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Abstract 

Coronavirus disease 2019 (COVID-19) is caused by a novel virus named Severe Acute Respiratory Syndrome Coronavi-
rus-2 (SARS-CoV-2). This virus induced a large number of deaths and millions of confirmed cases worldwide, creating 
a serious danger to public health. However, there are no specific therapies or drugs available for COVID-19 treatment. 
While new drug discovery is a long process, repurposing available drugs for COVID-19 can help recognize treatments 
with known clinical profiles. Computational drug repurposing methods can reduce the cost, time, and risk of drug 
toxicity. In this work, we build a graph as a COVID-19 related biological network. This network is related to virus targets 
or their associated biological processes. We select essential proteins in the constructed biological network that lead to 
a major disruption in the network. Our method from these essential proteins chooses 93 proteins related to COVID-19 
pathology. Then, we propose multiple informative features based on drug–target and protein−protein interaction 
information. Through these informative features, we find five appropriate clusters of drugs that contain some can-
didates as potential COVID-19 treatments. To evaluate our results, we provide statistical and clinical evidence for our 
candidate drugs. From our proposed candidate drugs, 80% of them were studied in other studies and clinical trials.
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Introduction
The pandemic situation for Coronavirus disease 2019 
(COVID-19) causes more than 197 million infections and 
more than 4.2 million deaths in more than 200 countries 
worldwide (until the end of July 2021) and this number 
is increasing rapidly. Due to this rapid spread, research-
ers have been searching for therapeutic approaches in 
the past few months. At present, no medicine has been 
claimed to be effective in the treatment or even preven-
tion of COIVD-19 [1]. On the other hand, producing new 
drugs with a complete drug profile is a tough task that 

requires extensive time and budget. Drug repurposing is 
the procedure of perusing new therapeutic uses for avail-
able drugs. This process can reduce a large amount of 
time, money, and danger of the traditional drug discovery 
process [2]. The main purpose of drug repurposing is to 
exceed the therapeutic use of the available drugs for more 
medical scope. Previous researches showed that drugs 
with similar profiles probably demonstrate similar behav-
ior in the existence of similar targets like proteins [1–3]. 
Traditional drug repurposing methods are mainly based 
on finding the relationship between biological activity 
and the molecular structure of different drugs. However, 
newer data gathering and analysis shows the urgent need 
for using computational methods for drug design and 
repurposing. Computational methods are mainly used 
to discover different drug interactions that are not con-
sidered and found during the clinical trial process [4]. In 
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drug repositioning, computational methods investigate 
the relationship between drug databases and genomic, 
transcriptomic, and other available information with the 
help of data and network analysis and machine learning 
methods [2]. Machine-learning based methods for drug 
repurposing reveal the connection between drugs, viral, 
and host proteins. In the life cycle of a virus, the viral 
proteins are associated with different human proteins in 
the infected cells through different interactions. Within 
these interactions, the virus hijacks the host cells for 
replication, and this process changes the regular func-
tion of these interacted proteins. Therefore, to design 
antiviral drugs, a complete understanding of the interac-
tion between human proteins and viral is crucial [5]. It is 
worth mentioning, in drug repurposing to fight the virus, 
targeting just virus proteins is not the proper approach. 
Targeting single virus proteins can cause the viruses to 
escape this attack through some backup pathways. These 
backup pathways lead to increased virus resistance with 
the mutation. Host-directed treatments propose signifi-
cant strategies [6]. These methods select human proteins 
as the main carriers for the virus to enter and control 
human cells. These host-directed treatments seem to be 
less susceptible to making resistance because human pro-
teins are less influenced by mutations. Therefore, target-
ing human proteins as drug targets is a more sustainable 
strategy. In host-directed treatments, it is important to 
find proteins that are essential for the maintenance and 
persistence of the disease that is caused by a virus in the 
human cells. When these proteins are targeted as drug 
targets, the replication mechanism of the virus collapses. 
For all of the above-mentioned reasons, repurposing 
drugs with host-directed treatments against COVID-
19 has major potential. Furthermore, drug repurposing 
methods provide hope for fast practical implementation 
with the minimum side effects. Molecular interaction 
and biological interaction networks as valuable resources 
are the foundation for drug repurposing methods [7]. 
This means that network-based drug repurposing meth-
ods propose novel opportunities for finding drug targets 
in host-directed treatments [8]. Recent studies show 
that valuable results are based on viral-host networks 
for treating HIV [9], Hepatitis C [10], and Ebola as well 
[11]. Since the outbreak of COVID-19 some research 
groups have been trying to develop network-based meth-
ods to find some repurposed drugs to operate against 
SARS-CoV-2. Zhou et al. [12] proposed a network-based 
method for the identification of some candidates as 
repurposable drugs and some potential drug combina-
tions targeting. Li et al. [13] combined network data with 
a relative analysis of the gene sequences of the different 
viruses to find potential drugs for SARS-CoV-2. Gordon 
et  al. [14] proposed a map from human proteins with 

SARS-CoV-2 proteins that were found to interact in the 
affinity purification mass spectrum method. Dick et  al. 
[15] recognized high confidence interactions between 
human proteins and SARS-CoV-2 proteins with the help 
of sequence-based protein−protein interaction (PPI) 
predictors.

In this paper, we propose the four steps method. This 
method tries to identify novel drug targets and pathways 
associated with essential proteins in COVID-19. In the 
first step, we build a graph as a COVID-19 related bio-
logical network related to virus targets or their associ-
ated biological processes. In the second step, we use two 
effective algorithms [16, 17] to find the candidate set of 
proteins from biological networks that lead to a major 
disruption in the network. In the third step, we identify 
proteins in our candidate set that are associated with 
some underlying diseases related to COVID-19. Then, 
we select 93 proteins as a final set of essential proteins 
related to disease pathology. Identifying essential pro-
teins may elucidate new drug targets and pathways 
related to COVID-19. In the fourth and last step, we 
propose informative features based on drug-protein and 
PPI networks and find five significant clusters that con-
tain appropriate candidate drugs. Our results show that 
using our four steps method suggests some appropriate 
candidate drugs. Most of these candidate drugs are rec-
ommended in other studies.

