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Abstract 

Rationalizing the identification of hidden similarities across the repertoire of druggable protein cavities remains a 
major hurdle to a true proteome-wide structure-based discovery of novel drug candidates. We recently described a 
new computational approach (ProCare), inspired by numerical image processing, to identify local similarities in frag-
ment-based subpockets. During the validation of the method, we unexpectedly identified a possible similarity in the 
binding pockets of two unrelated targets, human tumor necrosis factor alpha (TNF-α) and HIV-1 reverse transcriptase 
(HIV-1 RT). Microscale thermophoresis experiments confirmed the ProCare prediction as two of the three tested and 
FDA-approved HIV-1 RT inhibitors indeed bind to soluble human TNF-α trimer. Interestingly, the herein disclosed simi-
larity could be revealed neither by state-of-the-art binding sites comparison methods nor by ligand-based pairwise 
similarity searches, suggesting that the point cloud registration approach implemented in ProCare, is uniquely suited 
to identify local and unobvious similarities among totally unrelated targets.
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Introduction
Among the many possible approaches to structure-based 
drug design [1, 2], inferring novel ligand properties 
from the large-scale comparison of their possible bind-
ing pockets gains popularity as the repertoire of protein 
cavities of known three-dimensional (3D) structures 
(pocketome) is constantly increasing, thereby offer-
ing unique opportunities to design ligands while simul-
taneously considering multiple targets [3]. The term 
‘pocketome’ was first coined in 2004 by An et  al. [4] to 
describe the universe of cavities located at the surface of 
macromolecules and capable of binding low molecular-
weight ligands. A systematic survey of currently avail-
able three-dimensional structures [5], suggests that its 
size is estimated to ca. 250,000 pockets [6] out of which 

10–15% are accommodating true drug-like compounds 
[7, 8]. Pocket locations can be inferred from the posi-
tion of already-bound molecules or predicted on the fly, 
by one of the many available cavity detection methods [3, 
9]. The pockeome space can then be searched by numer-
ous computational tools [10] for similarity to any query 
cavity to predict evolutionary relationships and protein–
ligand interactions [3]. The later application is notably of 
paramount importance to the drug discovery field as it 
may reveal hidden relationships for guiding the design of 
safer drug candidates with a precise control of selectiv-
ity [3] with respect to either on-targets (polypharmacol-
ogy approach) [11] or off-targets (side effects mitigation) 
[12], in a time and cost-effective manner [13].

Currently available methods are generally able to detect 
global similarities between two druggable pockets from 
different proteins, and therefore permit to transfer drug-
like compounds from one target space to another [3]. 
Identifying more subtle local similarities at the level of 
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fragment-bound pockets remains a much more difficult 
problem [14] as it requires a searchable archive of frag-
ment-bound subpockets [15–17] and a computational 
method focusing on local subpocket descriptors. Conse-
quently, there are still very few reports of experimentally 
verified subpocket similarity examples that have enabled 
the transfer of chemical fragments across unrelated pro-
teins [18]. To fill the need for local similarity searching 
methods while comparing pockets of different sizes, 
we developed a novel method (ProCare) [17] relying on 
point cloud registration, a numerical image processing to 
find a spatial transformation (e.g., scaling, rotation and 
translation) that aligns two point clouds [19, 20]. ProCare 
uses as input a point cloud representation of the protein 
pocket or subpockets, where each point is annotated 
by eight possible pharmacophoric features (hydropho-
bic, aromatic, H-bond donor, H-bond acceptor, H-bond 
donor and acceptor, positive, negative, dummy) comple-
mentary to that of the pocket microenvironment [21]. 
Since ProCare uses local descriptors to compare and 
align binding subpockets, the method is particularly 
suited to fragment-based design strategies aimed at posi-
tioning fragments in subpockets of any druggable cavity.

