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Abstract 

Structure-based drug design depends on the detailed knowledge of the three-dimensional (3D) structures of pro-
tein–ligand binding complexes, but accurate prediction of ligand-binding poses is still a major challenge for molecu-
lar docking due to deficiency of scoring functions (SFs) and ignorance of protein flexibility upon ligand binding. In this 
study, based on a cross-docking dataset dedicatedly constructed from the PDBbind database, we developed several 
XGBoost-trained classifiers to discriminate the near-native binding poses from decoys, and systematically assessed 
their performance with/without the involvement of the cross-docked poses in the training/test sets. The calculation 
results illustrate that using Extended Connectivity Interaction Features (ECIF), Vina energy terms and docking pose 
ranks as the features can achieve the best performance, according to the validation through the random splitting or 
refined-core splitting and the testing on the re-docked or cross-docked poses. Besides, it is found that, despite the 
significant decrease of the performance for the threefold clustered cross-validation, the inclusion of the Vina energy 
terms can effectively ensure the lower limit of the performance of the models and thus improve their generalization 
capability. Furthermore, our calculation results also highlight the importance of the incorporation of the cross-docked 
poses into the training of the SFs with wide application domain and high robustness for binding pose prediction. The 
source code and the newly-developed cross-docking datasets can be freely available at https://​github.​com/​sc8668/​
ml_​pose_​predi​ction and https://​zenodo.​org/​record/​55259​36, respectively, under an open-source license. We believe 
that our study may provide valuable guidance for the development and assessment of new machine learning-based 
SFs (MLSFs) for the predictions of protein–ligand binding poses.
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Introduction
Molecular docking is one of the core technologies in 
structure-based drug design (SBDD), and it has con-
tributed enormously to drug discovery and develop-
ment in the past decades [1–3]. Typically, molecular 
docking has two stages: (1) sampling the pose of the 
ligand in the binding site of a macromolecular target 
(usually a protein) and (2) scoring the binding strength 
of the ligand to the target by using a predefined scoring 
function (SF). Despite impressive success of molecular 
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docking, the deficiency of SFs remains a major obstacle 
to the reliability of real-world applications of docking 
[4, 5].

Depending on different theoretical principles, exist-
ing SFs can be typically divided into four main groups: 
physics-based, empirical, knowledge-based, and newly-
emerged machine learning-based SFs (MLSFs) [6]. The 
former three can be collectively referred to as classi-
cal SFs, since all of them follow an additive formulated 
hypothesis to represent the relationship between the 
features that characterize protein–ligand interactions 
and experimental bioactivities. With the aid of state-of-
the-art machine learning (ML) algorithms, MLSFs devel-
oped by automatically learning the generalized nonlinear 
functional forms from the training data have gradually 
emerged as a promising alternative to overcome the dis-
advantages of classical SFs. During the past few years, 
extensive efforts have been made towards the develop-
ment of MLSFs, ranging from traditional ML-based 
approaches (e.g., RF-Score [7–9], NNScore [10, 11], 
MIEC-SVM [12], ΔVinaRF20 [13], and AGL-Score [14]) 
to recently-emerged deep learning (DL)-based methods 
(e.g., AtomNet [15], DeepVS [16], KDEEP [17], and Poten-
tialNet [18]), and most of these MLSFs demonstrate 
remarkably superior performance compared with the 
classical SFs [19–22].

Typically, three major metrics are used to evaluate the 
performance of a certain SF, i.e., the ability to produce 
binding scores that linearly correlate with experimentally 
determined affinities (scoring power), the ability to dis-
criminate near-native ligand binding pose from decoys 
(docking power), and the ability to identify active com-
pounds from decoys (screening power). Classical SFs are 
usually constructed based on the datasets where the crys-
tal structure and the binding affinity for each protein–
ligand complex have been experimentally determined 
(e.g., PDBbind [23]), and then they can be generalized 
to either binding pose prediction or structure-based vir-
tual screening (SBVS). However, that is not the case for 
MLSFs. Though most MLSFs built in a similar way exhib-
ited better scoring power than classical SFs, their docking 
power and screening power are usually unsatisfactory, 
implying that the generalization capability of MLSFs may 
be still questionable [24–27]. Thus, building different 
MLSFs for specific tasks (i.e., binding pose prediction, 
binding affinity prediction or virtual screening) with the 
involvement of decoy poses and/or inactive compounds 
in the training set is a mainstream strategy rather than 
building a single generalized MLSF. Recently, the scoring 
power and screening power of a number of MLSFs have 
been systematically assessed [20–22, 27–35], and in this 
study we tend to investigate the capability of MLSFs in 
binding pose prediction.

Accurate identification of near-native binding poses 
from decoy poses is a prerequisite for many down-
stream simulation tasks, such as binding affinity pre-
diction and SBVS. Over the last few years, a number of 
MLSFs for binding pose prediction have been reported 
[26, 36–46]. Some of them were trained to explicitly 
predict the root-mean-square-deviation (RMSD) val-
ues of binding poses, while the others were trained 
to directly distinguish near-native poses from high-
RMSD ones. In 2015, Ashtawy and Mahapatra first 
developed MLSFs for the prediction of RMSD values, 
and the top RMSD-based SF can yield a success rate 
of ~ 80%, significantly higher than 70% of the best 
empirical SF [36]. They also found that the RMSD-
based method can provide more than 120% improve-
ment on docking task over the counterparts trained 
for binding affinity prediction [38]. In 2017, Ragoza 
et  al. implemented their three-dimension (3D) grid-
based convolutional neural network (CNN) archi-
tecture to build a ML classifier for pose prediction 
[37]. They found that the method performed consist-
ently well in an inter-target pose prediction test, but 
it could hardly beat the classical Autodock Vina in 
an intra-target pose ranking test, which we are more 
concerned about. In 2020, Morrone et  al. proposed a 
dual-graph neural network model for pose prediction, 
which was concatenated by a ligand-only sub-graph 
to store ligand structures and an interaction-based 
sub-graph to represent protein–ligand interaction 
information [40]. Similarly, this model outperformed 
Autodock Vina in terms of the area under the receiver 
operating characteristic curve (AUROC) but did not 
show improved performance regarding the top 1 suc-
cess rate. Then, they incorporated the docking pose 
ranks into training as an additional feature, and the 
retrained model showed better performance than 
Vina. Despite so, a common defect of the above studies 
is that they can only be compared with themselves or 
with the classical SFs but can hardly be compared to 
each other because the building procedures for these 
models are quite different, such as different dataset 
partitioning methods and different pose generation 
(docking) methods. Besides, in most cases only the re-
docked poses (re-docking the co-crystalized ligands 
into the pockets) were used in model training/testing, 
but actually, re-docking is just an artificial exercise, 
which completely neglects the induced fit or confor-
mational change of the targets that occur upon ligand 
binding. This perfect match between protein and 
ligand can be hardly obtained in a real-world prospec-
tive exercise. Very recently, Francoeur et  al. reported 
a standardized dataset named CrossDocked2020 set 
with 22.5 million poses generated by docking ligands 
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into multiple similar binding pockets to better mimic 
the real-world scenarios, and they comprehensively 
estimated the scoring and docking powers of their 
grid-based CNN models [42]. Based on the dataset and 
assessment results, they further released the 1.0 ver-
sion of GNINA, which could be considered as the first 
publicly available docking software that integrated an 
ensemble of CNNs as a SF [46]. However, it seems that 
the dataset may be not so suitable for the large-scale 
assessment of SFs due to its complexity and random-
ness. Moreover, many recent publications put more 
focus on DL-based models, but some traditional ML-
based approaches that exhibit comparative or even 
better performance in many cases may also deserve 
attention [47–49].