Methods
Finding essential proteins related to COVID‑19 pathology 
as candidate drug targets
Introducing the essential proteins related to COVID-19 
pathology as candidate drug targets is one of the most 
used and appropriate ways to find suitable drugs for 
COVID-19 treatment. In this subsection, we describe 
the first, second and third steps of our proposed method. 
These two steps try to find the set of essential proteins 
related to COVID-19 pathology. In the first step, we use 
two effective algorithms [16, 17] for finding the minimum 
number of proteins that participate in a large number 
of biological processes. We use these algorithms to find 
sets of essential proteins based on the disruption of the 
COVID-19 related biological network. In the second 
step, we investigated COVID-19 associated protein sets. 
As a result of this step, we found a subset of essential pro-
teins that are essential to disease pathology.

Construction of COVID‑19 related biological network
Suppose that informative biological processes (IBP) is a set 
of biological processes related to virus targets in COVID-
19 that will be described in the next subsection. Two pro-
teins are functionally interacted if they are connected 
through the same biological processes. A COVID-19 
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related biological network is considered as a weighted 
undirected graph G = (V ,E,ω) . In this graph, each node 
vi ∈ V  represents the protein and each edge eij ∈ E rep-
resents a functional interaction between two nodes vi and 
vj . The ω(eij) shows the weight of eij that demonstrates the 
number of biological processes that two nodes vi and vj par-
ticipate in them. A path between two nodes vj and vk in the 
graph is a sequence of edges that connect the number of 
distinct nodes through this path. In the weighted graph, the 
weight of the path between two nodes is defined as follows. 
Suppose that vj and vk as the two ends of this path. Then, 
the sum of the weight of edges between these two nodes is 
the weight of this path. A path with the minimum weight 
between these two nodes is named the shortest path. Now, 
we define the betweenness value for each node, vi , in the 
graph in the following way:

where θejk shows the total number of shortest paths from 
node vj to node vk and θejk vi indicates the number of 
shortest paths that pass through node vi.

Disruption of COVID‑19 related biological processes
We adapt two algorithms to detect the essential proteins in 
the COVID-19 related biological network [16, 17]. These 
algorithms [16, 17] select some of the best candidates as 
removal proteins set from the COVID-19 related biologi-
cal network to make a major disruption in it. We place the 
outputs of Algorithm 1 and 2 in Cut1 and Cut2 , respectively.

Algorithm 1: spectral partitioning
Partitioning a simple graph, G, into disjoint balanced or 
nearly balanced parts with removing the minimum number 
of edges between these two parts is known as the NP-com-
plete problem [16]. We try to approximate this partition-
ing problem with the spectral partitioning algorithm. This 
algorithm is based on eigenvectors of the Laplace of the 
graph, G, and divides the graph into two disjoint parts with 
respect to eigenvectors of a Laplacian matrix. It is worth 
mentioning that, the spectral partitioning algorithm is one 
of the best heuristic approaches for graph partition. Let 
A = [aij] shows the adjacency matrix of graph G such that,

We define a diagonal degree matrix D = diag(di) for 
graph G. In this matrix value d(vi) shows the degree of 
vi in graph G. The Laplacian matrix of the graph G is 
defined by L = D\A and L(G) = [lij] where,

(1)Betw(vi) =
∑

vj ,vk∈V

θejk vi

θejk
,

(2)aij =

{

1 if (vi, vj) ∈ E
0 otherwise

The Laplacian matrix is a symmetric positive semi-def-
inite matrix. This matrix has some important proper-
ties. Suppose that vector u = (u1,u2, ...,un) shows the 
normalized eigenvectors of matrix L(G) and vector 
(�1, �2, ..., �n) demonstrates the corresponding eigenval-
ues of these eigenvectors. We first compute the eigenvec-
tors of Laplacian matrix L(G), according to the second 
smallest eigenvalue of this matrix , �2 , and put them in 
vector X = (x1, ..., xn) . Then, we sort the elements of 
vector X and insert half of the nodes in partition G1 and 
the reminder of nodes in another partition G2 . This pro-
cedure divides the nodes of graph G into two partitions, 
G1 and G2 with nearly equal sizes. Removing the edges 
between these two parts through the cut edges E(G1,G2) 
makes these two parts disconnect. Suppose the vec-
tor A = {α1, ...,αm} shows the vertices placed in part G1 
and vector B = {β1, ...,βm} shows the vertices are placed 
in part G2 , respectively. To make these two parts, G1 and 
G2 disconnect, we choose vertices from vectors A and B 
repeatedly. The vertices are chosen with respect to their 
degrees and removed until the all edges in E(G1,G2) are 
covered.

Algorithm 2: betweenness value
This algorithm [17] tries to make the maximum disrup-
tion in the network by removing the minimum number 
of essential proteins. The selection method in algorithm 
[17] is based on the betweenness value mentioned in 
Eq 1. The algorithm [17] has three parts. In the first part, 
the betweenness value for each node in the graph G is 
calculated. In the second part, to separate the graph G 
into two disjoint partitions G1 and G2 , the node with the 
minimum betweenness value in graph G is selected and 
placed in partition G1 . Then, from all of the neighbors of 
the selected node, the node with the minimum between-
ness value is selected and placed in the other partition G2 . 
These procedures are repeated until all nodes are placed 
into two disjoint partitions G1 and G2 . In the third part, 
the minimum number of nodes from two constructed 
partitions G1 and G2 is selected with respect to their 
betweenness values to remove all edges in E(G1,G2) . The 
third step of this algorithm is equivalent to the minimum 
bi-section problem that is an NP-complete problem [18].