While validating the method by focused benchmarking 
studies [17], we noticed some unexpected local similar-
ity between subpockets from two unrelated proteins with 
23% sequence identity: human tumor necrosis factor 
alpha (TNF-α) trimer [22] and human immunodeficiency 
virus type 1 reverse transcriptase (HIV-1 RT) [23]. On 
the one hand side, TNF-α is a homotrimeric pro-inflam-
matory cytokine involved in autoimmune disorders such 
as rheumatoid arthritis and Crohn’s disease [24]. It is cur-
rently targeted by monoclonal antibodies preventing its 
recognition by TNF-α receptors (TNFR1 and TNFR2). To 
date, no small molecule TNF-α inhibitor has reached the 
market [22]. On the other side, HIV-1 RT is an enzyme 
used by the HIV virus to replicate its genome by first gen-
erating a complementary DNA from the viral RNA tem-
plate. HIV-1 RT can be blocked by many marketed drugs 
[25] binding to either the catalytic site (nucleoside inhibi-
tors, e.g. zidovudine) or a remote allosteric pocket (non-
nucleoside inhibitors, e.g. efavirenz).

To exclude potential artifacts or biases and provide a 
strong statistical support to this initial prediction, we 
here systematically compared the inner cavity of three 
inhibitor-bound TNF-α trimer structures with 122 non-
nucleoside inhibitor-bound HIV-1 RT X-ray structures. 
In a large majority of pairwise comparisons, the corre-
sponding subpockets were deemed similar, a prediction 
that could be confirmed by biophysical experiments evi-
dencing a direct micromolar binding of non-nucleoside 
HIV-1 RT inhibitors to human soluble TNF-α. Interest-
ingly, this unexpected similarity could not be recovered 

by state-of-the-art cavity comparisons tools suggesting 
the unique ability of ProCare to delineate subtle local 
relationships between unrelated target cavities.

Results and discussion
Identifying similarity between pockets from different 
proteins suggests that the latter might bind to similar 
molecules. Although molecular recognition is a dynamic 
and complex process, the above hypothesis is worth 
investigating in drug design for hit discovery or for 
potential off-targets detection. We previously described 
ProCare [17], a novel computational method relying on 
a point cloud registration algorithm [19, 20] to assess the 
similarity between protein pockets. ProCare computes 
and uses local descriptors, which makes it particularly 
suitable for detecting local similarities among cavities 
of different sizes. Typically, ProCare aligns the cavities, 
described by a cloud of 3D points labeled with pharma-
cophoric features, by comparing the point descriptors 
and then derives a similarity score. In the current study 
(see flowchart in Fig. 1), ProCare was used to detect local 
similarities between the full cavity of the target protein 
(here the inner core of the TNF-α trimer) and a collec-
tion of 31,570 subpockets from the sc-PDB dataset [8], a 
repository of 16,034 protein–ligand complexes of known 
three-dimensional structure for which the ligand is a 
pharmacological agent bound to a druggable cavity. First, 
the full cavity of the target protein is computed with the 
in-house VolSite algorithm [21] and represented by a 
cloud of pharmacophore-annotated points (Fig.  1). In 
parallel, the collection of subpocket point clouds is gen-
erated after fragmentation of each protein-bound sc-PDB 
ligand and consideration of the immediate vicinity (4 Å) 
of generated fragments. Last, the ProCare method aligns 
and computes the pairwise similarity between the target 
point cloud, and that from subpockets from the sc-PDB 
archive (Fig. 1). When a statistically significant similarity 
is found between a subpocket and the target cavity, the 
transformation matrix used for the previous alignment 
is then applied to the corresponding and hidden bound 
fragment that is directly positioned in the target cavity. 
In absence of major clashes, the corresponding fragment 
can therefore be used for a fragment growing or linking 
strategy or even directly tested for binding to the target.

While benchmarking the ProCare method, we noticed 
unexpected high similarities (ProCare score > 0.47; 
p-value < 0.05) between the core pocket at the interface 
of an inhibitor-bound asymmetric human TNF-α trimer 
(PDB ID 6OOY) [22], and several non-nucleoside bind-
ing sites of inhibitor-bound HIV-1 RT (Additional file 1: 
Table S1). Notably, seven subpockets from the HIV-1 RT 
were ranked among the 100 top scoring subpockets, with 
high ProCare similarity scores (ranging from 0.67 to 0.72) 
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corresponding to very low p-values (from 2.5 × 10–4 to 
2.1 × 10–5).