In this study, two sets of descriptors that had been 
well validated in binding affinity prediction tasks, 
including the NNscore features [10, 11] and Extended 
Connectivity Interaction Features (ECIF) [47], were 
used to build the MLSFs for binding pose prediction 
utilizing the extreme gradient boosting (XGBoost) 
algorithm. In addition, the impacts of the incorpora-
tion of classical energy terms and docking pose ranks 
as the features on the performance of MLSFs were 
explored. The MLSFs were dedicatedly validated 
through three validation strategies, including ran-
dom splitting, refined-core splitting, and threefold 
clustered-cross-validation. Besides the routine inves-
tigation based on the re-docked poses from PDBbind, 
several PDBbind-based datasets for cross-docking 
tests (e.g. PDBbind-CrossDocked-Core and PDBbind-
CrossDocked-Refined) were constructed to investi-
gate some important aspects of MLSFs, including their 
sensitivity to crystal structures, their sensitivity to 

docking programs, and the impacts of re-docked and 
cross-docked poses on each other.

Methods
Dataset construction and preparation
The PDBbind [23, 50] database (http://​www.​pdbbi​nd.​org.​
cn/) that contains a consolidated repository of the bind-
ing affinity data for a wide range of biomolecular com-
plexes deposited in the Protein Data Bank (PDB) [51] 
serves as a core dataset for the development and bench-
marking of SFs. The refined set of PDBbind2016 that had 
been dedicatedly examined and prepared in our previous 
study [30] was employed as the base dataset here. The 
detailed information of each dataset utilized in this study 
is summarized in Table 1.

PDBbind‑ReDocked
Previous studies were accustomed to using AutoDock 
Vina/Smina [52, 53] to generate docking poses due to its 
free of charge and acceptable accuracy, but here we used 
Surflex-Dock [54], one of the best-performing docking 
programs in our previous assessments [55, 56] to repro-
duce the native binding pose when the best pose with the 
lowest RMSD among the top 20 scoring poses was uti-
lized as the final pose. The docking was conducted with 
the ‘-pgeom’ mode, and up to 20 poses were generated 
for each ligand. To guarantee that each complex in the 
training set has at least one low-RMSD pose, the crystal 
poses were also mixed into the dataset, thus resulting in 
a total of 4057 complexes and 83,876 poses. The heavy-
atom RMSD between each docking pose and the crystal 
pose was calculated using the obrms utility implemented 
in OpenBabel [57], and the poses with RMSD less than 
2.0 Å were considered as near-native. Finally, the dataset 

Table 1  The information of the datasets utilized in this study

a The number in bracket refers to the number after removing the crystal poses
b The core set of original PDBbind 2016 has 290 complexes belonging to 58 clusters, while only 285 are remained when constructing the CASF because there is a 
duplicated cluster
c The set eliminates the cross-native poses

Dataset Re-docked poses Cross-docked poses

Complexes Poses Positives Negatives Complexes Poses Positives Negatives

PDBbind-ReDocked 4057 83,876 39,978 43,898 – – – –

PDBbind-ReDocked-Refined 3767 77,922 37,114 40,808 – – – –

PDBbind-ReDocked-Core 290 5954 (5664)a 2864 (2574) 3090 – – – –

CASF-Docking 285b 22,777 (22,492) 5494 (5209) 17,283 – – – –

PDBbind-CrossDocked-Core-s 285 5551 2565 2,986 1058 20,859 5872 14,987

PDBbind-CrossDocked-Core-g 282 4795 1596 3,199 1030 17,814 3768 14,046

PDBbind-CrossDocked-Core-v 285 5693 301 5,392 1058 21,145 740 20,405

PDBbind-CrossDocked-Refined 3767 77,839 (74,072) 37,028 (33,261) 40,811 90,002 1,874,433 1,499,702 374,731

PDBbind-CrossDocked-Refined*c 3767 77,839 (74,072) 37,028 (33,261) 40,811 90,002 1,731,351 1,428,161 303,190

http://www.pdbbind.org.cn/
http://www.pdbbind.org.cn/
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(https://​zenodo.​org/​record/​55259​36/​files/​PDBbi​nd-​
Cross​Docked-​Core.​tar.​bz2) contains 39,978 positives and 
43,898 negatives.

CASF‑Docking
Comparative Assessment of Scoring Functions (CASF) 
[58] benchmark (http://​www.​pdbbi​nd.​org.​cn/​casf.​php) 
based on a subset of PDBbind (core set) can be consid-
ered as a golden standard for the assessment of classical 
SFs, and it contains four subsets to assess the four aspects 
of a SF. The subset to assess docking power (CASF-
Docking) contains 285 protein–ligand complexes, and 
∼1000 docking poses was generated for each complex 
using three popular docking programs (GOLD, Surflex-
Dock, and MOE Dock) to achieve the maximal confor-
mational diversity. Finally, up to 100 poses was selected 
by clustering for each complex, thus generating a total of 
22,777 poses (5494 positives and 17,283 negatives). The 
details of the pose generation process can be found in Ref 
[58]. This dataset serves as an external test set. It should 
be noted that a fairly complete coverage of the possible 
binding poses is provided in this dataset because multiple 
docking programs were utilized and a further clustering 
operation was conducted.

