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Abstract 

Chemical diversity is one of the key term when dealing with machine learning and molecular generation. This is 
particularly true for quantum chemical datasets. The composition of which should be done meticulously since the 
calculation is highly time demanding. Previously we have seen that the most known quantum chemical dataset QM9 
lacks chemical diversity. As a consequence, ML models trained on QM9 showed generalizability shortcomings. In 
this paper we would like to present (i) a fast and generic method to evaluate chemical diversity, (ii) a new quantum 
chemical dataset of 435k molecules, OD9, that includes QM9 and new molecules generated with a diversity objective, 
(iii) an analysis of the diversity impact on unconstrained and goal-directed molecular generation on the example of 
QED optimization. Our innovative approach makes it possible to individually estimate the impact of a solution to the 
diversity of a set, allowing for effective incremental evaluation. In the first application, we will see how the diversity 
constraint allows us to generate more than a million of molecules that would efficiently complete the reference data-
sets. The compounds were calculated with DFT thanks to a collaborative effort through the QuChemPedIA@home 
BOINC project. With regard to goal-directed molecular generation, getting a high QED score is not complicated, but 
adding a little diversity can cut the number of calls to the evaluation function by a factor of ten
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Introduction
Many applications in the field of molecular chemistry 
rely on specific electronic properties. In order to evalu-
ate these properties precisely, quantum chemistry cal-
culations are necessary. But these calculations are costly 
in terms of time and computing resources. This can 
slow down the discovery of new compounds. One of 
the great hopes of using machine learning (ML) meth-
ods in chemistry is to be able to reduce the amount of 

quantum chemistry calculations or even bypass them [1]. 
The cost of calculations with ML methods is much lower. 
Being able to estimate the interest of a molecule by ML 
methods would therefore greatly accelerate the discov-
ery of new materials [2]. It has also been shown recently 
for solar cell materials [3–7], other light-matter based 
devices [8, 9] and reviewed for a wide range of energy 
materials [10].

Supervised ML methods greatly depend on the size and 
quality of the dataset for good performances in generali-
zation. In a previous study we have shown that the most 
widely used quantum chemistry dataset for small organic 
molecules, QM9 [11], lacked chemical diversity [12]. 
A model trained on QM9 could be quite accurate for 
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classical organic chemistry. However it would propose 
very bad estimations for under-represented chemical 
functions such as peroxide and derivatives, diaryl ethers 
and diaryl amines, etc. [12]. The QM9 dataset includes 
one third (134k) of the molecules with up to nine heavy 
atoms (C, N, O and F) of the GDB database, the chemical 
space enumeration attempts by Reymond et al. [13–15]. 
Furthermore, this chemical space enumeration is not 
exhaustive. The goal of the GDB is to serve as a catalog 
of supposedly stable and realistic molecules for virtual 
screening. Constrained molecules, aminals, acyl fluo-
rides and other reactive compounds have been discarded 
during the creation of the GDB since a full combinato-
rial approach would lead to several million molecules 
[14]. This impressive sampling of the chemical space was 
indeed not designed to represent the exploration play-
grounds of molecular materials chemistry that looks for 
peculiar compounds with uncommon (electronic) prop-
erties. To study the chemical diversity of QM9, we have 
proposed the PC9 dataset a subset of the PubChemQC 
that could be compared to QM9 [12, 16]. Very recent 
studies comparing QM9 and our PC9 dataset indicate 
indeed better performances when trained on a more 
diversified dataset [17–19].

We have also recently published a generator, EvoMol, 
based on a genetic algorithm [20]. On different problems, 
it has shown very good performances in optimization. 
But the study of the solutions shows that good candidates 
are very similar. This is the consequence of our algorithm, 
which intensifies around the best solutions. ML-based 
generators see also their solutions biased, by the data-
sets or by some specific issues. We can cite for example 
GANs which are prone to mode collapse. The generator 
rotates through few different solutions and mechanisms 
should be included to prevent this. A similar problem 
occurs with reinforcement learning (RL), where a learned 
policy without introduction of randomness always leads 
to one and only one molecule (policy collapse). Beyond 
the addition of randomness, several RL-based genera-
tors included other mechanisms to increase diversity 
[21–23]. These solutions are quite specific to the pro-
posed generator or to the generation method. We believe 
that the inclusion of a diversity criterion can improve 
the interest of the solutions proposed by any generator. 
During the course of this study, Kwon et  al. published 
an article where they add a criterion based on the Tani-
moto similarity on fingerprints into their evolutionary 
algorithm [24]. This article confirms our opinion because 
MolFinder maintains great optimization performances in 
a reference benchmark despite this additional diversity 
criterion.

Therefore the aim of our study here is to propose a new 
method to calculate the contribution of a compound to 

the chemical diversity of a set. In a first application, we 
will see how this method allows us to generate molecules 
that would efficiently complete the reference datasets. 
Then we will study the impact of this diversity constraint 
on the set of solutions of a classical problem such as a 
QED optimization.

The concept of chemical diversity is not clearly defined. 
On which criteria and with which metrics should diver-
sity be measured? In the field of de novo molecular 
generation, the term diversity usually refers to exter-
nal diversity, where the generated compounds are com-
pared to a reference dataset. Some benchmarks propose 
to measure external diversity using dedicated distribu-
tion learning tasks [25–27]. The metrics commonly used 
are mathematical tools to compare distributions (e.g. KL 
divergence [28]) or curves (e.g. Fréchet distances [29]). 
The descriptors used can be of different nature, such as 
physicochemical descriptors (molecular weight, number 
of aromatic rings, etc.), structural features [26] (BRICS 
fragments [30] and Bemis-Murcko scaffolds [31]), or 
internal descriptors of the ChemNet neural network [32]. 
It is also possible to define a distance, often the Tanimoto 
distance [33], between two fingerprints, often ECFP4 
[34], and thus calculate the average distance to a set of 
reference points [35].

In our case, this external diversity is not appropri-
ate. We do not want to refer to another set of data but 
to measure the internal chemical diversity. A molecu-
lar generator that includes an objective of diversity has 
been proposed by Nigam et  al. [36]. Similar molecules 
are penalized by a neural network discriminator in order 
to kill long-surviving molecules and thus promote the 
exploration process. The chemical diversity has been 
more often studied by the mean of scaffolds analysis [37–
43]. Another common metric used to measure diversity 
is the mean distance between the molecules using Tani-
moto distance [33] on fingerprints. Benhenda et al. [27] 
also proposed to use nearest neighbors, entropy and the 
Wasserstein distance. The aim of our work here is not 
to compare the different approaches to diversity but to 
select one that is effective in the context of molecular 
generation. In order for a population-based molecule 
generator to integrate it as an objective, it is necessary to 
choose a metric allowing to determine quickly the contri-
bution of each molecule to the diversity of a set.