To assess that the predicted similarity between these 
unrelated binding sites was not fortuitous, we computed 
the Receiver-Operating Characteristic (ROC) curve of a 
binary classifier for which all cavities of a single sc-PDB 
target (Table 1) are artificially annotated as positives, the 
rest being defined as negatives. For each target, the ROC 

curve was defined from the full list of sorted ProCare 
similarity scores by plotting the true positive rate ver-
sus the false positive rate at different threshold settings 
(Additional file 1: Fig. S1). The area under the ROC curve 
(ROCAUC) provides a statistical estimation of the accu-
racy of the classifier to discriminate positives from nega-
tives and therefore predict whether the samples from one 
particular target are similar (or not) to the TNF-α cavity 
(Table 1).

Making the hypothesis that the HIV-1 RT non-nucle-
oside binding pocket is similar to that of TNF-α, the 
ProCare score nicely discriminates positives (HIV-1 RT) 
from decoys (all other sc-PDB cavities) with a ROCAUC 
value (0.84) well above the threshold corresponding to a 
random classification, ROCAUC = 0.50). Repeating the 
same exercise with five randomly picked targets (β2 adr-
energic receptor, carbonic anhydrase II, cyclin-depend-
ent kinase 2, heat shock protein 90α, and thrombin) lead 
to much poorer ROC AUC values close or even inferior 
to random classifications (Table 1). To further exclude a 
potential bias in the ProCare alignment/scoring method 
due to the reference TNF-α structure (PDB ID 6OOY) 
and give a stronger statistical support to our predic-
tion, we systematically compared two additional binding 
sites (PDB IDs 6OOZ, 6OP0) from available asymmetric 

Fig. 1  Virtual screening of sc-PDB subpockets for similarity to the core cavity TNF-α. The inner pocket of TNF-α (PDB ID 6OOY) is converted as 
a cloud of points with pharmacophoric properties (orange: hydrophobic and aromatic, blue: H-bond donor and positive ionizable, red: H-bond 
acceptor, H-bond donor and acceptor, and negative ionizable, white: dummy) and compared to the corresponding point clouds originating from 
fragment-bound subpockets of sc-PDB ligands

Table 1  Area under the ROC curve of pairwise ProCare similarity 
scoresa

a For each target, the similarity scores of the corresponding subpockets (actives) 
and decoys (any other subpocket) to the TNF-α query (PDB ID 6OOY) are used to 
compute the area under the ROC curve
b Total number of subpockets for the corresponding target. The number of PDB 
entries are in brackets

Target Site Number of 
subpocketsb

ROCAUC​

HIV-1 RT Non-nucleoside 195 (122) 0.84

β2 adrenergic receptor Orthosteric 14 (14) 0.35

Carbonic anhydrase II Catalytic 183 (137) 0.38

Cyclin-dependent kinase 2 Catalytic 461 (274) 0.63

Heat shock protein 90α Catalytic 214 (117) 0.64

Thrombin Catalytic 253 (126) 0.35
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human TNF-α X-ray structures [22] to that of 122 HIV-1 
RT structures bound to non-nucleoside inhibitors.

Exhaustive comparison of TNF‑α trimer and HIV‑1 reverse 
transcriptase binding sites
A ProCare similarity matrix was built by comparing cavi-
ties of three asymmetric TNF-α structures (PDB iden-
tifiers 6OOY, 6OOZ and 6OP0) co-crystallized with 
benzimidazole inhibitors to the 195 subpockets from 122 
non-nucleoside HIV-1 RT inhibitors binding sites (Addi-
tional file  1: Table  S2; Fig.  2) available in the sc-PDB. 
We observed that 76% of all pairwise comparisons were 
scored higher than the previously statistically determined 
ProCare similarity score threshold of 0.47 [17] (Fig. 2A).

To exclude the possibility that the predicted similar-
ity is caused by peculiar mutations of the HIV-1 RT 
non-nucleoside biding site, we also compared pairwise 
similarities for both wild type and mutated HIV-1 RT 

pockets, but did not observe significant differences in 
the percentage of HIV-1 RT pockets predicted similar 
to that of TNF-α (74% and 82% of similar pockets for 
wild type and mutants, respectively). We thus conclude 
that the predicted similarity between pockets from these 
two unrelated targets is independent on the chosen PDB 
structures and is not biased by mutations in the HIV-1 
RT binding site. Since ProCare yields a transformation 
matrix to align the compared objects (subpockets onto 
the target pockets), we herein provided the visual analysis 
for one entry (efavirenz-bound subpocket) aligned to the 
TNF-α structure 6OOZ. Pairs of residues of equivalent 
interaction properties (aromatic, hydrogen bond donor 
and acceptor, hydrophobic), respectively in TNF-α and 
HIV-1 RT were nicely matched (Fig.  2B) demonstrating 
that the similarity caught with the point clouds is truly 
present at the residue level. Matched TNF-α/HIV-1 RT 
residues were: LEU57.A/LEU100; TYR59.A/TYR318; 