Candidate essential proteins associated with COVID‑19 
pathology
COVID-19 is a pandemic disease and has different sever-
ity and symptoms for various patients. The severity of 
this disease can vary from asymptomatic to fatal for 

(3)lij =







1 if (vi, vj) ∈ E
d(vi) if i = j
0 otherwise
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different people. Recent studies show that this disease 
has high severity in people with some underlying condi-
tions. Some of the most related underlying diseases are 
Diabetes, Cardiovascular diseases, Lung diseases, Hepa-
titis, Kidney disease, and different types of cancer. Hence, 
we expect that the genetics of these underlying diseases 
has some correlations with the essential proteins in 
COVID-19. For finding these essential proteins, we use 
the relation between gene and disease from Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID). Then, we select some proteins through our 
two mentioned algorithms that are annotated to four out 
of five of these specific comorbid diseases. From these 
selected proteins, proteins with significant p-values as a 
set of essential proteins associated with COVID-19 are 
chosen and placed in E as a set of main target candidates 
of COVID-19 drugs.

Drug clustering method
Protein−protein interaction network
We use 5 human high-throughput PPI networks in this 
work. The first one, Huri, contains 52,248 binary interac-
tions [19]. The second one is collected from the biologi-
cal general repository for interaction datasets (BioGRID) 
and contains 296,046 interactions [20]. The BioGRID 
dataset contains various interactions that are created 
from different techniques. In this work, we just use the 
physical interactions between proteins. The three other 
datasets are human integrated protein−protein interac-
tion reference (HIPPIE) [21], agile protein interactomes 
dataanalyzer (APID) [22], and homologous interactions 
(Hint) [23] that contain 57,428, 171,448, and 64,399 
experimental interactions, respectively. These interac-
tions are derived from high-throughput yeast-two hybrid 
(Y2H) and mass spectrometry methods. We map all of 
the proteins from these five datasets to their correspond-
ing universal protein resource (UniProt) ID [24]. We 
removed a protein if it could not be mapped to a Uni-
prot ID. Finally, in this study, we used 25,260 proteins 
and 304,730 interactions. For all of these proteins, we use 
biological process terms from gene ontology (GO) term 
[25] to point out the biological modules in humans. We 
find that 20,642 proteins from these 25,260 proteins or 
81% of them are annotated. We consider a biological pro-
cess annotation informative if it has these two properties. 
First, at least k proteins are annotated with it. Second, 
each of its descendant’s GO terms needs to have less than 
k proteins annotated with them. We set 3 as a value of k 
and we note that 16,021 biological processes correspond-
ing to these 25,260 proteins that are participating in our 
interactions. We also use 332 human proteins involved in 
26 proteins of the SARS-CoV-2 virus that were revealed 
by Gorden et al. [14]. The set, T, shows these 332 proteins 

as possible targets of the SARS-CoV-2 virus. For this set 
of 332 human proteins, we also consider 1374 IBP GO 
terms as high-confidence SARS-CoV-2 Human PPI.

We define the overlap between two biological pro-
cesses, p1 and p2 in the following way (| . | shows the 
size):

Then, the processes with more than 15% overlaps have 
been removed. Through this filtering method, we have 
1213 non-overlapping biological processes correspond-
ing to COVID-19.

Interactive information between drugs and human protein 
targets
To evaluate our candidate targets, we use all drugs and 
their corresponding targets interactions that are reported 
in the UniProt [24]. These interactions contain 6163 
drugs from All-Drug group that are reported in Uni-
Prot, these drugs have 2898 protein targets. We also use 
44 experimental unapproved drugs for COVID-19 that 
are reported in DrugBank [26]. From these 44 drugs, 
27 drugs have no target information and only 17 drugs 
have the drug target information. These 17 drugs can tar-
get 78 proteins in a cell. This group of drugs is denoted 
as Covid-Drug. The second group of drugs contains 590 
drugs as clinical trials for COVID-19. From these 590 
drugs, 328 drugs have targets in the PPI network denoted 
as Clinical-Drug. These 328 drugs can target 888 proteins 
in a cell.

Construction of drug–target network
We define some topological features in a PPI network for 
cluster identification of drugs. These features cluster the 
available experimental unapproved drugs for COVID-19 
with respect to these topological properties of their asso-
ciated targets in the PPI network. To do this, we define a 
drug–targets network in the following way.

Each drug–targets network is considered as a bipartite 
graph H =< D, τ ,E∗ > . In graph H, nodes are divided into 
two different sets. The first one, D, demonstrates the set of 
experimental unapproved drugs for COVID-19, and the 
second one, τ , shows the experimental unapproved drug 
targets. Each edge evd ∈ E∗ shows that two nodes v ∈ τ and 
d ∈ D are connected if the node v in a human cell be a tar-
get of drug d. In fact τ , contains the proteins that are placed 
in the intersection of all drug targets with 2898 proteins 
and set E. Supposed that G =< V ,E > is a PPI network 
that contains the set of virus targets (T) and the set of main 
targets ( τ ). Two nodes vi and vj are neighbors if there is an 
edge between them. Suppose that N (vi) shows a set of all 

(4)Overlap(p1, p2) =
|p1

⋂

p2|
2

|p1||p2|
.
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neighbors for a node vi , therefore d(vi) = |N (vi)| indicates 
the degree of vi.

We define 3 different informative topological features for 
each drug, d, and its particular targets as follows. The fol-
lowing features are defined with respect to the situation of 
its main targets and COVID-19 related biological process. 

1	 DT (d) : The average ratio of the number of neighbors 
for each protein vi ∈ τd that is also placed in set T 
according to the degree of vi . 

 where τd = {v1, ....vm} denotes the number of main 
targets for drug d.

2	 The participation rate of τd in set π defines as follow: 

 where set π = {p1, p2, ..., pk} shows the non-overlap-
ping biological processes corresponding to COVID-
19. The possible values for PIBP(d) is between 0 and 
1. If the value of PIBP(d) is closer to 1, it means the 
neighbors of node d have higher distribution in the 
set of biological processes.