We present in this paper a fast and chemically mean-
ingful way to compute the internal diversity of a dataset. 
We propose two experiments to demonstrate the interest 
of this approach. Firstly, we optimize only this objective 
in order to generate a more diversified dataset of mole-
cules up to nine heavy atoms among C, O, N and F. The 
435k compounds of this dataset, called OD9, were calcu-
lated with DFT thanks to a collaborative effort through 
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the QuChemPedIA@home BOINC project. We will pre-
sent in detail the diversity of the newly generated com-
pounds (250k) compared to the reference datasets (QM9 
and PC9). Secondly, we integrate the internal diversity 
objective with the QED [44], to show the impact on 
the generated solutions and how the exploration of the 
chemical space is impacted.

Methods
Quantification of the diversity, descriptors 
and implementation
As stated in the introduction, the objective of diversity 
must be calculated for each molecule and account for a 
contribution of the chemical diversity in the current data-
set. For this purpose, we chose the Shannon entropy and 
we have selected several candidate descriptors : scaffolds, 
functional groups and shingles. The Jaynes’ maximum 
entropy principle can be stated as follows: a distribution 
with the maximum entropy implies minimal assumptions 
about the true distribution of data [45, 46]. One can eas-
ily see the interest of this principle to generate a diversi-
fied dataset when considering the chemical constraints, 
the distribution of the descriptors is neither equiprobable 
nor known. In addition, knowing that some optimiza-
tion problems are solved more efficiently if the portfolio 
of solutions is diversified [47], we also believe that this 
approach could be useful for all population-based molec-
ular generators.

Shannon entropy The entropy of a dataset X, described 
by n binary descriptors for which the proportion of the 
ith descriptor in X is denoted Pi(X) , is defined by Eq. 1.

Each term in the summation is 0 for Pi(X) = 0 
or Pi(X) = 1 , and reaches its maximum value for 
Pi(X) = e

−1 . Adding a rare descriptor contributes more 
to the entropy of a dataset than a common descriptor. 
Very common descriptors contribute very little to the 
entropy. Thus, to maximize H(X), the distribution of all 
descriptors must be as balanced as possible. Equation 1 
only takes into account the on-bits. To have the complete 
entropy considering this equation, it would be necessary 
to integrate for each vector of descriptor the complemen-
tary vector (where the 0’s are 1’s and vice versa). For all 
the remainder of this section, we consider only the on-
bits part for two main reasons. First, we will try to quickly 
evaluate the diversity and this simplification divides by 
2 the amount of computation. Secondly, the descriptor 
vectors are in general very sparse and this simplification 
has no impact. One could even find that favoring a larger 
amount of off-bits is an advantage. When the proportion 

(1)H(X) =

n∑

i=1

−Pi(X) log Pi(X)

of on-bits exceeds e−1 , the investigator will have to chose 
between this imbalance or a classical equilibrium (a pro-
portion at 0.5). In that case, it will be necessary to inte-
grate the complementary vectors to use our estimator in 
its complete version of the entropy.

In a naive way, it is possible to calculate the entropy 
of the dataset without a molecule m in order to evalu-
ate the contribution �r(m,X) of m in X with Eq. 2.

The contribution for adding a molecule can be calculated 
in the same way.

Thus, it is possible to transform a global problem where 
the aim is to maximize diversity into a problem of opti-
mizing individuals. It is possible to remove a molecule 
that decreases or contributes only a little to the diversity 
or to choose a molecule that, on the contrary, increases 
it. Above all, it is possible to rank them.

Computational efficiency Calculating the contribu-
tion of a molecule with Eqs. 2 and 3 is very expensive. 
With a dataset of several thousands molecules and 
a rich chemical diversity (several different descrip-
tors), this equation would be a limiting point in terms 
of computing time. However, we have chosen descrip-
tors which for each molecule are in limited number, 
i.e. one scaffold and less than ten IFGs. It is thus pos-
sible to no longer consider molecules, but the space of 
descriptors (denoted ∗ ). The key point to speed up the 
computation is to consider that the size of the dataset is 
constant during the entire optimization process. Even 
when starting with a single molecule, it will always be 
the final size of the dataset that will be used at any time. 
This approximation (denoted �′ ), allows to reuse a very 
large amount of calculation.

The entropy of a descriptor Di , with Ci(X) the number 
of occurrences of the descriptor in the dataset, and |X| 
the size of the dataset is defined as in Eq. 4.

We can define the entropy variation for a descriptor Di 
by removing a molecule m containing or not this descrip-
tor. As we will see later, we will add as many molecules 
at each step of the optimization as we remove. In the 
space of descriptors, this is equivalent to removing m and 
adding an empty molecule ∅ , i.e. without descriptor, to 
obtain a dataset of the same size. In this case, if the mol-
ecule does not contain the descriptor Di , the variation of 
entropy is 0 (see Eq. 5).

(2)�r(m,X) = H(X \ {m})−H(X)

(3)�a(m,X) = H(X ∪ {m})−H(X)

(4)H
∗(Di,X) = −

Ci(X)

|X |
log

Ci(X)

|X |
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Thus, the contribution of a molecule m is calculated by 
only considering the few descriptors involved in m (see 
Eq. 6).

This equation allows to sort the molecules by contribu-
tion to the total entropy of the dataset. In an algorithm, 
when a molecule must be removed, this equation should 
be used. In a very comparable way, it is possible to evalu-
ate the variation in entropy caused by the addition of a 
molecule, denoted �′

a(m,X) , since it is the opposite 
operation (see Eqs. 7 and 8).

This equation is used to rank the compounds proposed 
by a molecular generator. If the set of solutions is of 
limited size, this value alone is not sufficient since the 
decision to add a molecule must take into account the 
contribution of the molecule it will replace and these 
two molecules may share common descriptors. Let mr be 
the molecule to be removed and ma the molecule to be 
added, then ma \mr denote the molecule ma without the 
descriptors of mr . It is then possible to define the entropy 
variation of a substitution �′

s(mr ,ma,X) (see Eq. 9).

if the value of �′
s is greater than or equal to 0, the sub-

stitution is considered as an improving one. With this 
approach it is possible to update only the scores of mol-
ecules that share one or more descriptors with mr ou 
ma . Moreover, depending on the size of the dataset to be 
considered, the update can take place only after a certain 
number of substitutions.