Fig. 2  Comparison of TNF-α trimer and HIV-1 RT binding sites with ProCare. A Distribution of pairwise similarity scores (n = 195 × 3). Entries scoring 
above 0.47 (p-value = 0.05; threshold marked by the red dashed line) are considered similar according to a previous statistical analysis of 2 million 
pairwise alignments [17]. B Aligned residues of TNF-α (chain A: cyan, chain B: dark slate blue, chain C: cornflower blue; PDB code: 6OOZ) to HIV-1 
RT (orange, PDB code: 1FKO) after rotation and translation of HIV-1 RT protein with the resulting ProCare alignment matrix. C ProCare alignment of 
efavirenz main fragment (light orange) in the TNF-α trimer pocket and PLANTS docking (transparent orange) in the TNF-α trimer pocket (PDB code: 
6OOZ). Edge-to-face aromatic interaction with TYR59 of TNF-α chain A and hydrogen bond with TYR151 of TNF-α chain C are depicted by blue 
dashed lines
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ILE155.A/LEU234; LEU157.A/TRP229; LEU57.B/
PHE227; LEU57.C/TYR188; TYR59.C/TYR181 and 
TYR151.C/TYR181. Inspection of the matched phar-
macophoric points that are contributing to the ProCare 
score showed a mixed contribution of aromatic, hydrogen 
bond donor and hydrophobic points (Additional file  1: 
Fig. S2) in agreement with the aligned residues (Fig. 2B) 
and the statistics of the contributions of the eight phar-
macophoric features to the detected similarity (Addi-
tional file 1: Fig. S3). Furthermore, efavirenz was docked 
into TNF-α binding site 6OOZ with PLANTS [26] after 
validation of the docking protocol by self-docking of the 
cocrystallized ligand UCB-5307 in 6OOZ (RMSD of top-
ranked pose by ChemPLP to crystal coordinates: 0.47 Å, 
ChemPLP score of -124.79). The ProCare-aligned efa-
virenz fragment (Fig.  3B) in TNF-α fitted well with one 
of the PLANTS docking solutions (ranked 3rd/10 with 
a ChemPLP score of -79.32), corresponding to a RMSD 
of 1.8 Å of efavirenz main fragment heavy atoms to the 
ProCare pose (Fig. 2C). Aside the potential hydrophobic 
interactions in the TNF-α binding site, efavirenz docking 
pose displayed an edge-to-face aromatic interaction with 

residue TYR59.A and a hydrogen bond with TYR151.C. 
Interestingly, efavirenz bound to HIV-1 RT protein struc-
ture (1FKO) exhibits an edge-to-face aromatic interac-
tion with residue TYR318 [27] (Additional file  1: Fig. 
S4A) that was matched by ProCare to TYR59.A in TNF-α 
(Fig. 2B). Both TYR59.A and TYR151.C are key residues 
[22] involved in the micromolar and nanomolar bind-
ing of the co-crystallized ligands UCB-6876, UCB-5307 
and UCB-9260 (Fig.  3) in the TNF-α structures 6OOY, 
6OOZ, 6OP0; the interaction between TYR151.C residue 
and the benzimidazole moiety being a hydrogen bond 
(Additional file  1: Fig. S4B). Altogether, these observa-
tions are strongly suggesting that subpockets in the non-
nucleoside binding site of HIV-1 RT are similar to the 
TNF-α trimer cavity.