PDBbind‑CrossDocked‑Core
The 285 protein–ligand complexes in the core set of 
PDBbind were clustered into 57 groups by protein 
sequence similarity with 5 complexes in each clus-
ter. Therefore, the complexes within each cluster were 
aligned using the structalign utility in Schrödinger [59], 
and then cross docking was carried out by docking a cer-
tain ligand in a crystal structure into the pockets of the 
other four crystal structures in the same cluster. In order 
to explore the sensitivity of MLSFs to different docking 
programs, besides Surflex-Dock, Glide SP [60] and Auto-
Dock Vina were also used to generate the binding poses. 
For Glide SP, the receptor grids centered on the co-crys-
tallized ligand were defined with the size of the binding 
box of 10 × 10 × 10 Å. For AutoDock Vina, the size of the 
search space was set to 30 × 30 × 30 Å, and the maximum 
energy difference between the best and the worst bind-
ing modes was set to 100  kcal/mol. For both programs, 
up to 20 poses were generated, and the other parameters 
were set to default. Meanwhile, the docking results were 
visually inspected to guarantee that the cross docking 
was just conducted for the complexes with the ligands 
in the same pockets and without residue mutations in 
the pockets. Of course, the complexes failing in docking 
were removed. The three datasets (https://​zenodo.​org/​
record/​55259​36/​files/​PDBbi​nd-​Cross​Docked-​Core.​tar.​
bz2) generated by Surflex-Dock (PDBbind-CrossDocked-
Core-s), Glide SP (PDBbind-CrossDocked-Core-g) and 

Vina (PDBbind-CrossDocked-Core-v) contain 1343 com-
plexes and 26,410 poses (8437 positives and 17,973 nega-
tives), 1312 complexes and 22,609 poses (5364 positives 
and 17,245 negatives), and 1343 complexes and 26,838 
poses (1041 positives and 25,797 negatives), respectively. 
It should be noted that PDBbind-CrossDocked-Core-
v is an extremely difficult set because most poses are 
marked as the negatives. This may be mainly caused by 
the default post-docking operations in Vina, which clus-
ters the resulting poses using a relatively high RMSD cut-
off, and therefore only a few near-native poses are finally 
obtained.

PDBbind‑CrossDocked‑Refined
Based on the Uniprot IDs provided in PDBbind, the 
refined set excluding the complexes in the core set can 
be divided into 1302 clusters (in which 749 clusters 
have only one complex). The re-docking operation is 
the same as that for PDBbind-ReDocked, while for the 
clusters with more than one complex, cross docking was 
carried out by Surflex-Dock, thus generating a mixed 
dataset composed of both the re-docked and cross-
docked poses (PDBbind-CrossDocked-Refined, https://​
zenodo.​org/​record/​55259​36/​files/​PDBbi​nd-​Cross​
Docked-​Refin​ed.​tar.​bz2), which contains 93,769 com-
plexes and 1,964,686 poses.

Feature calculation
Two sets of descriptors that had been well validated [10, 
11, 30, 47], i.e., the NNscore features and Extended Con-
nectivity Interaction Features (ECIF), were tested in this 
study, and the simple element atom-type pairwise counts 
(ELEM) and extended three-dimensional fingerprint 
(E3FP) [61] were utilized for comparison. Besides, we 
also tried to incorporate the Vina energy terms and dock-
ing pose ranks into the training of MLSFs.

NNscore
NNscore proposed by Durrant et  al. is a pioneer MLSF 
[10], and the MLSF reported by our study based on the 
NNscore descriptors show excellent performance to 
binding affinity prediction [30]. A total of 348 descriptors 
are used by the second version of NNscore [11], and they 
can encode the interaction pattern for a protein–ligand 
complex from multiple aspects. The five energy terms 
used by NNscore were directly computed by AutoDock 
Vina, and the other features were calculated by BINANA 
[62], which provide 12 different binding characteristics 
ranging from the number of hydrogen bonds to rough 
metrics of active-site flexibility.

https://zenodo.org/record/5525936/files/PDBbind-CrossDocked-Core.tar.bz2
https://zenodo.org/record/5525936/files/PDBbind-CrossDocked-Core.tar.bz2
http://www.pdbbind.org.cn/casf.php
https://zenodo.org/record/5525936/files/PDBbind-CrossDocked-Core.tar.bz2
https://zenodo.org/record/5525936/files/PDBbind-CrossDocked-Core.tar.bz2
https://zenodo.org/record/5525936/files/PDBbind-CrossDocked-Core.tar.bz2
https://zenodo.org/record/5525936/files/PDBbind-CrossDocked-Refined.tar.bz2
https://zenodo.org/record/5525936/files/PDBbind-CrossDocked-Refined.tar.bz2
https://zenodo.org/record/5525936/files/PDBbind-CrossDocked-Refined.tar.bz2
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ECIF and ELEM
ELEM is a set of simple protein–ligand atom-type pair-
wise counts, which was first used by RF-Score [7]. Here 
four types of protein atoms (C, N, O, and S) and nine 
types of ligand atoms (C, N, O, S, P, F, Cl, Br, and I) within 
6.0  Å around the pockets were considered, and then a 
total of 36 features could be computed. ECIF is also a set 
of atom-type pairwise counts but takes each atom’s con-
nectivity into account. A total of 22 protein atom types 
and 71 ligand atom types, defined by atomic element, 
the number of explicit valences, the number of attached 
heavy atoms, the number of attached hydrogen atoms, 
whether is aromatic and whether is in a ring, are used to 
characterize each atom, resulting in a total of 1562 fea-
tures. These two types of descriptors were calculated by 
the scripts based on the RDKit toolkit (version 2019.03.1) 
[63].

E3FP  The E3FP [61] fingerprints are developed based on 
the logic of the extended connectivity fingerprints (ECFP) 
[64], a class of widely-used topological fingerprints based 
on the Morgan algorithm. Given a specific conformer, 
E3FP can generate a 3D fingerprint parameterized by a 
shell radius multiplier r and the maximum number of iter-
ations L. Here, all the fingerprints were generated based 
on the docking poses with the default settings, and the 
hashed fingerprints with 1024 bits were ultimately gener-
ated. For this set of features, only the 3D conformations 
of ligands are needed, thus serving as a reference to judge 
whether our MLSFs could consistently learn the interac-
tion information.