To summarize, our entropy calculation is an approxi-
mation, performed in the dual space of the descriptors. 
The approximation comes from two main reasons. First, 
the size of the population is considered as constant to 
optimize the caching of results, which saves a lot of cal-
culation. Secondly, in our implementation we oper-
ate by batch and we do not consider the interactions 
between the molecules that are added and removed. The 
entropy gain is considered only with the dataset before 

(5)
δ∗r (Di,m,X) =H

∗(Di, (X \ {m}) ∪ {∅})

−H
∗(Di,X)

(6)�′
r(m,X) =

∑

Di∈m

δ∗r (Di,m,X)

(7)
δ∗a(Di,m,X) =H

∗(Di, (X \ {∅}) ∪ {m})

−H
∗(Di,X)

(8)�′
a(m,X) =

∑

Di∈m

δ∗a(Di,m,X)

(9)
�′

s(mr ,ma,X) =�′
r(mr \ma,X)

+�′
a(ma \mr ,X)

the beginning of the batch treatment as reference. These 
approximations are reasonable and necessary for the fea-
sibility of practical applications.

Scaffolds One of the most commonly used molecular 
descriptor to assess the diversity is the molecular frame-
work or scaffold [37–43]. Originally defined by Bemis and 
Murcko for drug design, the molecular graph does not 
take into account side chains to focus on cycles and their 
linkers [31]. In fact, different levels of abstraction or scaf-
fold hierarchy have been used in some scaffolds analysis 
on the PubChem for example [42]. In this article, we will 
designate by the term scaffold, the framework returned 
by RDKit [48]. It still takes into account the unsaturations 
and the atom type but neglect the side chains.

Generic Scaffolds. In our previous study, we have seen 
that the diversity in the chemistry of the side chains and 
of the acyclic compounds was quite different between 
QM9 and PC9 [12]. Therefore, we will also use an alter-
native approach to generate what we will call here generic 
scaffolds. All heteroatoms are transformed as carbons 
and all bonds are considered as single bonds. The ben-
zene and the cyclohexane have the same generic scaffolds 
but the toluene and the benzene will not anymore.

We have integrated either the scaffolds or the generic 
scaffolds into our objective function to improve the topo-
logical diversity of the dataset.

Functional groups: CheckMol and IFGs In our previ-
ous study concerning the diversity, we have also seen that 
functional groups underrepresented in a training dataset 
could lead to huge errors in machine learning based pre-
dictions. The role of functional groups in the properties 
of an organic compound even shapes the way of teach-
ing organic chemistry. There is two main solutions for 
the automatic classification inside an established chemi-
cal ontology, the CheckMol and ClassyFire programs [49, 
50]. However, our unconstrained nature of generating 
molecules will leads to uncharted or neglected new sets 
of connected atoms i.e. new functional groups. Therefore, 
we have chosen to use the automatic approach of identi-
fying functional groups proposed by Peter Ertl [51]. It is 
centered on heteroatoms and their surroundings (atoms 
and bonds). It will merge connected surroundings to 
form new identified functional groups (IFGs). We have 
used the IFG detection program as implemented by Guil-
laume Godin and Richard Hall for the RDKit package 
[52].

Shingles Finally, we have used an automatic and unbi-
ased approach of defining chemical moieties called shin-
gles. They are subgraphs centered around each atoms. 
Depending on the cut-off radius, noted r, they can cap-
ture the chemical environment up to 3 bonds away (r=
3). We have used the shingles detection program as 
proposed by the group of Jean-Louis Reymond for the 
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calculation of the CLscore [53, 54] which also relies on 
the RDKit package [52].

Combining several categories of descriptors The con-
tribution of each category of descriptors are computed 
separately, scaffolds and IFGs for instance, in order to 
be able to weight each one in an objective function (see 
Eq.  10). It would be easy to add other descriptors and 
weight them in this way.

Between the topological diversity measured by the scaf-
folds and the functional groups diversity measured by the 
IFGs, we think that an objective function that combines 
both can deal with classical chemistry and also unstable 
molecules. It is this combination that we have chosen 
to generate unconstrained diversity (cf. section "Case 
1: unconstrained molecular generation"). On the other 
hand, when optimizing the QED property, we studied 
CheckMol, IFGs and shingles separately to observe the 
impact of the choice of descriptors (cf. section "Case 2: 
goal-directed molecular generation"). One would expect 
this choice to have an impact on the balance between 
diversity and drug-likeness. This study is also not exhaus-
tive and focuses on three structural descriptors that we 
think to be relevant for the diversity of chemical func-
tional groups. It illustrates how the choice of descriptors 
is problem dependent.

The method we propose is not dependent of a par-
ticular generator. It allows to evaluate the diversity con-
tribution of a compound in a dataset at a given time of 
any generation process. In this work we evaluate only 
descriptors directly related to the structural diversity of 
molecules. However, it is possible to integrate descriptors 
less directly related to the structure, such as individual 
bits of fingerprints, or even continuous descriptors com-
pletely unrelated to the structure. For the latter case, it 
would be necessary to define bins for the values of the 
continuous variable, then to perform a one-hot encoding. 
A generator able to optimize complex tasks, will also be 
able to optimize a diversity like any other objective, even 
if defined on non-structural descriptors.

Molecular generator In order to realize our experi-
ments, we have implemented the diversity objective in 
EvoMol [20], which has all required characteristics. First 
of all, it is an evolutionary algorithm that optimizes a 
population of molecules by eliminating those furthest 
from the target and replacing them with improvers 
obtained by mutation of the best individuals in the popu-
lation. As stated before, the size of the dataset is constant 
and operations are done in batches. Then, the flexibility 

(10)

�′
s(mr ,ma,X) = ωifg�

′
sifg

(mr ,ma,X)

+ ωscaf.�
′
sscaf .