Assuming that similar binding sites should accommo-
date similar ligands, HIV-1 RT non-nucleoside inhibitors 
should therefore bind to TNF-α. In order to prioritize 
HIV-1 RT inhibitors for experimental validation of our 
hypothesis, we checked which inhibitors were bound to 
the HIV-RT subpockets that are predicted by ProCare as 
the most similar to the TNF-α cavity (Table 2).
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Fig. 3  Structures of TNF-α and HIV-1 RT non-nucleoside inhibitors. A TNF-α inhibitors and B HIV-1 RT non-nucleoside inhibitors (PDB entries 
between brackets). Red substructures indicate the main fragment binding to the HIV-1 RT subpocket found similar to the TNF-α cavity
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Among the corresponding inhibitors, two compounds 
(Q27097507, TNK6-51) are not commercially available 
and were not considered. However, two easily purchas-
able FDA-approved drugs (efavirenz, nevirapine; Fig.  3) 
are almost entirely buried in the HIV-1 RT subpock-
ets found similar to the TNF-α cavity, exhibit a size and 
molecular volume similar to that of two TNF-α inhibi-
tors (UCB-6876 and UCB-5307; Fig.  3) and were there-
fore selected for biological evaluation. In addition, we 
also considered a third marketed inhibitor (delavirdine; 
Table 2, Fig. 3) whose pocket was found much less similar 
to that of TNF-α, although just above the 0.47 ProCare 
similarity threshold.

Non‑nucleoside HIV‑1 RT inhibitors bind to human TNF‑α
Three different non-nucleoside FDA-approved drugs 
(nevirapine, efavirenz and delavirdine) were tested for 
direct binding to a fluorescent-labelled TNF-α trimer by 
microscale thermophoresis (MST), a robust and sensi-
tive biophysical method to detect and quantify molecular 
interactions in solution [28, 29]. The MST signal is based 
on ligand-dependent temperature-induced changes 
(thermophoresis, temperature-related fluorescence 
intensity) of the fluorescence emission of the labelled 
protein target. The 17.3  kDa homotrimeric TNF-α that 
spontaneously assembles in solution [30, 31] was there-
fore labelled by a RED-fluorescent probe for MST experi-
ments in presence of increasing concentrations of the 
three HIV-1 RT inhibitors (Fig. 4).

MST traces in presence of efavirenz and delavirdine 
showed distinct states (from bound to unbound), indi-
cating a direct interaction of these two inhibitors with 
TNF-α (Fig.  4A, B). Dissociation constants (KD) could 
be derived for the two corresponding complexes and 

estimated to 24 ± 8 µM (Efavirenz) and 39 ± 9 µM (Dela-
virdine), respectively (Fig.  4A, B). The measured dis-
sociation constants for the two HIV-1 RT inhibitors are 
in the same range of magnitude than that of UCB-6876 
(KD = 22  µM) [22], one of the three TNF-α inhibitors 
used as a reference for this study.

Contrarily to our prediction, no thermophoresis sig-
nal could be detected in presence of nevirapine (Fig. 4C) 
indicating no binding of this inhibitor to TNF-α, at 
least in our experimental settings. The herein observa-
tions were insensitive to experimental protocols (buffer 
composition, solubilizing agents, incubation time, MST 
power; Additional file 1: Table S4).

In absence of X-ray structures of TNF-α bound to efa-
virenz and delavirdine, we cannot rule out the possibil-
ity that both inhibitors bind to a different pocket than 
that highlighted in the current computational study. This 
hypothesis is however very unlikely for two reasons: (i) 
no other cavity than that occurring at the inner core of 
the multimeric TNF-α could be detected among the 
currently existing 33 structures available in the Protein 
Data Bank; (ii) all non-covalent small molecular weight 
inhibitors co-crystallized with TNF-α dimeric or trimeric 
forms [32–35] are exactly bound at the central pocket 
examined in this study.

We should recall here that none of the HIV-1 RT 
inhibitors has been optimized for binding to TNF-α and 
is directly repurposable for treating TNF-α -dependent 
autoimmune disorders. However, we do think that efa-
virenz may be optimized to a much more potent HIV-1 
RT inhibitor by following a strategy similar to that 
reported to modify the 22  µM TNF-α inhibitor UCB-
6876 to a 9 nM lead (UCB-5307; Fig. 3) by just occupying 
a side pocket formed by the three TYR199 side chains of 
the TNF-α homotrimer with a pyridyl ring [22]. Struc-
ture-guided efavirenz optimization for TNF-α binding 
is therefore possible by appropriate trimming of unnec-
essary cyclopropylethynyl substituent and occupation of 
the above-described potency subpocket.