Validation methods
For the re-docked experiments, three validation methods, 
i.e., random splitting, refined-core splitting, and threefold 
clustered-cross validation (CCV), were employed, while 
for the cross-docked experiments, only the refined-core 
splitting approach was utilized. It should be noted that all 
the data was partitioned based on the targets rather than 
the poses.

Random splitting
This validation approach can best mimic the real-world 
scenarios because we can hardly judge whether the tested 
sample is novel enough. Here the whole refined set (4057 
complexes) was randomly split into the training and test 
sets with the ratio of 4:1, and the whole operation was 
repeated by 10 times to yield a more convincing result.

Refined‑core splitting
The core set of PDBbind has been widely used for the 
evaluation of SFs, and the goal of the refined-core split-
ting is to have a better comparison between our SFs and 

the methods reported by other studies. Here the core set 
(290 complexes) was used as the test set and the remain-
ing (3767 complexes) were used as the training set.

threefold clustered‑cross validation (CCV)
The aforementioned two validation methods may yield 
over-optimistic performance because some complexes 
between the training and test sets have high protein/
ligand structural similarity. Hence CCV was employed to 
roughly estimate the generalization capability of the con-
structed models. The whole dataset was equally clustered 
into three subsets, where the proteins in different sets 
should have low sequence similarity and at the same time 
the ligands should have low structural similarity. The 
ligand similarity was determined by the Tanimoto simi-
larity based on the RDKit topological fingerprints, while 
the sequence similarity was measured by computing 
the pairwise distance matrix using the pairwise2.align.
globalxx module implemented in biopython [65]. The 
similarity thresholds for the ligands and proteins were set 
to 0.9 and 0.5, respectively, while 0.3 for the proteins if 
the cognate ligands were similar. As shown in Additional 
file 1: Figure S1, the samples in different subsets indeed 
satisfy the requirements of low sequence similarity and 
low ligand structural similarity. Any two sets were used 
as the training set and the other one as the test set, and 
the training and testing process was repeated 3 times. 
The whole operation was carried out using the script 
modified from clustering.py provided by Francoeur et al. 
[42].

Model construction
The features with the variance less than 0.01 were 
removed, followed by the standardization of the remain-
ing features using the sklearn.preprocessing [66] module. 
Extreme gradient boosting (XGBoost) [67], a well-val-
idated ML algorithm that has been widely used in the 
field of computer-aided drug design (CADD) [28, 29, 31], 
was utilized to construct the classification models. Some 
major hyper-parameters (Additional file 1: Table S1) were 
tuned with the hyeropt [68] package and determined by 
the AUROC statistic based on the fivefold cross-vali-
dation. The maximum iteration was set to 60 with Tree 
Parzen estimator as the optimization algorithm. Along 
with the best hyper-parameter combination, the model 
was trained on the training set and then evaluated on 
the corresponding test set. XGBoost was implemented 
by the xgboost package [67]. In addition to the classi-
fiers, we also built several regressors to directly predict 
the RMSD values. However, a simple experiment based 
on the refined-core splitting of the PDBbind-ReDocked 
dataset indicates that most regressors perform no bet-
ter than their corresponding classifiers (Additional file 1: 
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Table S2), and hence the classifiers were utilized for the 
following exploration. The seeds for xgboost and hyper-
opt were fixed to 2399 and 123, respectively, for others to 
reproduce our work.

Baselines
Besides the ML-based approaches mentioned above, 
we also utilized several classical methods for compari-
son, including the docking scores from Surflex-Dock (or 
AutoDock Vina or Glide SP), the Vina scores extracted 
from the NNscore features, empirical SF X-Score [69] 
and more robust Prime-MM/GBSA [53]. For X-Score, the 
FixPDB and FixMol2 utilities were first utilized to pre-
pare the protein and ligand files, respectively, and then 
the average score of the three individual SFs available in 
X-Score was employed for rescoring the binding poses. 
Prime-MM/GBSA was executed with the prime_mmgbsa 
utility implemented in Schrödinger. The rescoring was 
conducted with the variable-dielectric generalized Born 
(VSGB) solvation model and OPLS2005 force field.

Evaluation metrics
With the predicted probabilities/scores obtained from 
the ML classifiers/classical SFs, AUROC and Spearman’s 
rank correlation coefficient (Rs) could be calculated to 
evaluate the ranking capabilities of the MLSFs. The ROC 
curve that describes the relationship between true posi-
tive rate and false positive rate can indicate how well a 
model is able to distinguish low-RMSD poses from incor-
rect poses overall, and the corresponding AUC value 
ranges from 0 for a complete failure to 0.5 for a random 
prediction to 1 for a perfect classification, while Rs can 
quantitatively represent the correlation between the 
pose ranks predicted by each model/SF and their RMSD 
values. Here we defined two types of metrics, including 
inter-target metrics (inter-AUROC and inter-Rs) and 
intra-target metrics (intra-AUROC and intra-Rs). The 
former is computed directly based on all the tested com-
plexes and poses, and can to some extent reflect the over-
all ranking capability of the models/SFs for all the groups 
of protein–ligand binding poses. The latter is calculated 
just within a specific protein–ligand complex (here at 
most 20 poses for a certain ligand), and then the average 
of all complexes is utilized to represent the final results.

The most important and intuitive metric for dock-
ing power should be the success rate (SR). For a certain 
complex, if one of the RMSD values of the top-ranked 
poses is below the predefined cutoff (usually 2.0 Å [58]), 
this complex can be marked as a successful prediction 
for the given MLSF. The analysis was performed over 
all the complexes in the test set, and then an overall SR 
was obtained by calculating the percentage of the suc-
cessful cases among all the cases. For both the re-docked 

and cross-docked poses, the poses generated by a single 
docking campaign were considered as a single set, and 
the resulting success rate was used as the main metric. 
Besides, when evaluating the cross-docked poses, we also 
tried to consider all the docked poses of a ligand across 
multiple crystal structures as a single set, using the idea 
of ensemble docking just as Francoeur et al. did in their 
study [42]. As all the MLSFs developed in this study were 
designed for rescoring, we specifically focused on the sit-
uation when just the top 1 poses were used to calculate 
the success rate (SR1). Of course, the SR involving the top 
3 poses (SR3) was also provided for reference.

For the random splitting and threefold CCV, the aver-
ages and standard deviations were directly obtained for 
analyses, while for the refined-core splitting, the random 
sampling of 1000 redundant copies with replacement 
was conducted for each statistic and the average score 
was calculated. In addition, we employed the Wilcoxon 
signed-rank test to judge whether the difference between 
any two compared methods was statistically significant. 
The difference with the P-value less than 0.05 was consid-
ered to be statistically significant.