(mr ,ma,X)

+ · · ·

of this generator allows to quickly adapt it while its inter-
pretability allows to visualize the impact of the diversity 
on the chemical space exploration (see section "Case 2 : 
goal-directed molecular generation"). Finally, due to its 
very unconstrained nature, it is very efficient in opti-
mization and generates molecules that are sometimes 
unrealistic and not very stable. In our case, it is a useful 
property to increase the chemical diversity of reference 
datasets as we will demonstrate in section Case 1: uncon-
strained molecular generation.

Experiments
We are conducting two experiments. The first one con-
sists in generating as much internal diversity as possible 
without any other objective and to analyze the resulting 
datasets. The second aims to demonstrate the benefits of 
including diversity as part of the optimization of a joint 
objective in order to avoid intensification around a single 
solution.

Case 1: unconstrained molecular generation
In this large-scale experiment, we aim to maximize 
chemical diversity using our methodology presented 
above. The newly generated compounds respect all the 
constraints of QM9 and PC9, i.e. maximum nine heavy 
atoms among C, N, O and F. Since our objective is an 
optimization of diversity, we have named the result-
ing dataset OD9. OD9_0 will refer to QM9 ∪ PC9 , and 
OD9_1 the newly generated compounds. More than one 
million new compounds have been generated and all 
OD9 molecules have been calculated in DFT with the 
same calculation parameters and a strict quality con-
trol. Due to high failure rate of the DFT and the quality 
control with the new compounds, the whole chain was 
executed 6 times with slightly different parameters. To 
guarantee the uniqueness of the generated compounds, 
already known molecules were removed after each of the 
6 iterations. For the first two runs, the descriptors used 
were IFGs and scaffolds, while in the following runs we 
used IFGs and generic scaffolds. For the first four runs, 
the starting dataset was QM9 ∪ PC9 , while for the two 
last runs we only started from methane. Since the differ-
ences in parameters did not result in significant changes, 
we made the union of the results of the 6 executions in 
OD9_1 to analyze them together. The entire workflow is 
presented below.

Step 0 (generation) The first step consists in gener-
ating with EvoMol about 210k molecules, i.e. approxi-
mately the size of the union of PC9 and QM9 without 
duplicates. EvoMol was used with primary actions only 
(append, substitute and remove atom, change bond) with 
the sole objective of maximizing diversity of equal weight 
between IFGs and Scaffolds ( ωifg = ωscaf. ). The batch size 
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was 100 and each mutation consists in applying exactly 
3 random actions. When an improver was found, the 
molecule was validated with RDKit molecular mechanics 
(MMFF). EvoMol was stopped after a few hours, when 
the diversity no longer increased significantly. We thus 
obtain a list of potential SMILES candidates from which 
we removed molecules already proposed in another exe-
cution or already present in PC9 or QM9.

Step 1 (submissions) At this stage of the workflow, 
there remain all the unique molecules generated for 
which molecular mechanics has been able to produce a 
starting geometry with the same canonical SMILES than 
the generated molecular graph. Then, all these molecules 
were submitted to the BOINC server to be calculated in 
DFT with NWchem [55] using the B3LYP functional and 
the 3-21G basis set. Details of the functioning and par-
ticularities of BOINC [56] are described in a dedicated 
paragraph after the description of the full workflow.

Step 2 (quality check) At this stage, the remaining 
molecules must have two calculations that have con-
verged to the same stationary point. The output files 
are therefore present and have an indication of success-
ful termination. In addition, we check that there are no 
NaN in values of interest and that the final geometry can 
be discretized to obtain a canonical SMILES. Then, the 
molecules that are dissociated are filtered out, as well as 
those who have converged to a point far from a minimum 
with large negative vibrational frequencies ( < −20 cm−1).

Step 3 (stable and unique) This stage consists in 
checking that the SMILES of the molecule has remained 
identical before and after DFT. In the rest of the article, 
when we talk about stability, it will refer to this stability 
to the DFT calculation. A final uniqueness check is per-
formed without taking into account the stereochemical 
information.

Berkeley Open Infrastructure for Network Comput-
ing (BOINC) We have set up an instance of BOINC, 
named QuChemPedIA@home, to allow us to distrib-
ute our numerous calculations on our machines and 
on the computers of the volunteers. Inputs generation 
for NWchem was automated and a native wrapper for 
Linux operating systems was developed. The contribu-
tion of other operating systems is allowed by the use of 
a virtual machine and the official wrapper with BOINC 
and Virtualbox. So much heterogeneity implies many 
calculation errors, but the system is designed for this 
and failed tasks will be submitted a number of times 
on different hosts before being declared in error. As 
volunteers are not paid, the incentive to calculate is 
managed with credits and rankings. This implies, that 
it is necessary to take some measures in order to avoid 
cheating and erroneous results. For this, a quorum sys-
tem is implemented which implies that two volunteers 

must find results close enough to obtain the credits. 
Our quorum procedure is a rather loose comparison 
of total energy and nuclear repulsion energy. Despite 
those thresholds, many molecules have failed to reach 
a quorum, not due to cheating. Although the different 
calculations start from the same geometry calculated 
in molecular mechanics, the results can vary enor-
mously. On the one hand, the execution of NWchem 
is not deterministic on two different machines. On the 
other hand, the molecules proposed by our generator 
are very unstable and often reorganize during DFT. 
These preliminary observations will be confirmed at 
the final analysis of the dataset (see section "Case 1: 
unconstrained molecular generation"). Still active, this 
BOINC project allow us to produce more reproducible 
results for millions of molecules.

Case 2: goal‑directed molecular generation
In this second experiment, the goal is to jointly opti-
mize an objective, in this case the QED, and the diver-
sity. The QED is a metric evaluating the drug-likeness 
based on the similarity of the distributions of a set of 
properties with known drugs [44]. As there are many 
ways to get a high QED score, incorporating diversity 
allows for quite different solutions. The second effect 
that we would like to highlight is less obvious. Without 
diversity, we have observed that EvoMol can intensify 
around the best current solution without finding any 
improvement in the end and will be forced to aban-
don this path. With the right amount of diversity, over-
explored branches should be more quickly abandoned 
in favor of other paths, leading more quickly to good 
solutions.