3	 DP(d) : The average ratio of the number of neighbors 
for each protein vi ∈ τd that is also placed in set π 
according to the degree of vi . 

 where P =
⋃

pi∈π
pi.

Clustering method based on topological features of drug 
targets
Suppose that G =< V ,E,ω > is a COVID-19 related 
biological network and H =< τ ,D,E∗ > is a bipartite 
drug–target graph (τ ⊂ V ) . Let E ⊂ V  be a set of essen-
tial proteins and τ be a set of main targets. Now, for each 
drug that has at least one target in set τ , we measure the 
topological features DP , DT and PIBP with respect to their 
targets in τ . Suppose that d∗ is a drug from the Covid-Drug 
group with the corresponding values of topological features 
DP(d

∗) , DT (d
∗) and PIBP(d∗) , respectively. According to 

the near zero threshold ǫ , a drug d is placed in the same 
cluster with d∗ if the following equation is satisfied:

(5)DT (d) =

∑m
i=1

|N (vi)
⋂

T |

d(vi)

|τd |
,

(6)PIBP(d) = 1−
∑

pi∈π

(

|pi
⋂

τd |
∑

pi∈π
|pi

⋂

τd |

)2

,

(7)DP(d) =

∑m
i=1

|N (vi)
⋂

P|
d(vi)

|τd |
.

(8)
C = {d ∈ D & |

√

(DP(d)− DP(d∗))2 + (DT (d)− DT (d∗))2 + (PIBP(d)− PIBP(d∗))2| < ǫ}.

The overall view of our proposed method is illustrated in 
Fig.  1. Human and coronavirus host proteins were col-
lected from different datasets to generate a COVID-19 
related biological network (Part (A)). In Part B, Algo-
rithm  1 (Alg 1) and 2 (Alg 2) are applied to detect the 
essential proteins in the COVID-19 related biological 
network. According to the defined features, the cluster-
ing method was used to find five appropriate clusters. In 
Part (C), the resulted clusters evaluated with different 
measures and some candidate drugs recommended.

Fig. 1  Overall workflow. Our method integrates a drug–target 
network with a Human-virus network in the human PPI network. A. 
Human and coronavirus host proteins were collected from different 
datasets to generate a COVID-19 related biological network. B. 
Algorithm 1 (Alg 1) and 2 (Alg 2) detect the essential proteins in the 
COVID-19 related biological network. Three Informative features 
introduced. The Machine Learning method used these features and 
find three significant clusters. C. The resulted clusters evaluated with 
different measures. These measures are based on drug targets in 
these clusters. Finally, some candidate drugs recommended
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Results
Evaluation essential proteins related to COVID‑19
The protein sets that are resulted from algorithms 1 and 
2 are placed in the sets Cut1 and Cut2 , respectively. The 
union of Cut1 and Cut2 is placed in the Cutunion set and 
the intersection of them is placed in Cutintersect , respec-
tively. For more evaluation of essential proteins of Cut1 
and Cut2 sets, we study the topological properties of 
these two sets. In this work, we claim that through our 
cut sets as results of two presented algorithms, the maxi-
mum number of IBP GO terms are disrupted. We also 
claim that the two disjoint sets of vertices G1 and G2 
(resulting from the cut set) are approximately equal in 
size. Moreover, each IBP GO term, like C has almost the 
same size on both sides of G1 and G2 sets. Suppose that C 
is a process from the IBP GO terms. The disruption score 
for this process is defined as follows [16]:

The closer value of Scoredisrupt(C) to 1
2
 indicates that 

process C is completely disrupted. However, if the 
Scoredisrupt(C) for a process C is in the range [0, 1

2
+ ǫ] , we 

say that this process is ǫ-disrupted.
For more evaluation of our proposed cut sets, Cut1 

and Cut2 , we define two other cut sets with some 
important topological features. We want to compare 
our proposed cut sets with these two cut sets and show 
the advantage of our proposed cut sets with respect to 
the defined measure Scoredisrupt(C) . In the first cut set, 

(9)Scoredisrupt(C) =
MAX{C ∩ G1,C ∩ G2}

|C|
,

we select the high degree vertices such that the removal 
of these vertices divides the graph G into two disjoint 
parts. This set contains hubs and we named this set as 
Cuthub . In the second cut set, we select the high weight 
vertices such that the removal of these vertices divides 
the graph G into two disjoint parts. We named this set 
as Cutweight.

In Table  1 we compare the number of ǫ-disrupted 
processes for Cut1 , Cut2 , Cuthub and Cutweight respec-
tively. The results of Table  1 show that Cut1 and Cut2 
have better disruption properties and this confirms that 
the selection algorithm that we used for Cut1 and Cut2 
are significantly better than other algorithms.

In Table  2, we study the number of IBP GO terms 
that are disrupted through these cut sets. We find that 
almost all sets disrupt a high number of biological pro-
cesses. However, Cutunion shows significant superior-
ity with respect to the number of drugs in Covid-Drug 
and Clinical-Drug groups. Table  2 shows that from 
these 17 drugs in the Covid-Drug group, 16 drugs are 
approved with Cutunion , and from 328 drugs in the sec-
ond group as Clinical-Drug, 273 drugs are approved 
with Cutunion . Therefore, the set Cutunion could be a pos-
sible good candidate to find essential proteins related 
to COVID-19 pathology as drug targets. To find these 
essential proteins, we use gene-disease relationship 
from DAVID tools. We also study some essential pro-
teins in Cutunion that are shared by cardiovascular-
related, hypertension, diabetes type 2, kidney-related 
and lung-related diseases and placed them in a set E. 
Table  3 shows 93 proteins of set E that are annotated 
to four out of five of these specific diseases with signifi-
cant p-values. We also find that from 17 drugs in the 
Covid-Drug group, 10 drugs including Bevacizumab, 
Azithromycin, Ritonavir, Ibuprofen, Colchicine, Daru-
navir, Methylprednisolone, Tocilizumab, Chloroquine, 
and Dexamethasone. The results also show that from 
328 drugs in Clinical-Drug, 185 drugs are approved by 
set E. Generally, among 6,163 drugs from the All-Drug 

Table 1  The number of ǫ-disrupted processes for the selected 
cut sets

Cut1 Cut2 Cuthub Cutweight

0.05-disrupted 745 750 230 298

0.1-disrupted 877 892 378 403

0.2-disrupted 1021 1037 682 733

Table 2  The first row shows the number of proteins in sets T, Cut2 , Cut1 , Cutintersect and Cutunion , respectively.