Results and discussion
Comparison based on the random splitting 
of the re‑docked poses
The performance of our MLSFs was first evaluated by the 
random splitting of the PDBbind-ReDocked dataset. The 
comparison of Fig.  1 A–C and Fig.  1D–F indicates that 
whether adding the crystal poses into the test set poses 
a great influence on the success rates, despite minor 
impacts on AUC and Rs. Some models with the incorpo-
ration of the docking pose ranks can even yield SR of 1.0. 
This is not surprising because AUC and Rs usually reflect 
the overall performance for which the introduction of 
several easily-distinguished poses may produce almost 
no effects, while SR is determined by the top-ranked 
poses for a certain complex and hence quite sensitive to 
the crystal poses whose RMSD values are extremely low. 
Although the docking power can still be well reflected 
even when the crystal poses are included and some popu-
lar benchmarks (e.g., CASF [58]) developed the datasets 
in this way, here we uniformly eliminated the crystal 
poses from the test sets, which might better mimic the 
real-world scenarios where all the poses are generated by 
a certain docking program.

As shown in Fig.  1D, E, in terms of AUROC and Rs, 
the ML-based models own absolute superiority over 
the classical methods. This can be majorly attributed to 
the training way of those MLSFs, which is executed by 
maximizing the overall classification capability to distin-
guish the correct poses from incorrect ones. However, 
as for the classical methods, the scores of the poses for 
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a certain complex are often quite close while those of 
the poses for different complexes vary considerably, and 
therefore in some cases the score of the best pose for a 
certain complex is even lower than that of the worst pose 
for another complex. And it can also partially account 
for why the inter-statistics values for MLSFs are usually 
higher than the intra-statistics while those for classi-
cal SFs are often in the opposite. Among all the MLSFs, 
E3FP_XGB inevitably performs the worst, with its inter-
AUROC (0.662) slightly higher than randomness but 
its intra-AUROC (0.536) close to randomness, suggest-
ing that the model can consistently learn the differences 
between the pure ligand binding poses for different com-
plexes but can hardly learn effective information from 

the intra-difference among a set of poses for a certain 
complex. According to the AUROC and Rs values, the 
inclusion of the classical Vina energy terms can surely 
improve the performance (e.g., the inter-AUROC values 
for NNscore_XGB and NNscore-Vina_XGB are 0.863 
and 0.824, respectively, and those for ECIF_XGB and 
ECIF + Vina_XGB are 0.851 and 0.878, respectively), 
but the further incorporation of the docking pose ranks 
did not improve the predictions anymore (e.g., the inter-
AUROC values for NNscore_XGB and NNscore + Rank_
XGB are 0.863 and 0.864, respectively).

As for the success rate, a more important and intui-
tive statistics, although it shows a substantially simi-
lar trend to AUROC and Rs, some differences can still 

Fig. 1  The performance in terms of A, D inter-AUROC and intra-AUROC, B, E inter-Rs and intra-Rs, and C, F top1 and top3 success rates based on 
the random splitting of the PDBbind-ReDocked dataset. For A–C, the crystal poses in the test set is remained while for D–F is removed. The error 
bars represent the standard deviation of the 10 repetitions, and the dotted lines in C and F indicate the ceiling of the success rate
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be observed. Among all the classical methods, Prime-
MM/GBSA shows the best performance (SR1 = 0.690). 
Our MLSFs can hardly beat Prime-MM/GBSA unless 
the Vina energy terms are included, as shown by 
NNscore_XGB (SR1 = 0.715) and ECIF + Vina_XGB 
(SR1 = 0.730). Further inclusion of the docking pose 
ranks can only slightly improve the prediction, and 
finally ECIF + Vina + Rank_XGB illustrates the best 
docking power (SR1 = 0.736). Actually, the Vina energy 
terms or docking pose ranks may be regarded as a cor-
rection for the original Vina SF or pose ranking, thus 
not only ensuring the bottom line of performance but 
also having the chance to gain improvements through 
the interaction information learnt from the training 
data.

Comparison based on the threefold clustered‑cross 
validation of the re‑docked poses
Compared with the results validated by the random 
splitting (Fig.  1), the MLSFs validated by the threefold 
CCV perform significantly worse but the performance 
of the classical methods is almost unchanged, as shown 
in Fig.  2A–C. To eliminate the influence of the train-
ing set size, we further conducted the threefold random 
CV, with the results for NNscore_XGB as an example 
depicted in Fig. 2D–F). The size of the training and test 
sets can surely affect the prediction accuracy (SR1 = 0.715 
vs SR1 = 0.698), but it is obvious that removing similar 
samples for both proteins and ligands from the training 
set matters more (SR1 = 0.698 vs SR1 = 0.652). Under this 
circumstance, the best MLSF NNscore + Rank_XGB can 
only yield SR1 of 0.665, which is worse than Prime-MM/

Fig. 2  The performance in terms of A inter-AUROC and intra-AUROC, B inter-Rs and intra-Rs, and C top1 and top3 success rates based on the 
threefold clustered cross-validation (CCV) of the PDBbind-ReDocked dataset. A more intuitive comparison of different validation methods can be 
found in D–F taking NNscore_XGB as an example. The error bars represent the standard deviation of the 3 repetitions (10 repetitions for 4:1 random 
splitting). The dotted lines in C indicate the ceiling of the success rate, and those in F for 4:1 random splitting, threefold random CV, and threefold 
CCV are colored in black, purple, and blue, respectively
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GBSA (SR1 = 0.681) but still better than other classical 
methods such as Vina (SR1 = 0.628). ML-based models 
have suffered from a long period of doubts for their poor 
generalization capability. A variety of studies have veri-
fied the impacts of the removal of the training proteins/
ligands that are highly similar to the test proteins/ligands 
[30, 70–72], so here it may be not too surprising to see 
the performance decrease.

The performance decrease is especially prominent 
for the atomic pairwise counts-dominant methods, 
such as ECIF_XGB (SR1 = 0.686 vs 0.507), ELEM_XGB 
(SR1 = 0.559 vs 0.473) and NNscore-Vina_XGB 
(SR1 = 0.662 vs 0.562). ECIF_XGB and NNscore-Vina_
XGB outperform Vina for the random splitting, but 
here their performance is remarkably poor, highlighting 
their sensitivity to the similar samples in the training set. 
Consistent with our previous study focusing on bind-
ing affinity prediction [30], the involvement of the Vina 
energy terms can alleviate this sensitivity, thus guarantee-
ing the bottom line of performance. Hence, it can also be 
expected to incorporate the energy terms from a more 
reliable classical SF rather than Vina in order to further 
improve the docking power and generalization capability 
of MLSFs.