As in the EvoMol paper [20], we conduct our space 
exploration on molecules containing C, N, O, F, P, S, Cl 
or Br atoms, with molecules up to 38 heavy atoms. The 
size of the population was set to 1000 where 10 individ-
uals are replaced at each step, during 800 steps or until 
convergence. The other parameters of EvoMol were set 
to default. The weight of the QED was set to 1 and the 
weight of diversity has taken different values (0, 0.1, 1, 
10, 100 and 1000). Different descriptors for diversity have 
also been tested: CheckMol functional groups, IFGs and 
shingles (radius 1). We have not optimized the diver-
sity of scaffolds, because with molecules up to 38 heavy 
atoms, their number is colossal. Diversity can only be rel-
evant if the size of the population is (much) larger than 
the number of descriptors. For all these parameters 10 
runs are performed and we studied the diversity in terms 
of the number of descriptors, the speed of convergence of 
the best solution according to the number of calls to the 
objective function and the effect on the exploration tree.
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Results and discussion
Case 1: unconstrained molecular generation
Diversity analysis on scaffolds and IFGs
As a starting dataset we have gathered all the SMILES 
of the union of QM9 and PC9. All these molecules were 
then recalculated twice with the BOINC project. Follow-
ing the workflow presented in section  Case 1: uncon-
strained molecular generation, some compounds are 
discarded if they are radicals or duplicated, if they are too 
far from a global minimum, if their 3D structure does not 
allow to find a canonical SMILES or if their final SMILES 
is different from the original SMILES. At the end of this 
process, 122,227 QM9 compounds and 77,790 PC9 com-
pounds were retained. The cleaning of radicals and dupli-
cates has had a significant impact on PC9. The union 
of these two sets is noted OD9_0 to indicate that this is 
our starting point. After step 3, this union contains only 
184,158 molecules after elimination of the duplicates 
between QM9 and PC9. The detail of the evolution of 
the number of compounds at each step for all datasets is 
given in Table 1 of Additional file 1.

The chemical diversity in terms of generic scaffolds, 
scaffolds and IFG is reported in Table  1. Comparing 
QM9 and PC9, we can confirm our previous analysis 
[12]. There is less topological diversity (generic scaffolds), 
alkyl diversity (acyclic scaffolds) and heteroatoms diver-
sity (distinct IFG) in QM9 than in PC9. There is however 
more diversity in QM9 when we consider the unsatura-
tions (see the distinct scaffolds column) since the double 
bonds were placed with a combinatorial approach when 
in PC9, which is a subset of PubChemQC [16], there 
is predominantly aromatic compounds. Considering 
OD9_0 after curation (step 3), we could note a few tens 
of thousands distinct scaffolds or IFG. So, we were quite 
confident in their ability to serve as meaningful descrip-
tors during the de novo molecular generation process.

OD9_1 is the set of SMILES generated with an objec-
tive of diversity and that do not belong to OD9_0. This 

represents slightly more than one million SMILES at 
step 1, i.e. before DFT calculation. Looking at the lines 
corresponding to OD9_1 in Table 1, it is possible to see 
that our objective function for diversity has reached its 
goal. The expansion in terms of scaffolds and IFGs is 
impressive. The OD9_1 set at step 1 contains more differ-
ent generic scaffolds, scaffolds and IFGs than the union 
of PC9 and QM9. Most of these new scaffolds or IFGs 
appear only once which can be a problem for machine 
learning (see a more detailed version with Unique col-
umns in Table 2 of Additional file 1). We can notice that 
the combination of scaffolds and IFGs in our objective 
function did not reward EvoMol for exploring the acyclic 
chemistry.

When we compare in Table 1, the OD9_1 at steps 1 and 
2, we can see that the proposed 9163 generic scaffolds 
converged after DFT into 108,832 generic scaffolds, indi-
cating spacial and chemical rearrangements. Indeed, only 
250,874 SMILES remained at step 3, identical to the ones 
at step 1. The generation of chemical diversity pushes the 
generator to explore structures that do not write well in 
the form of discretized SMILES.

In Fig.  1, the top three for each descriptor are repre-
sented along with the percentage of molecules present-
ing this descriptor. This figure confirms the success of 
this experience of generating diversity. Keep in mind that 
OD9_1 has been build to generate compounds that would 
add diversity to OD9_0. Looking at the generic scaffolds, 
we can see for OD9_0 that six and five members rings are 
in the top 3, when in OD9_1 seven members rings and 
separated 3 members rings are found. For scaffolds, the 
overall acyclic category is always the first but with a dras-
tic change in terms of ratios (21.78% compared to 6.36%). 
To complete the top 3 in OD9_0 we find small saturated 
rings for unsaturated ones in OD9_1. Finally, the IFGs 
highlight the change in chemistry in OD9_1 with much 
less in proportion of hydroxyl groups, dialkyl ethers and 
nitrile and a much more balanced distribution.

Table 1  Scaffolds and IFG statistics for the datasets at different stages of the workflow

Dataset Size Distinct generic 
scaffolds

Distinct scaffolds Acyclic graphs Distinct IFG

QM9 step 3 122,227 1964 14,060 12,615 6981

PC9 step 3 77,790 2772 6566 31,542 13,887

OD9_0 step 3 184,158 3798 18,850 40,103 20,075

OD9_1 step 1 1,023,624 9163 460,978 28,725 461,247

OD9_1 step 2 854,059 108,832 334,256 66,078 428,136

OD9_1 step 3 250,874 4858 88,094 15,956 124,396

OD9 step 1 1,276,171 12,929 480,464 90,965 482,009

OD9 step 2 1,088,773 109,573 351,845 122,771 446,367

OD9 step 3 435,032 6776 104,529 56,059 141,090
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For all those descriptors the percentages of occur-
rence are much lower in OD9_1 than for OD9_0. To bet-
ter visualize this distribution, we have calculated their 
cumulative plots (see Fig.  2). We can thus observe that 
the distributions in the generated compounds (OD9_1) 
are more balanced with curves closer to a linear growth 
especially for the scaffolds and the IFGs. With nine 
heavy atoms we have generated more generic scaffolds 
in OD9_1 step 3 (4858 compared to 3798 as shown in 
Table 1) but there is a large overlap between the generic 

scaffolds of the two datasets since their sum correspond 
to 6776 distinct generic scaffolds. We have probably com-
puted all reasonable generic scaffolds that pass the DFT. 
This is not the case for the other two descriptors.

Analysis on non optimized scores or descriptors
We can also compare the chemical diversity between 
OD9_0 and OD9_1 through properties that we did not 
directly optimize. We have selected two indices of syn-
thesizability and some electronic properties to evaluate 
as distributions the diversity of those two datasets.