The number of IBP GO terms overlapped with these subsets collected in the second row. The number of drug targets in each drug group that are associated with 
these subsets are reported in the third, fourth and fifth rows, respectively. The number of drugs in each drug group that are associated with these subsets are reported 
in the sixth, seventh and eighth rows, respectively

T Cut2 Cut1 Cutintersect Cutunion

No. Protein 332 2017 2100 1115 3002

IBP Go terms 1374 1279 1197 1120 1306

No. targets in Covid-Drug 1 22 20 15 27

No. targets in Clinical-Drug 15 218 217 154 281

No. approved drugs in Covid-Drug 2 15 15 14 16

No. approved drugs in Clinical-Drug 30 246 260 225 273
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group, 1689 drugs are approved by set E. These drugs 
target 65 proteins out of 93 proteins in set E. We also 
evaluate set E with respect to the related pathways with 
DAVID tools. The results show significant pathways 
related to COVID-19 that have been studied by previ-
ous studies [27–30]. A part of these pathways with sig-
nificant p-values are reported in Table 4.

Statistical properties of clusters
As we mentioned earlier, our clustering method intro-
duces 5 different clusters named as #Cluster1 , #Cluster2 , 
#Cluster3 , #Cluster4 , and #Cluster5 for 1689 drugs that 
are approved by proteins in set E. Our clustering method 
uses the defined topological features and 10 approved 
drugs in Covid-Drug that mentioned in the previous 

Table 3  Essential protein related to COVID-19 pathology

Essential protein related to COVID-19 pathology

O00206, O14543, O14763, O60603, P00533, P00734, P01019, P01033, P01130, P01133, P01137, P01344

P01374, P01375, P01579, P01583, P01584, P01889, P01891, P01892, P01911, P01912, P02647, P02649

P02751, P02778, P03372, P03989, P04114, P04229, P04439, P04637, P05019, P05089, P05106, P05112

P05164, P05231, P05362, P05534, P06858, P08253, P08571, P08684, P09211, P09601, P10145, P10415

P10635, P11021, P11226, P11473, P13498, P13500, P13501, P14210, P14780, P15692, P16035, P17813

P19438, P19838, P21549, P25445, P28482, P29279, P29459, P29474, P31645, P31749, P35222, P35354

P38936, P40763, P40933, P41597, P42336, P42345, P42898, P48023, P48061, P60568, P78423, P78527

P81172, Q04721, Q14116, Q15848, Q16236, Q30201, Q99958, Q9NR96, Q9Y2R2

Table 4  Some of the significantly enriched pathways that are related to COVID-19 essential proteins (E)

Annotation cluster 1 Enrichment score: 11

Term Count P value

hsa05142:Chagas disease (American trypanosomiasis) 20 2.47E−18 [27]

hsa05323:Rheumatoid arthritis 17 1.79E−15 [27]

hsa05144:Malaria 14 4.85E−15 [27]

hsa05321:Inflammatory bowel disease (IBD) 15 7.61E−15 [27]

hsa05140:Leishmaniasis 14 8.80E−13 [27]

hsa05152:Tuberculosis 19 9.13E−13 [27]

hsa04620:Toll-like receptor signaling pathway 15 1.15E−11 [28]

hsa05146:Amoebiasis 14 1.75E−10 [27]

hsa05145:Toxoplasmosis 14 2.81E−10 [27]

hsa05134:Legionellosis 10 8.56E−09 [29]

hsa05133:Pertussis 10 1.66E−07 [27]

hsa04621:NOD-like receptor signaling pathway 9 2.12E−07 [30]

Annotation cluster 2 Enrichment score: 8.80

Term Count P value

hsa05168:Herpes simplex infection 20 1.31E−13 [29]

hsa04940:Type I diabetes mellitus 12 8.30E−13 [27]

hsa05332:Graft-versus-host disease 11 1.89E−12

hsa05330:Allograft rejection 10 2.35E−10 [27]

hsa05320:Autoimmune thyroid disease 7 2.72E−05 [27]

Annotation cluster 3 Enrichment score: 4.53

Term Count P value

hsa04931:Insulin resistance 10 3.80E−06

hsa04920:Adipocytokine signaling pathway 8 1.47E−05 [28]

hsa05221:Acute myeloid leukemia 6 4.50E−04
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subsection, as clustering criteria. In order to evaluate 
#Cluster1 , #Cluster2 , #Cluster3 , #Cluster4 , and #Cluster5 , 
we compare our clusters with randomly generated sets. 
Suppose that Ni = (ai, bi) for i = 1, ..., 105 denotes both 
the number of Covid-Drug and Clinical-Drug in i-th ran-
domly generated sets groups of size n (n=2, 8, 10, 28 and 
14). In Ni , ai and bi denote the number of Covid-Drug 
and Clinical-Drug in group of size n, respectively. For n 
with sizes of 2, 8 , 10, 28 and 14, we define N=(1,1), (1,2) 
(1,3), (1,1), and (6,8), respectively. Let X = {i|Ni > N } for 
i = 1, ..., 105 , where X denotes the number of random sets 
that performed better than the proposed clusters [31]. 
The null hypothesis, H0 , is that our selected drug set of 
size n is not important. The alternative hypothesis, H1 , is 
that our selected drug set of size n is indeed important. 
We use exceeding value (EV) as EV =