Comparison based on the refined‑core splitting 
of the re‑docked poses
The results for the refined-core splitting of PDBbind-
ReDocked (Fig.  3) also illustrate a substantially simi-
lar trend to the above two validation methods, but 
there still exist several slight discrepancies especially 

for the methods based on NNscore and ECIF. Here, 
ECIF + Vina + Rank_XGB (SR1 = 0.778) has the best per-
formance, followed by ECIF + Vina_XGB (SR1 = 0.764), 
NNscore + Rank_XGB (SR1 = 0.751) and NNscore_XGB 
(SR1 = 0.735), all of which rank higher than the classi-
cal Prime-MM/GBSA (SR1 = 0.724) and Surflex-Dock 
(SR1 = 0.714).

To further assess the model performance and inves-
tigate whether the models can be generalized to the 
poses that own a wider distribution, we tested the mod-
els trained on the PDBbind-ReDocked-Refined set in 
CASF-Docking, mainly focusing on the success rates 
and binding funnel analysis utilized in the original CASF 
benchmark. As the RMSD values calculated in the origi-
nal CASF benchmark and this study are not exactly the 
same, and hence the results based on these two sets of 
RMSDs are both presented (Fig. 4 and Additional file 1: 
Figure S2). The MLSFs that incorporate the docking 
pose ranks are not included because the binding poses 
in CASF were generated by three docking programs and 
thus the docking pose ranks can be hardly obtained. In 
addition, Prime-MM/GBSA is not tested here because 
the proteins/ligands should be prepared first to satisfy 
the requirement of Schrödinger, but here the calculations 
were conducted based on the proteins and ligand struc-
tures provided by CASF. Despite the lack of the docking 
pose ranks, ECIF + Vina_XGB can still rank the first in 
terms of the top1 success rate (SR1% = 85.5%). NNscore_
XGB also has good performance (SR1% = 82.5%), but 
its rank is exceeded by some classical SFs such as Vina 
which do not show excellent performance discussed 

Fig. 3  The performance in terms of A inter-AUROC and intra-AUROC, B inter-Rs and intra-Rs, and C top1 and top3 success rates based on the 
refined-core splitting of the PDBbind-ReDocked dataset. The error bars represent the standard deviation of the random sampling of 1000 redundant 
copies with replacements, and the dotted line in C indicates the ceiling of the success rate
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above. However, some ML-based models even rank in 
the latter places, such as ELEM_XGB (SR1% = 37.0%) and 
ECIF_XGB (SR1% = 61.1%). In fact, the authors of CASF 
have admitted that this set is an idealized case and the 
results reported here may be interpreted as the upper 
limit of the real performance. Anyway, this simple experi-
ment can highlight the superiority of our best-perform-
ing MLSF and the importance of the inclusion of the Vina 
energy terms.

According to the binding funnel analysis shown in 
Fig.  4B and Additional file  1: Figure S1B, the superior-
ity of the MLSFs seems more obvious. The aim of the 
binding funnel analysis is to estimate the rank correla-
tion between the RMSD values and the predicted scores, 
which is similar to the Rs statistics described above. The 
only difference is that it further divides RMSD values into 
several windows, such as [0–2 Å], [0–3 Å], etc., to con-
duct a more comprehensive analysis. Compared with the 
top-ranked classical SFs in terms of the top1 success rate, 
both ECIF + Vina_XGB and NNscore_XGB do not show 

worse predictions and are significantly better if more 
high-RMSD poses are involved for analysis.

Another interesting finding is that the atomic pair-
wise counts-dominant MLSFs (such as ECIF_XGB and 
NNscore-Vina_XGB) tend to have better performance 
when more high-RMSD poses are included, suggest-
ing their capability to recognize those extremely incor-
rect binding poses (e.g., the poses far from the binding 
pockets), while the energy term-centered methods (such 
as Vina_XGB and some of the classical SFs) have higher 
correlation coefficients among those low-RMSD poses, 
suggesting that they have better capability to rank high-
quality binding poses. Moreover, the combination of 
these two types of features can result in more powerful 
classifiers, such as ECIF + Vina_XGB and NNscore_XGB.

Training on re‑docked poses and testing on cross‑docked 
poses
Protein flexibility is a particularly tough issue that 
impedes the applications of docking programs/SFs in 
SBVS [4, 5]. Most reported SFs were only assessed on 

Fig. 4  The performance in terms of A top1, top2 and top3 success rates, and B binding funnel analysis when the models are trained on the 
PDBbind-ReDocked-Refined set and tested on CASF-Docking set. The RMSDs utilized in the original CASF benchmark are employed here. The 
methods colored in pink and orange are calculated in this study, while the predicted scores of the others are just copied from original paper. The 
averages of the random sampling of 1000 redundant copies with replacements are shown in the figure. For binding funnel analysis, the x-axis 
indicates the RMSD range (e.g., [0–2 Å], [0–3 Å], etc.) where the Spearman correlation coefficients between the RMSD values and the predicted 
scores are calculated
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the re-docked poses for their scoring/docking power, 
and thus in most cases they are over-estimated because 
some near-native poses cannot be well predicted due to 
the changeable residues and the possible steric conflicts 
in real-world scenarios. Hence, cross docking by docking 
the ligand of a certain target to the other crystal struc-
tures of the same target has emerged as an important 
method for the assessment of the docking power. The per-
formance of the models trained on PDBbind-ReDocked-
Refined and tested on PDBbind-CrossDocked-Core-s in 
terms of the success rate, AUROC, and Rs is illustrated 
in Fig.  5, Additional file  1: Figures  S3 and S4, respec-
tively. Compared with the corresponding performance 
based on the re-docked poses, the success rates and Rs 
values based on the cross-docked poses significantly 
decrease while the AUROC values change irregularly. 
This may be attributed to the fact that AUROC mainly 
reflects the overall classification capability of the models, 
so in the following the success rate will be majorly dis-
cussed. Despite remarkable decrease, we can still observe 
a substantially similar trend as the results based on the 
re-docked poses. Most MLSFs can still outperform the 
test classical SFs, among which Surflex-Dock in turn per-
forms the best here (SR1 = 0.422). As for different featuri-
zation strategies for MLSFs, ECIF can yield an especially 
promising success rate, and the incorporation of the Vina 
energy terms and docking pose ranks can still achieve 
minor performance improvement (SR1 = 0.483 vs 0.479 
vs 0.477 for ECIF + Vina + Rank_XGB, ECIF + Vina_XGB 
and ECIF_XGB, respectively). Even if the re-docked and 

cross-docked poses are combined to form a mixed set 
(Fig. 5A), we can still observe the superior performance 
of those best-performing MLSFs.