The CLscore and SAscore indices have been designed 
to estimate the synthesizability or complexity of a mole-
cule mainly by comparing it with the most common frag-
ments of respectively the ChemBL and the PubChem [54, 
57]. A high CLscore is expected for a molecule mainly 
composed of common fragments in ChemBL. A high 
SAscore is in principle associated with a molecule that 
should be difficult to synthesize. Figure 3 represents the 
distribution of these two scores for OD9_0 and OD9_1 
(steps 1 and 3). It clearly appears that the molecules pro-
posed by EvoMol are less ChemBL-like (with a CLscore 
lower than 3) and should be less synthesizable (with a 
with a SAscore distribution peak between 5 and 6). The 
search for new IFGs seems to lead to unusual associa-
tions between heteroatoms. Such unusual combinations 
are penalized by these scores.

A similar trend is observed for the electronic proper-
ties. Figure 4 represents the distribution of the atomiza-
tion energy (total energy minus the sum of the atomic 
energies), the HOMO, LUMO and gap energies for 
OD9_0 and OD9_1. Here the steps 2 and 3 have been 
selected since step 1 precedes the DFT calculation. A 
large negative atomization energy is expected for very 
stable molecules. It is therefore comforting to be able 
to observe the strong similarity between this distribu-
tion and that of the SAscore. Concerning the energies of 
the frontier molecular orbitals, we can observe that the 
HOMO level is finally always centered around a value of 
about − 6  eV. In contrast to the very low energy of the 
LUMO (and therefore the small gap) for newly gener-
ated molecules. The new chemical diversity seems to 
correspond to very acceptor and unstable molecules. In 
the chemistry of molecular materials, many problems are 
related to electronic properties. A training dataset with 
much wider distributions of electronic properties should 
lead to more robust and relevant models for molecular 
materials.

Since the number of IFGs has skyrocketed during the 
generation, we decided to look at the shingles as descrip-
tors. The diversity in terms of molecular shingles is 
reported in Table 2. The number of first neighbors con-
figurations (radius of 1, denoted r1) is much lower in 

Fig. 1  Top 3 Generic scaffolds, scaffolds and IFGs for OD9_0 (up) and 
OD9_1 step 3 (down)
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QM9 than in PC9. In fact, almost all QM9 shingles r1 
exist in PC9 as revealed by the union of QM9 and PC9. 
However, when the radius of shingles increases, tak-
ing into account neighbors of neighbors (radius of 2) 
and so on (radius of 3), more chemical diversity in QM9 
appears. QM9 is composed of less basic bricks than in 
PC9, but they are used in a combinatorial way, leading to 
what could be called a combinatorial diversity. EvoMol 
was able to propose 1007 shingles of radius 1 absent from 
QM9 and PC9 and an absurd amount of combinatorial 
diversity with 642,265 new shingles r2 and 4,568,964 new 
shingles r3. 80% of those are present only once (unique) 
in all the dataset. Just like for the IFGs, the drastic evo-
lution of those numbers after DFT and after filtering, 
shows that exotic combinations of chemical environ-
ments are subject to common geometrical and electronic 
re-optimizations. They often cannot be written as Lewis 
structures, i.e. SMILES with a clear alternations between 

single and double bonds. The widespread SMILES repre-
sentation can be an hindrance for de novo generation of 
complex electronic structures. Nevertheless, we managed 
to generate a lot of new molecular sub-graphs and com-
binations, stable in DFT. So much that it appears that r2 
and r3 shingles are too specific to be used as descriptors 
to assess the molecular diversity. To observe redundancy 
in the data would then require huge data sets. In Fig. 5, 
the top three r1 and r2 shingles are represented along 
with the percentage of molecules presenting this descrip-
tor. The top three are different in both datasets. Again we 
can observe that the percentage in OD9_1 (step 3) are 
lower, indicating a more evenly distributed distribution.

Hoping to be able to better understand the chemical 
differences between OD9_0 and OD9_1, we decided to 
analyze their bond types and chemical functions accord-
ing to CheckMol. Looking at a heatmap of the bonds in 
Fig. 6, we can see that CH and CC bonds represent a large 

Fig. 2  Cumulative plots of the generic scaffolds, the scaffolds and the IFGs for the OD9_0 (QM9UPC9 in black straight lines) and for the newly 
generated OD9_1 step 3 compounds (in red dashed lines)

Fig. 3  Distributions of the CLscore and SAscore. The black straight lines represent the OD9_0 dataset (QM9UPC9). The new generated compounds 
OD9_1 are represented by the blue dotted lines for the step 1 or the red dashed lines for the step 3 of the workflow
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majority of all the chemical bonds in OD9_0 (42.46% 
+ 24.58%). Also, 15 of those 25 bonds are represented 
less than 1% including 6 bonds that are represented less 
than 0.05%. In the 1M SMILES generated with EvoMol, 
OD9_1 at step 1, there is in proportion far less CH and 

CC and much more CN and NH bonds. Many rare bonds 
concern two heteroatoms. We can see that using the IFG 
in our objective function was a great incentive for the 
generation of new examples of such bonds. There is still 
12 bonds under 1% but no bond is under 0.05%. The DFT 

Fig. 4  Distributions of the atomization energies (in hartree) and electronic energies (gap, HOMO and LUMO, in eV). The black straight lines 
represent the OD9_0 dataset (QM9UPC9). The new generated compounds OD9_1 are represented by the blue dotted lines for the step 2 or the red 
dashed lines for the step 3 of the workflow

Table 2  Shingles statistics for the datasets at different stages of the workflow

A unique count represents a shingle that appears only once

Dataset Size Distinct 
shingles r1

Distinct shingles r2 Unique shingles r2 Distinct shingles r3 Unique shingles r3

QM9 step 3 122,227 229 28,053 7162 376,852 273,423

PC9 step 3 77,790 1295 39,725 18,718 223,127 158,226

OD9_0 step 3 184,158 1297 57,741 22,130 544,460 392,637

OD9_1 step 1 1,023,624 1007 642,265 282,311 4,568,964 3,675,203

OD9_1 step 2 854,059 3585 979,596 548,870 4,255,262 3,513,467

OD9_1 step 3 250,874 762 213,034 103,858 1,156,813 929,228

OD9 step 1 1,276,171 2447 691,715 301,669 5,156,545 4,064,788

OD9 step 2 1,088,773 3714 1,013,639 557,832 4,798,140 3,870,539

OD9 step 3 435,032 1563 250,163 116,483 1,665,725 1,293,995



Page 11 of 17Leguy et al. J Cheminform           (2021) 13:76 	

calculations and the step 3 of curation has a major impact 
on some bonds. Almost all N=O bonds and most N=N 
or aromatic CN bonds are discarded with our workflow.