The similarity between TNF‑α trimer and HIV‑1 reverse 
transcriptase binding sites is not obvious
To demonstrate whether the herein disclosed similar-
ity between the human TNF-α trimer and the HIV-1 RT 
non-nucleoside binding sites is obvious, we performed 
the same set of pairwise binding site comparisons, as that 
previously reported for ProCare (Fig.  2), with state-of-
the-art methods [10] developed either in-house (FuzCav 
[36], Shaper [21] and SiteAlign [37]) or by third parties 
(G-LoSA [38], KRIPO [15] and ProBiS [39]). The bind-
ing site perception, comparison algorithm and scor-
ing function is specific to each method. Some methods 
(FuzCav, SiteAlign) consider entire cavities while some 

Table 2  Bound inhibitors of the HIV-1 reverse transcriptase 
cavities found similar to TNF-α cavities

a PDB chemical component identifier (Name in brackets)
b After manual fragmentation, a higher ProCare score (0.599) was obtained for 
the subpocket of delavirdine’s fragment #2 (Additional file 1: Fig. S5) against 
6OOY pocket (Additional file 1: Table S3)

HIV-RT 
inhibitora

HIV1-RT 
PDB 
entry

TNF-α PDB 
entry

ProCare score Rank

NNI (Q27097507) 2VG7 6OOZ 0.810 1

EFZ (Efavirenz) 1FKO 6OOZ 0.773 2

NVP (Nevirapine) 1LWC 6OOZ 0.737 3

TNK (TNK-651) 1S1V 6OOZ 0.731 4

NVP (Nevirapine) 2HNY 6OOZ 0.729 5

… … … …

SPP 
(Delavirdine)b

1KLM 6OOZ 0.484 408
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others utilize either fragment-bound subpockets (KRIPO, 
Shaper) or local protein descriptors (G-LoSA). To make 
the comparison consistent, the same set of atomic coor-
dinates were compared, a binding site being defined by 
the protein PDB identifier, the ligand PDB HET record 
(three alphanumeric character describing non-standard 
PDB residues), chain identifiers and list of amino acids 
lining the cavity. The only exception was for the KRIPO 
method, which used all the chains available in the PDB 
entry, but still corresponding to the same tuple (PDB, 
HET) as for the other methods. For each method, the dis-
tribution (Fig. 5) and percentage of pairwise comparisons 
scored above the developer’s recommended similarity 
threshold (Table 3) were reported.

Strikingly, only the G-LoSA method relying on a graph-
based local alignment of cavity-lining amino acids, man-
aged to find some similarity between the two sets of 
binding sites, however with reduced success rate (35.2%) 
when compared to the ProCare algorithm (76.6% suc-
cess rate; Table 3). We acknowledge that the developer’s 
recommended thresholds may be biased toward peculiar 
datasets. However, all methods compared herein were 
subjected to the same protocol and we do think that the 
threshold scores are appropriate indicators in a virtual 

screening setting where there is no room for a one-by-
one case study of each pairwise comparison.

The herein reported binding of some HIV-1 RT non-
nucleoside inhibitors to human TNF-α remains unobvi-
ous to many binding site comparison algorithms. Would 
this unexpected feature be better captured by remote 
ligand similarities? To investigate this question, we com-
pared 2D and 3D descriptors of the corresponding inhib-
itors (Fig. 6).

Neither comparing 2D fingerprints nor 3D shapes 
would have confidently suggested possible binding 
of HIV-1 RT inhibitors to TNF-α trimer (Fig.  6) since 
none of the considered ligand pairs exhibit a pairwise 
similarity above an acceptable threshold (Morgan2 cir-
cular fingerprint: 0.30 [40]; 166 public MACCS keys: 
0.65 [40], TanimotoCombo ROCS 3D similarity: 1.5 
[41, 42]). We should precise here that 3D similarities 
were inferred from PDB protein-bound ligand X-ray 
structures and that alternative conformations might 
be selected by the two targets, although the very rigid 
efavirenz does indeed bind to the two proteins of inter-
est albeit with different affinities (TNF-α, KD = 24 μM; 
HIV-1RT, ChEMBL median IC50 = 20  nM). Extending 
2D fingerprint comparisons to additional 2,361 HIV-1 