We then generalized the test sets to the other two 
datasets, PDBbind-CrossDocked-Core-g and PDBbind-
CrossDocked-Core-v where the poses were generated 
by Glide SP and AutoDock Vina, respectively, to fur-
ther investigate the sensitivity of these models to differ-
ent docking programs. The performance in terms of the 
success rates can be found in Fig.  6, and those regard-
ing the AUROC and Rs are depicted in Additional 
file 1: Figures S5 and S6, respectively, for reference. This 
experiment can to some extent verify the conclusion 
drawn from our previous study that the use of Surflex-
Dock to generate the binding poses can increase the 
upper limit of the success rates [55], which are at least 
higher than those based on the binding poses gener-
ated by Glide SP and Vina. Overall, different methods 
perform differently on different sets, and most MLSFs 
cannot always beat the classical SFs. The only excep-
tion is the ECIF + Vina + Rank_XGB, which can yield 
acceptable predictions in all six cases based on either 
the re-docked or cross-docked poses. Another interest-
ing finding is that the inclusion of the Vina energy terms 
here seems unfavorable to the predictions of the cross-
docked poses generated by Glide SP (SR1 = 0.413 vs 0.393 
for ECIF _XGB and ECIF + Vina_XGB, respectively) or 
Vina (SR1 = 0.252 vs 0.224), and is only slightly favorable 
to those of the cross-docked poses generated by Surflex-
Dock (SR1 = 0.477 vs 0.479). A possible explanation may 

Fig. 5  The top1 and top3 success rates of the models trained on PDBbind-ReDocked-Refined and tested on PDBbind-CrossDocked-Core-s, based 
on A all poses, B re-docked poses, and C cross-docked poses. The error bars represent the standard deviation of the random sampling of 1000 
redundant copies with replacements, and the dotted line indicates the ceiling of the success rate
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be that the protein–ligand interaction patterns for the re-
docked and cross-docked poses are not exactly the same 
and hence the models can learn little from the pure re-
docked poses to gain the information of the cross-docked 
poses.

Taken together, it seems that those ML-models trained 
on the re-docked poses can be well generalized to the 
re-docked or cross-docked poses generated by the same 
docking program. For the pose space defined by other 
docking programs, their performance is limited, espe-
cially for the predictions of cross-docked poses. Hence, 
a feasible strategy is to enlarge the training set, either 
through the augmentation and the diversification of the 

pose space for a certain complex or through the involve-
ment of more complexes in the training set.

Training on cross‑docked poses and testing on re‑docked/
cross‑docked poses
To address the issue left in the previous section, we try 
to enlarge our training set by introducing the cross-
docked poses into the training set, thus creating the 
PDBbind-CrossDocked-Refined set. At first, we also tried 
to include the native pose of each cross-docked complex 
(cross-native pose), which was generated through the 
alignment of two crystal structures regardless of the pos-
sible steric conflicts, in the training set just as we have 

Fig. 6  The top1 and top3 success rates of the models trained on PDBbind-ReDocked-Refined and tested on the A cross-docked and D re-docked 
poses in PDBbind-CrossDocked-Core-s, the B cross-docked and E re-docked poses in PDBbind-CrossDocked-Core-g, and the C cross-docked and 
F re-docked pose in PDBbind-CrossDocked-Core-v. The error bars represent the standard deviation of the random sampling of 1000 redundant 
copies with replacements, and the dotted line indicates the ceiling of the success rate
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conducted for the re-docked poses. Although they exert 
little effects on other test sets (e.g., PDBbind-ReDocked-
Core), the performance on CASF-docking is awfully 
poor, as shown as Fig.  7. Except ECIF_XGB, the other 
models can gain prominent improvements when remov-
ing those native poses from the training set, suggest-
ing that these models have learnt incorrect information 
from the cross-native poses. We guess that two reasons 
may majorly account for the higher sensitivity of this 
dataset to these incorrect cross-native poses. Firstly, the 
poses in CASF-docking were manually preprocessed and 
clustered, so that they are uniformly distributed in each 
RMSD window; secondly, CASF-docking owns more 
poses for a certain complex than the other test sets and 
even the training set (at most 100 vs at most 20). As for 
the minor influence on the ECIF features, we guess that 
this type of pure atomic pairwise counts-based features 
may be insusceptible to the possible conflicts between 
the protein and ligand because it only relies on the counts 
within the predefined distance, while the NNscore (con-
taining several interaction-pairwise counts) and Vina 
(some physics-based energy terms) features are obviously 
not the case. Anyway, we will not include these cross-
native poses in the following experiments, and we also do 
not recommend this type of poses to be involved if the 
researchers would like to carry out a similar study in the 
future.

The performance of the models trained on the cross-
docked poses and tested on the re-docked/cross-docked 
poses can be finally found in Fig. 8, and meanwhile, the 
sensitivity to the poses yielded by different docking pro-
grams and the impacts of the composition of the train-
ing set are systematically explored. We exclude E3FP 

and ELEM here to save computational costs, due to their 
poor performance before. The inclusion of the cross-
docked poses in the training set can consistently improve 
the top 1 success rate for the cross-docked poses gen-
erated by whichever docking program, Surflex-Dock 
(Fig.  8A), Glide SP (Fig.  8B) or Vina (Fig.  8C), and the 
combination of the re-docked and cross-docked poses 
in the training set can further improve the performance 
for most MLSFs. However, the cases for the test sets 
only containing the re-docked poses are quite different 
(Fig. 8D–F). In some cases, the models trained on the re-
docked poses can in turn yield the best docking power, 
especially for the methods that include the docking pose 
ranks as the features, such as NNscore + Rank_XGB and 
ECIF + Vina + Rank_XGB. The number of the cross-
docked poses in the PDBbind-CrossDocked-Refined set 
is more than 20 times larger than that of the re-docked 
poses, but it seems that for some methods the expan-
sion of the training set can hardly counteract the impact 
posed by the pose quality, suggesting that the disordered 
information learnt from the cross-docked poses is not 
necessarily favorable to pose prediction. Despite so, if 
we incline to develop MLSFs for real-world binding pose 
prediction, the inclusion of cross-docked poses in the 
training set is still necessary considering the complexity 
of protein–ligand interactions. As for different types of 
features, in most cases, the ECIF series show better per-
formance than the NNscore series. With the addition of 
the cross-docked poses into the training set, the involve-
ment of the Vina energy terms can finally improve the 
prediction accuracy in terms of the top 1 success rate, 
which is different from the results in the previous section. 
This finding further validates our previous conjecture 