|X |
100000

, where |X| 
denotes the size of X. If EV < α then, we reject H0 ( α is 
a threshold value that we consider to be 0.05). The val-
ues of EV for #Cluster1 , #Cluster2 , #Cluster3 , #Cluster4 , 

and #Cluster5 are reported in Table  5 (These values 
cause extremely significant results). The EV denotes the 
percentage of random clusters that perform better than 
our clusters out of 105 random selections. We can con-
clude that these values are extremely significant and our 
selected clusters show a better performance than all of 
these random selections and significantly far from ran-
dom selection. In Table  6 we also report some details 
about the proposed clusters. In this table, the number of 
Covid-Drug, Clinical-Drug, and drugs that are placed in 
All-Drug groups are reported, respectively.

Evaluation of clusters with respect to proteins as drug 
targets
For more evaluation, we investigate all of the proteins as 
drug targets in each cluster. Table 7 shows some details 
about our selected clusters. In this table, the first row 
indicates the number of proteins as drug targets in our 
PPI network. From these proteins, the number of impor-
tant ones in each cluster that are mentioned as main 
targets is reported in the second row. These particular 
targets are the group of proteins from the first row of 
the table that is placed in set E. The number of human 
proteins that are targeted with the virus is demonstrated 
as a set T and reported in the third row. The fourth and 
fifth rows show the number of these proteins that are 
targeted through at least one drug in Covid-Drug and 
Clinical-Drug, respectively. Table  7 reports 10 drugs in 
#Cluster3 target 77 human proteins. From these 77 pro-
teins, 10 proteins are reported as particular targets that 
are identified through our method. This cluster has the 
highest ratio of the main targets (10/77) in comparison 
with other clusters. Figure  2 illustrates the number of 
drug targets for each cluster. Drugs in each cluster can 
have distinctive and common targets. For example, the 
union of all targets for two drugs in #Cluster1 contains 28 
proteins. From these 28 proteins, 17 of them are common 
between these two drugs. From these 17 proteins, 1 of 
them is placed in set E that is mentioned as main target.

Table 5  The exceeding values (EV) for #Cluster1 , #Cluster2 , 
#Cluster3 , #Cluster4 and #Cluster5

EV values

#Cluster1 1E−05

#Cluster2 0.00018

#Cluster3 0.00109

#Cluster4 0.0011

#Cluster5 0.0013

Table 6  The number of All-Drugs, Covid-Drug and Clinical-Drug 
for #Cluster1 , #Cluster2 , #Cluster3 , #Cluster4 and #Cluster5

#Cluster1 #Cluster2 #Cluster3 #Cluster4 #Cluster5

No. All-Drugs 2 8 10 28 14

No. Covid-Drug 1 1 1 1 6

No. Clinical-
Drug

1 2 3 1 8

Table 7  The first row indicates the number of proteins as drug targets in our PPI network

From these proteins, the number of important ones in each cluster is reported in the second row. The number of human proteins that are targeted with the virus is 
reported in the third row. The fourth and fifth rows show the number of these proteins that are targeted through at least one drug in Covid-Drug and Clinical-Drug, 
respectively

#Cluster1 #Cluster2 #Cluster3 #Cluster4 #Cluster5

No. targets 28 37 77 155 118

No. main targets 2 2 10 10 14

No. targets in T 1 1 1 3 0

No. targets in Covid-Drug 23 18 29 43 47

No. targets in Clinical-Drug 28 32 69 140 107
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Figure  2 also shows the number of main targets in each 
cluster. Each drug in these five clusters has one or multi-
ple main targets. From these main targets three of them 
are common among all drugs of each clusters. These 
three main targets are Vascular Endothelial Growth Fac-
tor (VEGF)-A, Cytochrome P450 3A4 (CYP3A4), and 
Prostaglandin-endoperoxide synthase 2 (PTGS2) or 
Cyclo-oxygenase2 (COX-2), respectively. Despite the lack 
of evidence for COVID-19, previous research shows that 
the VEGF family (VEGFs) has a connection with COVID-
19. A recent study shows that VEGFs are involved in 
“cytokine storm” inflammatory response. They claim that 
these genes may be used as prospective biomarkers for 
early diagnosis in COVID-19 patients [32]. The VEGFs 
can also be used for targeted drug delivery in COVID-19 
treatment.

The second main target is PTGS2 or COX-2, which has 
been the subject of many studies on its association with 
COVID-19 and is a pro-inflammatory enzyme. Some 
studies showed that the structural proteins of the SARS-
CoV family are reported to influence the expression of 
COX-2 and the increased expression of plasma PGE2 
in the blood of SARS-CoV-infected patients. It is also 
reported that COX-2 plays a crucial role in limiting the 
anti-viral cytokine response to viral infection. Therefore, 
the use of an effective COX-2 inhibitor during early viral 
infection could enhance interferon responses. It might 
also increase anti-viral immunity [33]. The result of [34] 
study shows the importance of VEGF-A and COX-2 in 
relation to COVID-19. In this study, PPI analysis was 
used to find the hub genes linked to COVID-19 and lung 
cancer. Among the suggested hub genes, VEGF-A and 
COX-2 have been confirmed and could be used as bio-
markers for COVID-19.