Fig. 4  Microscale thermophoresis (MST) demonstrates a direct interaction between HIV-1 RT inhibitors and RED fluorescent-tagged TNF-α. For 
analysis, the change in thermophoresis is expressed as the change in the normalized fluorescence (ΔFnorm), which is defined as Fhot/Fcold (F-values 
correspond to average fluorescence values between defined areas marked by the red and blue cursors). Titration of the non-fluorescent ligand 
results in a gradual change in thermophoresis, which is plotted as ΔFnorm to yield a binding curve, which can be fitted to derive binding constants. 
A Experimental MST traces of efavirenz (KD = 24 ± 8 µM); B Experimental MST traces of delavirdine (KD = 39 ± 9 µM); C Experimental MST traces of 
nevirapine. Only the best MST traces (highest signal to noise ratio) are shown here. Values for all experiments conducted according to different 
experimental protocols are listed in Additional file 1: Table S4
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RT inhibitors (Additional file  1: Table  S5) from the 
ChEMBL database [43], did not change our conclu-
sion since only 0.71% and 0.09% of the corresponding 
pairs were found similar using Morgan2 and 166 public 
MACCS keys, respectively (data not shown).

Conclusion
Herein, we describe a systematic comparison of frag-
ment-bound subpockets from a priori unrelated targets 
(TNF-α, HIV-1 RT) but predicted to share local simi-
larities according to our recently-developed ProCare 
point cloud registration method. The computational 
prediction was verified by microscale thermophore-
sis experiments evidencing the micromolar binding of 
some but not all HIV-1 RT non-nucleoside inhibitors 
to human soluble TNF-α. Interestingly, the ProCare 
prediction could not be revealed by other state-of-the-
art cavity or ligand similarity search methods. Point 
cloud registration, a computational method frequently 
used for digital image processing in robotics and medi-
cal imaging, enables the detection of subtle and local 
protein similarities thanks to a powerful description of 
subpocket microenvironments. The ProCare method 
appears as a promising idea generator for drug repur-
posing and fragment-based ligand design since it is able 
to pick starting ligands at a proteomic scale.

Fig. 5  Score distribution of pairwise comparisons between binding 
sites of TNF-α trimer and HIV-1 reverse transcriptase. Binding sites 
in asymmetric structures of TNF-α trimer (n = 3) were compared 
to binding sites of non-nucleoside inhibitors in HIV-1 reverse 
transcriptase (sc-PDB set, n = 122). Pairs with similarity measures 
scored above each method-specific threshold (red dashed line) were 
considered similar. For SiteAlign comparisons, pairs are considered 
similar in case the two distances (distance 1, distance 2) are below 
the recommended cut-off. For ProBiS, the threshold above which an 
alignment is considered significant is marked by the blue dashed line

Table 3  Comparison of three TNF-α and 122 HIV-1 RT non-
nucleoside binding sites by state-of-the-art cavity comparison 
methods

a Developer’s recommended similarity/distance threshold for estimating two 
binding sites similar
b Percentage of pairwise comparisons scored above the threshold
c For SiteAlign comparisons, pairs are considered similar when the two distances 
(d1, d2) are below the score threshold value [37]
d The Z-score indicates the statistical relevance of ProBiS binding site alignments