When we dig deeper into this study using functional 
groups (FGs) as detected by the Checkmol program, we 
found almost 100 distinct FGs. The table of all occur-
rences in all the datasets are given in the Additional 

file  2. We have selected FGs whose proportions show a 
strong evolution between the different datasets and rep-
resented their proportions in a heatmap (see Fig.  7). In 
all datasets, heterocyclic compounds are heavily rep-
resented and the use of the IFGs in our diversity objec-
tive has further amplified their proportion. We can then 
see that we have generated many hydrazine derivatives, 
hydroxylamines, aminals and imines. This is consistent 
with the significant increase in NN, CN, NH, C=N and 
NO bonds (see Fig.  6). Some rare functions have been 
generated quite often such as hydroperoxide, guanidine, 
peroxide, hydrazone, azo, oxime, diaryl ether, imidoyl 
halide, diarylamine. This partly justifies the increase in 
the proportion of oo (aromatic peroxyde), OO, C=N, 
CN, NN, N=N, NO, CF bonds. It can also be noted that 
three new FGs have appeared in OD9_1, nitroso, nitrite 
and ketene impacting the N=O, C=N and C=C bond 
ratios. On the contrary, EvoMol, cannot propose nitro 
compounds because in its actual stage, it does not han-
dle formal charges and zwitterions. We can finally note 
that EvoMol has not increased the ratios of acyl cyanide 
or isocyanate compounds. The objective function based 
on scaffolds and IFGs allow for an interesting explora-
tion of the chemistry of heteroatoms without guarantee-
ing an exhaustive exploration. Looking at the evolution of 
the ratios of these FGs, we can notice that the search for 
diversity has led us to generate rare chemical functions. 
However, in these small molecules with a limited number 
of atoms, the chemical functions are close to each other 
and prone to electronic reorganizations such as tauto-
meric equilibria.

Case 2: goal‑directed molecular generation
When the diversity and the QED are optimized jointly, 
improvement for both objectives are found. Table  3 
reports the amounts of distinct descriptors in function of 
the type of optimized descriptor and the weight on the 
diversity term. A threshold effect can be observed on the 
QED experiment, beyond which increasing the weight 
on diversity does not produce more diversity in practice. 
But before this threshold, the diversity increases with the 
weight for all types of descriptors. Thus, it can be noticed 

Fig. 5  Top 3 molecular shingles with radius 1 (two first lines) and 
radius 2 (last two lines) for OD9_0 (up) and OD9_1 at step 3 (down)

Fig. 6  Annotated Heatmap representation of the distribution of the different chemical bonds. The percentage in each box is calculated on the 
basis of the number of such bonds in relation to the total number of bonds
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that the descriptors are not independent. They follow 
the same trend. Optimizing the diversity of one type of 
descriptor increases the diversity of the other descrip-
tors. When the entropy of the shingles is optimized with 
a high weight (e.g. 100 or 1000), the number of distinct 
shingles with radius 1 reaches more than 4600, while 
without entropy it only reaches 156. In the first case, a 
shingle is present on average in approximately 8 mol-
ecules whereas it is in 244 molecules in the second case. 
With high pressure on entropy, the chemical environ-
ments then become very singular and concentrate many 
heteroatoms. The impact is also visible on the scaffolds, 

with approximately 800 distinct scaffolds for 1000 mol-
ecules. The point where the weight on diversity is opti-
mal is very unstable as we will see. The objective of QED 
is clearly antagonistic to that of diversity using such 
descriptors.

Figure 8 shows the evolution of the best QED value of 
the population compared to the number of calls to the 
evaluation function for different diversity parameters, 
i.e. type of descriptors and weights. On the one hand, 
with small but sufficient weight (blue curves) the gen-
erator converges faster towards a better solution. The 
scale being logarithmic, the improvement is of an order 

Fig. 7  Annotated Heatmap representation of the distribution of a selection of functional groups detected by Checkmol. The percentage in each 
box is calculated on the basis of the number of such group in relation to the total number of functional groups

Table 3  Scaffolds, IFG and shingles statistics (averaged over 10 runs) for the QED goal-directed experiment for different descriptors 
and different weights for the entropy term

Optimized descriptor Entropy weight Mean QED Distinct 
scaffolds

Distinct IFG Distinct 
checkmol

Distinct 
shingles r1

Distinct 
shingles r2

Distinct 
shingles 
r3

None (i.e. QED only) 0 0.944 196 259 25 156 1854 5579

IFG 0.1 0.948 329 467 27 230 2570 6719

1 0.947 670 859 44 375 4741 9627

10 0.917 771 1221 63 684 6901 12,149

100 0.048 648 2526 79 1302 12,902 20,799

1000 0.034 607 2479 76 1314 12,714 20,586

Checkmol 0.1 0.948 265 375 32 191 2197 6141

1 0.947 372 423 59 284 2985 7113

10 0.925 415 470 106 365 3382 7596

100 0.391 561 799 137 493 4950 11,006

1000 0.074 545 929 140 604 5735 12,379

Shingles r1 0.1 0.948 466 600 38 451 3674 7765

1 0.945 718 919 53 801 5978 10,423

10 0.767 745 1176 76 2306 10,485 15,164

100 0.036 798 1038 58 4681 23,328 30,813

1000 0.036 802 1043 60 4802 23,305 30,803
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of magnitude, with no notable difference between the 
descriptors. The generator finds a compromise between 
intensification and exploration, so that it does not focus 
too quickly exclusively on the part of the chemical space 
that seems to be the most promising. On top of that, as 
dataset diversity increases over time, the solutions pro-
posed are more diverse. In the end, when all the pro-
posed solutions have good scores, the generator can 
continue to improve the dataset by offering more diversi-
fied solutions. On the other hand, when too much weight 
is put on diversity (red curves), the generator diverges to 
the point where even the best dataset solution declines 
over time. It is quite simple to understand that too much 
diversity will be counterproductive. In our experiments, 
the dataset is small, 1000 molecules, and the number of 
descriptors can be quite large as we have just seen. After 
some time, it is not enough to propose molecules with 
new descriptors, they must also be concentrated. If the 
weight is too important, it is the density of the descrip-
tors that prevails over the initial objective.