The next main target is Cytochrome P450 3A4 
(CYP3A4). Cytochromes P450 (CYPs) is a superfam-
ily of metabolizing enzymes. The CYP enzymes can be 
suppressed by an infection-related cytokine increase 
and inflammation. A recent study demonstrated that, 
like other viral infections, during the progression of 
COVID-19 local and systemic inflammation as well as 
the “cytokine storm” will potentially cause downregu-
lation of the major CYP enzymes including CYP3A4 
[35]. A new study proposed that COVID-19 pharmaco-
genetic studies include CYP3A4 variants [36]. The [33] 
study shows that CYPs metabolic activity will be surely 
changed during the SARS-CoV-2 infection in a similar 
manner, resulting in a pharmacokinetic interaction with 
the recommended drugs for COVID-19 treatments. 
In addition, liver involvement in COVID-19 may fur-
ther complicate this problem, especially for drugs like 
remdesivir and chloroquine as COVID-19 treatments. 
Since remdesivir undergoes extensive metabolism by 
CYPs and chloroquine is also hepatically metabolized, 
understanding the nature of these drug-disease interac-
tions is highly essential and can affect the therapeutic 
response of COVID-19 patients.

The Venn diagram in Fig.  3 illustrates the relation-
ship between targets in 5 clusters. Our results show 
that despite the fact that the drugs in these five clusters 
are different from each other but they have 8 specific 
proteins as targets that are jointly targeted by the drugs 
in all five clusters. In addition, Fig.  3 shows that 64% 
(50/77) of the proteins as drug targets in #Cluster3 are 
different from the targets in other clusters, and all pro-
teins as drug targets in #Cluster1 are targeted by at least 
one drug in the other clusters. In Fig. 4, as an example, 

Fig. 2  The blue columns show the common drug targets for each 
cluster. The orange columns show the number of main targets that 
are common between drugs in each cluster. The green columns 
show all of the targets for drugs in each cluster Fig. 3  The Venn diagram shows the relation of targets for #Cluster1 , 

#Cluster2 , #Cluster3 , #Cluster4 and #Cluster5
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we show that the common targets and the total number 
of targets that are selected through our method with 
respect to the defined topological features for #Cluster1.

Evaluation of clusters with respect to related diseases
We have studied the diseases associated with each of the 
drugs in each cluster based on the information on the 
Drugbank website. The Venn diagram in Fig. 5 shows the 
relationship between diseases that are associated with 
drug targets in each cluster. Figure  5 shows that there 
is no specific disease that is associated with all clusters. 
Respiratory Tract Infections and Type 2 Diabetes are 
two of six diseases that have common targets in#Cluster2 
and #Cluster3 . Diabetic Macular Edema (DME) is one of 
two diseases that have common targets in #Cluster3 and 
#Cluster5 . Rheumatoid Arthritis and Ankylosing Spon-
dylitis (AS) are two of twelve diseases that have common 
targets in #Cluster4 and #Cluster5.

Fig. 4  The example of common targets and total number of targets in #Cluster1

Fig. 5  The relationship between diseases that are associated with 
drug targets in #Cluster1 , #Cluster2 , #Cluster3 , #Cluster4 and #Cluster5
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Drug repurposing candidate
In this section, the drug clusters identified with our pro-
posed method have been analyzed to infer some useful 
drug repurposing candidates. Tables  8, 9, 10, 11 and 12 
show repurposing candidates in #Cluster1 , #Cluster2 , 
#Cluster3 , #Cluster4 , and #Cluster5 , contain 2, 8, 10, 28, 
and 14 drugs, respectively. Our clustering method ena-
bles us to partition the large drug-related network into 

Table 8  List of the repositioning candidates, therapeutic 
category and the supporting published evidence in #Cluster1

The drug in Clinical-Drug group is highlighted in italic

Candidate drug Therapeutic category References

Ritonavir Anti-HIV agents and anti-infective 
agents

[26]

Rifampicin Anti-bacterial agents and anti-infective 
agents

[38]

Table 9  List of the repositioning candidates, therapeutic 
category and the supporting published evidence in #Cluster2

Drugs in Clinical-Drug group are highlighted in italic

Candidate drug Therapeutic category References

Mycophenolate mofetil Anti-bacterial and anti-infective [39]

Erythromycin Anti-bacterial and anti-infective [40]

Azithromycin Anti-bacterial and anti-infective [26]

Cerivastatin Anticholesteremic agents [41]

Ezetimibe Anticholesteremic agents [42]

Fusidic acid Anti-bacterial and anti-infective –

Canagliflozin Alimentary tract and metabolism [43]

Letermovir Antiviral agents [44]

Table 10  List of the repositioning candidates, therapeutic 
category and the supporting published evidence in #Cluster3

Drugs in Clinical-Drug group are highlighted in italic

Candidate drug Therapeutic category References

Bevacizumab Angiogenesis inhibitors and 
antibodies

[26]

Minocycline Anti-bacterial and anti-infective 
agents

[45]

Gliclazide Alimentary tract and metabolism [46]

Carvedilol Adrenergic agents [47]

Ranibizumab Angiogenesis inhibitors and 
antibodies

–

Tromethamine Drug delivery systems [48]

Vandetanib Antineoplastic agents –

Veglin – –

Denibulin Heterocyclic compounds [49]

Foreskin keratinocyte Allogeneic cultured cell scaffold [50]

Table 11  List of the repositioning candidates, therapeutic 
category and the supporting published evidence in #Cluster4

Drugs in Clinical-Drug group are highlighted in italic

Candidate drug Therapeutic category References

 Aldesleukin Anti-infective agents [26]

Dapsone Anti-infective agents [51]

Acetaminophen Central nervous system agents [52]

Celecoxib Anti-inflammatory agents [33]

Rofecoxib Anti-inflammatory agents [53]

Valdecoxib Anti-inflammatory agents [54]

Diclofenac Anti-inflammatory agents [55]

Triamcinolone Alimentary tract and metabolism -

Etoposide Antineoplastic agents [56]

Phenylbutazone Anti-inflammatory agents [57]

Meloxicam Anti-inflammatory agents [58]

Chlorphenesin Central nervous system agents [59]

 Ibuprofen Anti-inflammatory agents [26]

Paclitaxel Antineoplastic agents -

Drospirenone Contraceptive agents, female [60]

