows the fraction 
of detected interactions across the investigated dataset. 
Colors correspond to the specific interaction formed 
by the ligand pharmacophore features: purple, charged; 
yellow, hydrogen bond acceptor; blue, hydrogen bond 
donor; green, hydrophobic; orange, aromatic; gray, any.

Case study: agonist and antagonist binding modes 
for β2‑AR
The 2D-SIFt descriptors, which were constructed for 
the dataset of five active and five inactive complexes 

(Additional file  1: Table  S2), revealed differences in the 
binding modes of the ligand types in terms of both the 
composition of the set of interacting amino acids and 
the pharmacophore features of the interacting ligands 
(Fig.  2A). The common set of 24 residues encompasses 
the antagonist binding site, with two residues that 
are unique for the antagonist binding site (M822.53x53 
and Y1995.38x39) and five for the agonist binding site 
(G902.61x60, I942.65x64, K3057.30x31, I3097.36x35, W3137.40x39

, 
Fig.  2B). However, the differences consist not only of 
the spatial placement of the binding sites—the set of 

Table 1  The most frequent interactions within the common binding site of the GPCRs crystallized with small molecule ligands 
(representative structures).  Colors correspond to the specific interaction formed by the ligand pharmacophore features: purple, 
charged; yellow, hydrogen bond acceptor; blue, hydrogen bond donor; green, hydrophobic; orange, aromatic; gray, any

Receptor
(PDB code) Ligand

2x60

2x63

3x28

3x29

3x32

3x33

3x36

3x37

5x40

5x43

5x44

5x461

6x48

6x51

6x52

6x55

7x34

7x35

7x38

7x41

7x42

5ht1b_human

4IAR

ERM

5ht2b_human

4IB4

ERM

aa1r_human

5UEN

DU1

aa2ar_human

3REY

XAC

aa2ar_human

4EIY

ZMA

acm1_human

5CXV

P0G

acm2_human

3UON

QNB

acm3_rat

4U14

0HK

acm4_human

5DSG

0HK

adrb1_melga

4BVN

P32

adrb2_human

2RH1

CAU

agtr1_human

4YAY

ZD7

agtr2_human

5UNG

8ES

ccr2_human

5T1A

73R

ccr5_human

4MBS

MRV

cnr1_human

5TGZ

ZDG

cxcr4_human

3ODU

ITD

drd3_human

3PBL

ETQ

ffar1_human

4PHU

2YB

hrh1_human

3RZE

5EH

lpar1_human

4Z35

ON9

oprd_human

4N6H

EJ4

oprk_human

4DJH

JDC

oprm_mouse

4DKL

BF0

oprx_human

4EA3

0NN

opsd_bovin

1GZM

RET

ox1r_human

4ZJC

4OT

ox2r_human

4S0V

SUV

p2ry1_human

4XNV

BUR

p2y12_human

4PXZ

6AD

par1_human

3VW7

VPX

par2_human

5NDD

8TZ

s1pr1_human

3V2W

ML5

Average 0.45 0.36 0.52 0.67 0.88 0.94 0.7 0.48 0.67 0.7 0.33 0.36 0.73 0.79 0.67 0.7 0.55 0.42 0.88 0.39 0.73
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common interacting residues, but also the prevalent 
types of interactions that are distinct for different types 
of ligand. Antagonists tend to form less specific interac-
tions, with van der Waals and hydrophobic contacts as 
the dominating mode of interaction. Agonists, in con-
trast, often interact via hydrogen bonds and polar con-
tacts, as shown in the differential profile (D1133.32x32, 
S2045.42x43, S2075.46x461 and N3127.39x38, Fig.  2A). These 
differences can be explained by the pharmacological role 
of the compounds: agonists induce a significant change 
in receptor conformation. This observation for the amino 
acid composition and specific interactions may serve as 
a simple filter to distinguish the role of the ligand based 
solely on the interaction matrix.

The analysis performed for the extended set of all avail-
able agonist and antagonist bound structures resulted in 

narrower set of common residue positions, omitting the 
TM2 contacts (Additional file 2: Fig. S2). The differences 
in specific interactions for the remaining positions, how-
ever, remained nearly identical.

1D representation
Although matrix representation of the 2D-SIFt descrip-
tor improves visual inspection and analysis of the ligand-
receptor interactions, converting the descriptor into bit 
string would allow for use with existing tools for fin-
gerprint analysis. This would facilitate docking post-
processing or filtering the docking poses with minimal 
effort. For this reason, the implementation of the 2D-SIFt 
comes with functions to convert a 2D-SIFt matrix onto 
linear representation either allowing for values greater 
than 1 for interactions or keeping the descriptor binary. 

Fig. 2  Differences between agonistic and antagonistic binding site for β2-AR. Depicted by the 2D-SIFt profile for agonists (red) and antagonists 
(blue) (A), and visualized in the crystal structure of β2-AR, 2RH1 (B). Residues in white are common to both binding modes, blue is unique to 
antagonist binding and red is unique to agonist binding. For clarity, the 2D-SIFt heatmaps display the per-residue interactions found in more than 
30% of the investigated complexes
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We have also provided simple tools for calculating both, 
Tanimoto and Euclidean distance between fingerprints, 
for binary and non-binary representation, respectively. 
Linear descriptor contains all incrementable bits from 
2D-SIFt matrix (Fig. 1A).

Conclusions
The library presented herein for the automated genera-
tion and manipulation of the 2D-SIFt descriptor along 
with convenient visualization in the form of a heat 
map provides a powerful tool to consolidate the inter-
action data obtained from multiple ligand-receptor 
complexes. As shown in the case studies, the toolkit 
supports a generic numbering scheme for proteins, 
thus allowing the assessment of structures with differ-
ing sequences but similarities within the same number-
ing space. The intuitive interpretation of the visualized 
descriptors (heat maps) provides the opportunity to 
identify interaction hotspots easily, as well as to dif-
ferentiate between the binding modes associated with 
compounds with different pharmacological roles. The 
visualization in form of a table allows for quick assess-
ment of contributions of individual complexes to the 
interaction profile, and thus quick identification of the 
ligand-receptor complexes not matching the common 
interaction pattern. The 2D-SIFt interaction matrix, 
which combines both structural and pharmacophore 
data, supplies a hybrid structure- and ligand-based 
analysis. The automated approach to the interaction 
analysis provides convergent results with the imple-
mentation of a meticulous manual analysis, yet it is 
convenient to use and customizable.
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Additional file 1: Figure S1. A 2D-SIFt representation of the common 
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interactions. Table S1. Crystal structures used for the construction of the 
common antagonist binding site for Class A GPCRs. Table S2. Crystal 
structures used for the comparison  of the agonist and antagonist 
binding modes for β2AR. Table S3. Individual 2D-SIFt heat maps for the 
crystal structures used for construction of the common binding site of the 
GPCR antagonists.
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