Fig. 7  The impacts of the inclusion of the cross-native poses in training set on the top1 and top3 success rates of the models trained on 
PDBbind-CrossDocked-Refined and tested on CASF-docking. The error bars represent the standard deviation of the random sampling of 1000 
redundant copies with replacements
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that the poor performance of the Vina-included mod-
els may be contributed from the limited information 
learnt from the re-docked poses to predict cross-docked 
poses. The docking pose rank is surely an amazing fea-
ture for pose prediction, and its huge importance in per-
formance improvement can be well recognized. Finally, 
compared with the classical baselines, the best model, 

ECIF + Vina + Rank_XGB, can surely exhibit its superi-
ority in binding pose prediction, though it cannot always 
beat all the other MLSFs.

We also report the results on the cross-docked poses 
when using the ensemble strategy (Fig. 9), where all the 
cross-docked poses of a certain ligand across multiple 
crystal structures are considered as a single set. From our 

Fig. 8  The impacts of the contents of the training set on the top1 success rates of the models trained on PDBbind-CrossDocked-Refined 
and tested on the A cross-docked and D re-docked poses in PDBbind-CrossDocked-Core-s, the B cross-docked and E re-docked poses in 
PDBbind-CrossDocked-Core-g, and the C cross-docked and F re-docked poses in PDBbind-CrossDocked-Core-v. The error bars represent the 
standard deviation of the random sampling of 1000 redundant copies with replacements
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point of view, the results depicted in Fig. 8 (A, B, C) can 
better mimic the real situation because we do not know 
which crystal structure is the best choice for a specific 
ligand, while our experiment just examines the potency 
of the ensemble docking strategy based on different res-
coring methods. Compared with the original results, the 
ensemble strategy can indeed improve the performance, 
but compared with the predictions to the pure re-docked 
poses, the performance gap is still huge. This means that 
we can indeed improve the success rate for binding pose 
prediction through the combination of ensemble docking 
and rescoring, but they can hardly take the place of more 
ideal re-docked poses. As for other aspects such as the 
impact of the training sets, the impact of the featuriza-
tion strategy, and comparison with classical methods, a 
substantially similar trend can be obtained as the results 
shown in Fig.  8, and hence we will not further discuss 
them here.

Conclusions
Herein, several XGBoost-based classifiers designed 
for protein–ligand pose predictions were carefully 
validated through three rigorous validation meth-
ods. When both the training and test sets contain the 
re-docked poses, our MLSFs can surely exhibit supe-
rior performance to the classical methods, whichever 
based on the random splitting or refined-core split-
ting, or even tested on the dataset where the poses 

own a large coverage of RMSD distribution (i.e., 
CASF-docking). But as a common feature of the ML-
based methods, the sequence/structural similarity of 
the proteins and ligands between the training and test 
sets consistently exerts a notable influence on the per-
formance of MLSFs, which is reflected by a significant 
decrease of the performance of those methods when 
using the threefold CCV. However, although our best 
MLSF performs no better than Prime-MM/GBSA, it 
can still beat other commonly-used classical methods. 
Then, the models are also estimated with the involve-
ment of the cross-docked poses in either the training 
or the test set. It seems that the ML models trained on 
the pure re-docked poses can only be well generalized 
to the re-docked/cross-docked poses produced by the 
same docking program used for the training set, but 
they cannot always outperform the classical methods 
when tested on the cross-docked poses generated by 
different docking programs. The incorporation of the 
cross-docked poses into the training set is favorable to 
enhance the performance on the cross-docked poses, 
but for the test sets with only the re-docked poses, the 
expansion of the training set by adding cross-docked 
poses sometimes can hardly counteract the influence of 
the pose quality. Besides the impacts of datasets, this 
study also demonstrates the importance of the inclu-
sion of the classical energy terms or docking pose ranks 
as the features in binding pose prediction task, which 

Fig. 9  The top1 success rates of the models trained on PDBbind-CrossDocked-Refined and tested on the cross-docked poses in A in 
PDBbind-CrossDocked-Core-s, B PDBbind-CrossDocked-Core-g, and C PDBbind-CrossDocked-Core-v using the ensemble strategy. The error bars 
represent the standard deviation of the random sampling of 1000 redundant copies with replacements
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can not only further improve the docking power to 
some extents but can ensure the generalization capabil-
ity of the models.

Introducing ML technologies into SFs has emerged 
as a promising trend in recent years, but most relevant 
studies seem to pay more attention to binding affinity 
prediction or SBVS, rather than binding pose predic-
tion, which has not been well achieved by traditional 
methods and has long been an important limiting factor 
for the further performance improvements of the for-
mer two tasks. As a supplement to the study conducted 
by Francoeur et  al. [42], our study adopted a different 
way to handle the docking poses and employs a more 
direct way to validate the models. In addition, we further 
developed several pure PDBbind-based datasets, namely 
PDBbind-ReDocked (https://​zenodo.​org/​record/​55259​
36/​files/​PDBbi​nd-​Cross​Docked-​Core.​tar.​bz2), PDBbind-
CrossDocked-Core (https://​zenodo.​org/​record/​55259​
36/​files/​PDBbi​nd-​Cross​Docked-​Core.​tar.​bz2), and PDB-
bind-CrossDocked-Refined (https://​zenodo.​org/​record/​
55259​36/​files/​PDBbi​nd-​Cross​Docked-​Refin​ed.​tar.​bz2), 
for cross-docking experiments, which can be easily com-
bined with the widely-used CASF benchmark/PDBbind 
dataset to conduct a more comprehensive assessment of 
SFs. Our study may provide sufficiently valuable guidance 
for the applications of MLSFs in binding pose prediction. 
Moreover, our datasets may serve as an important bench-
mark for further development and assessment of the 
MLSFs for protein–ligand binding pose prediction.
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