Antipyrine Anti-inflammatory agents -

Etoricoxib Anti-inflammatory agents [53]

Resveratrol Anti-inflammatory agents [61]

Nimesulide Anti-inflammatory agents [62]

Capsaicin Sensory system agents [63]

Parecoxib Anti-inflammatory agents [64]

Pomalidomide Antineoplastic agents [65]

Cannabidiol Antidepressive agents [66]

Loxoprofen Anti-inflammatory agents [67]

Dexibuprofen Anti-inflammatory agents [68]

Propacetamol Sensory system agents [69]

Venetoclax Antineoplastic agents –

Nabiximols Central nervous system agents –

Table 12  List of the repositioning candidates, therapeutic 
category and the supporting published evidence in #Cluster5

Drugs in Clinical-Drug group are highlighted in italic

Candidate drug Therapeutic category References

Colchicine Immunosuppressive agents [26]

 Darunavir Anti-infective agents [26]

 Dexamethasone Anti-inflammatory agents [26]

Methylprednisolone Anti-inflammatory agents [26]

Tocilizumab Antirheumatic agents [26]

Acetaminophen Central nervous system agents -

 Chloroquine Anti-inflammatory agents [26]

Donepezil Central nervous system agents [70]

Clomipramine Central nervous system agents [71]

Resveratrol Anti-inflammatory agents [72]

Curcumin Anti-inflammatory agents [73]

Curcumin sulfate anti-inflammatory agent [74]

Baricitinib Antineoplastic and immunomod-
ulating agents

[37]

Lidocaine Antiarrhythmic agents [75]
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smaller subgroups and this can simplify the drug repur-
posing process. Tables 8, 9, 10, 11 and 12 show the mech-
anism of action, therapeutic category, and supporting 
published evidence for each drug in #Cluster1 , #Cluster2 , 
#Cluster3 , #Cluster4 , and #Cluster5 , respectively. From 
these 62 drugs, 10 of them have previously been pro-
posed as potential drug repurposing candidates for 
COVID-19 disease. 

Discussion and summary
Researchers have been searching for efficient medications 
to prevent or cure COVID-19 since the first case was 
discovered in 2019. To advance this goal, we introduced 
the four steps method. In the first step, the COVID-
19 related biological network was constructed and the 
essential proteins that have a wide range of important 
functions in the biological network were detected. In the 
second step, we focused on finding the most effective 
essential proteins related to COVID-19. To do this, we 
used two different algorithms to identify the minimum 
number of proteins that participate in a large number of 
IBP GO terms and placed them in two distinct sets. Then, 
we evaluated proteins of these two sets with respect to 
the number of approved Covid-Drug and Clinical-Drug 
by them (Table 2). We placed the union of these two sets 
in the set Cutunion and studied set Cutunion with respect 
to the number of IBP GO terms that are disrupted. As a 
result, the selected proteins can be identified as a suitable 
candidate set for the COVID-19. It is noticeable that not 
every essential protein is an appropriate candidate as an 
essential protein for COVID-19 pathology. Some of these 
essential proteins are related to the cellular function of 
the cell and selecting them as drug targets may lead to 
disruption of cellular function. Considering that, in the 
third step, we picked candidate proteins directly related 
to COVID-19 pathology. For the final essential protein 
selection process in this step, we identified proteins that 
were associated with underlying diseases such as car-
diovascular disease, diabetes, hepatitis, lung, kidney dis-
eases, and various types of cancer. Among 3,002 essential 
proteins related to COVID-19 in Cutunion , we detected 
93 proteins associated with at least four of five underly-
ing mentioned diseases as essential proteins related to 
COVID-19 pathology (Table 3). We evaluated these pro-
teins with respect to the related pathways with DAVID 
tools (Table 4). As a result, these selected proteins could 
be suitable candidates as drug targets for COVID-19 
treatment. In the fourth step, multiple informative topo-
logical features for drug–target and a PPI network were 
proposed. Our methods tried to find significant clus-
ters containing appropriate candidate drugs through 
these features. These features cluster the available 
experimental unapproved drugs for COVID-19 into five 

groups ( #Cluster1 , #Cluster2 , #Cluster3 , #Cluster4 , and 
#Cluster5 ). These clusters have a significant difference 
from random clusters (Table  5) and contain a signifi-
cant number of Covid-Drug and Clinical-Drug (Table 6). 
We also used three different measures for validating the 
obtained clusters. The first measure was based on the 
proteins as drug targets in these clusters, we showed that 
the proposed clusters have meaningful targets that were 
known in recent studies as COVID-19 targets (Table  6 
and Figs. 2, 3, and 4). The second measure was based on 
the related diseases that have drugs in our clusters. We 
found some related diseases like DME and Rheumatoid 
Arthritis that have drugs in two of our clusters (Fig.  5). 
The third measure was related to drugs as good candi-
dates for drug repurposing in COVID-19 treatment.

In summary, the main advantage of our method 
in comparison to other studies was clustering FDA-
approved drugs that are related to COVID-19 accord-
ing to the biological and topological properties of their 
targets. It can be concluded that partitioning the drug-
related network into smaller networks (clusters) can 
improve drug repurposing results for clinical trials. In 
this work, we proposed some good drug candidates as 
repurposing candidates for COVID-19 treatment. Our 
results showed that most of our drug candidates were 
used in clinical trials or suggested in at least one study 
as suitable drug repurposing candidates (Tables  7-11). 
Our results also revealed that the proposed informative 
features recommended some suitable candidate drugs 
like [37] and Rifampicin [38]. Finally, this study offered 
powerful network-based informative features for the 
fast identification of repurposable drugs as a potential 
treatment for COVID-19. The proposed method can 
effectively minimize the timing gap between preclinical 
testing conclusions and clinical results, which is a consid-
erable problem in the fast development of efficient treat-
ment strategies for the emerging COVID-19 outbreak.
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