The exploration trees of Fig. 9 represent the relation of 
inheritance between successive individuals (edges) and 
the score of each individual (color). We present trees for 
different type of descriptors and different weights. The 
reference experiment, i.e. without entropy, will be used 
as a baseline for comparison. What is remarkable for this 
exploration tree is the low number of nodes and the very 
large number of direct descendants per node, material-
ized by the black triangles, which are juxtapositions of 
edges. This behavior is expected: without entropy, Evo-
Mol will intensify around the most promising solutions, 
even if it means reducing the diversity of the population. 
This is the effect of the selection pressure of the evolu-
tionary algorithm. For high weights, exploration trees 
are simple to interpret. Trees have many branches and 
are very scattered, i.e. few direct descendants per node. 
They quickly leave the area with good QEDs and inten-
sively explore the descriptor space. The effect is a little 

less pronounced for the CheckMol functions because 
there are fewer of them. To increase diversity, the gen-
erator can no longer just discover new ones but must also 
concentrate as many as possible in each molecule. This 
strategy also ends up pushing the generator away from 
the good solutions for the QED objective. The evolution 
of the trees is more interesting when the weights on the 
entropy term are smaller. For descriptors such as shingles 
or IFG, with a low weight (0.1), the impact of entropy is 
already visible. Trees are more widespread and the num-
ber of direct descendants per node decreases. Areas with 
good solutions are also more developed. These effects are 
even more pronounced for a weight of 1. From a weight 
of 10, the trees take on a more orange hue as the solu-
tions begin to deteriorate. We feel that exploration has 
taken precedence over intensification. For CheckMol 
functional groups, that are less numerous, the weight 
on the entropy must be slightly higher to see the same 
effects. This is due to the fact that the entropy term is 
not normalized and is therefore highly dependent on the 
number of descriptors and the size of the population.

Conclusions
In this paper we present a fast and generic method to 
evaluate diversity according to descriptors that can 
be chosen or defined according to an application. Our 
innovative approach allows to individually estimate the 
impact of a solution to the diversity of a set, which allows 
for effective incremental evaluation. This metric can be 
used alone or in combination with other objectives. We 
have realized and made available an implementation in 
EvoMol, our molecular generator. This method can of 
course be easily incorporated into other generators based 
on population-based algorithms. It can be easily used 
to select a diverse subset of solutions from a large data-
set, for active learning for instance. It is even possible to 
adapt it to force the diversity of deep learning molecular 

Fig. 8  Evolution of the best solution for the QED goal-directed experiment (averaged over 10 runs) in function of the number of calls to the 
objective function for different descriptors and different weights for the entropy term



Page 14 of 17Leguy et al. J Cheminform           (2021) 13:76 

Fig. 9  Exploration trees for the QED goal-directed experiment for different descriptors (in columns) and different weights for the entropy term (in 
rows). The color in the trees corresponds to the QED score only, i.e. without the diversity term
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generators, as did Nigam et  al. [36] to help his GAN 
model not fall into a mode collapse issue.

In terms of applications, we have shown two interest-
ing results of adding a criterion of chemical diversity in 
de novo generation. Firstly, a diversity criterion based on 
scaffolds and chemical functions (IFGs for example) with 
a genetic algorithm has allowed to efficiently enhance 
the chemical diversity of reference datasets. Underrep-
resented chemical functions have been proposed. We 
have been able to study in detail the chemical diversity 
generated thanks to chemical functions, chemical bonds, 
shingles but also thanks to distributions of structural 
or electronic properties. For example, we observed an 
unprecedented exploration of the chemical space of 
acceptor molecules (low LUMO energy). The OD9 data-
set with 435k molecules, thus represents an important 
improvement if the goal is to train a ML method with 
good performances in generalization.

Concerning the descriptors, we have probably gone 
through all the stable generic scaffolds in DFT. The same 
cannot be said for IFGs and shingles of radius 2 and 3 
which are very often unique for molecules with 9 “heavy” 
atoms. This means that such descriptors are not generic 
enough. A more local approach seems mandatory. In this 
study, we manage to generate almost all the DFT stable 
shingles of radius 1, but encouraging a combinatorial 
diversity of these shingles could be interesting. Moreo-
ver, the learning on small molecules must be transfer-
able to larger systems to be usable in practice. This local 
approach would be a step in this direction.

Secondly, we were able to measure the impact of diver-
sity in objective-based generation problems. Getting a 
high QED score is not complicated, but adding a little 
diversity can cut the number of calls to the evaluation 
function by a factor of ten. Moreover, observation of the 
exploration trees shows that with this additional diver-
sity criterion it is possible to further explore the chemi-
cal space. These results are very promising especially for 
the discovery of new molecular materials that rely on 
costly evaluation functions. However, it must be recog-
nized that the amount of diversity must be limited and 
not exceed a threshold beyond which the diversity objec-
tive dominates over that of the property sought. This 
threshold will depend on each property. In addition, the 
method we propose depends on the chosen descriptors, 
therefore it is not an absolute diversity. It is obvious that 
some descriptors will be more or less adapted to a prob-
lem and in different proportions.

We assume that different structural-based descriptors 
should cover a wide range of problems. An immediate 
improvement would be to make the weights adjustment 
of the diversity automatic. We have shown through our 
goal-directed experiment that there is a breakpoint and 

therefore it would be possible to detect it automatically. 
We also think that we could use a method close to simu-
lated annealing in order to vary these weights dynami-
cally during the search. Although we can automatically 
adjust the weights, in some cases expert knowledge 
may be required to choose or design problem-specific 
descriptors.

Another room for improvement is that under certain 
conditions, the criterion of diversity leads to the concen-
tration of too many descriptors in each solution. Quite 
simply, it would be possible to add a penalization term 
that would depend on the number of descriptors or to 
replace the sum by a maximum in the calculation of the 
individual contribution (Eqs. 6 and 8).

Finally, the results of this article show that of all the 
molecular graphs that can be proposed, a large number 
are problematic when written in the form of SMILES (i.e. 
Lewis structures) or when calculated in DFT. In order to 
improve the generation of molecules, one could establish 
which descriptors would be relevant to discriminate sta-
ble molecules from unstable ones. Lists of forbidden frag-
ments or combinations would allow to limit the amount 
of calculations in quantum chemistry. The coupling of 
synthesizability scores could also be promising.
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