Method Score thresholda Metric Success rateb

G-LoSA 0.59 GA-score 35.2

KRIPO 0.50 Modified Tanimoto coef-
ficient

5.8

Shaper 0.44 ColorRefTversky 1.4

SiteAlign 0.6, 0.2 d1 and d2 distancesc 0.3

FuzCav 0.16 Tanimoto coefficient 0

ProBiS 2 Z-scored 0

ProCare 0.47 ProCare score 76.6

Fig. 6  Pairwise similarity between inhibitors of TNF-α trimer and 
non-nucleoside inhibitors of HIV-1 reverse transcriptase. Recently 
described TNF-α trimer inhibitors (n = 3) were compared to 
non-nucleoside inhibitors of HIV-1 RT (sc-PDB set, n = 122). Pairs with 
similarity measures scored above each descriptor-specific threshold 
(red dashed line) were considered similar. (Top left) 2D similarity 
estimated by a Tanimoto metric using Morgan2 circular fingerprint, 
(Top right) 2D similarity estimated by a Tanimoto metric using 166 
MACCS public keys. (Bottom) 3D shape comparison (ROCS) estimated 
by the TanimotoCombo metric
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Methods
Preparation of protein and ligand structures
TNF‑α structures
The recently described asymmetric structures of the 
human TNF-α trimer bound to different inhibitors 
were retrieved from the RCSB Protein Data Bank (PDB) 
homepage (https://​www.​rcsb.​org) [44] using the fol-
lowing identifiers: 6OOY, 6OP0, 6OOZ [22]. The PDB 
structures were protonated with Protoss [45] v.4.0, 
then split into protein, ligands and water molecules and 
finally converted into mol2 format with Sybyl-X v.2.1.1 
(Certara USA, Inc., Princeton, NJ 08540). The bind-
ing sites (‘SITE’) were defined as any protein residue 
with at least one heavy atom closer than 6.5 Å from any 
ligand heavy atom and saved in mol2 and pdb formats. 
The ligands were converted into sdf format with Open-
Eye Python toolkits v.2020.0.4 (OpenEye Scientific Soft-
ware, Santa Fe, USA). Cavities were detected with IChem 
v.5.2.9 VolSite utility [21] (cavity_all output) using default 
parameters. The cavity points are labeled with eight pos-
sible pharmacophoric features (hydrophobic, aromatic, 
H-bond donor, H-bond acceptor, H-bond donor and 
acceptor, positive, negative, dummy) that are comple-
mentary to the features of the nearest protein atom. If no 
protein atom is found within a 4  Å distance of a cavity 
point, the latter is assigned a dummy property.

HIV‑1 reverse transcriptase PDB structures
Starting from the PDB structure 1VRT as a reference, a 
search was performed in the RCSB PDB (https://​www.​
rcsb.​org) [44] to retrieve all structures with strict match-
ing (“Structure Similarity” query in the PDB). After visual 
check, 122 entries already available in the sc-PDB reposi-
tory (http://​bioin​fo-​pharma.​u-​stras​bg.​fr/​scPDB) [8] and 
for which the ligand is a non-nucleoside inhibitor were 
kept. The remaining PDB structures were protonated 
with Protoss [45] v4.0. The list of the PDB identifiers and 
Uniprot accession numbers is reported Additional file 1: 
Table S2. According to the sc-PDB preparation rules, the 
binding sites (‘SITE’) were defined as described above. 
Protein, ligand and binding site ‘SITE’ structures were 
directly retrieved in mol2 file format from the sc-PDB 
archive. The corresponding 122 ligands were 3D-frag-
mented with the IChem v.5.2.9 [49] fragmentation utility 
[47] and the complementary VolSite [21] cavity points, 
computed at 4  Å around each fragment were finally 
saved. The ligands were converted into sdf format as 
described above.

Preparation of HIV‑1 reverse transcriptase ChEMBL ligands
Bioassay information were first retrieved from the 
ChEMBL [43] dataset (Release 28; https://​www.​ebi.​ac.​

uk/​chembl) by querying the general keyword ‘reverse 
transcriptase’ and retaining ChEMBL target identifiers 
(CHEMBL247, CHEMBL4296301, CHEMBL2366516) 
corresponding to HIV-1 RT. Ligands with a measured 
sub-micromolar half-maximal inhibitory concentra-
tion (IC50) against the HIV1-RT single target were 
defined here as inhibitors (Additional file  1: Table  S5). 
The corresponding SMILES strings were retrieved and 
further processed with RDKit (Open-source cheminfor-
matics; http://​www.​rdkit.​org) v.2019.03.4.0 to remove 
redundancy.

Preparation of sc‑PDB fragments and subpockets
Ligands coordinates from the sc-PDB (http://​bioin​fo-​
pharma.​u-​stras​bg.​fr/​scPDB) [46] v.2016 archive were 
fragmented in 3D with the IChem v.5.2.9 fragmentation 
utility [47]. Fragmentations occur in the binding sites 
so that only the main fragments interacting sufficiently 
(four interactions of which at least one is polar) with their 
target proteins were kept. Finally, the cavity pharmaco-
phoric points cloud were computed at 4 Å from the frag-
ments center to describe the protein subpocket, using the 
IChem v.5.2.9 VolSite utility (“cavity_4” output). VolSite 
cavities exhibiting less than three points were removed. 
A total of 31,570 valid fragment-bound subpockets were 
finally obtained.

Cavity similarities
ProCare
ProCare [17] v.0.1.1 pairwise comparison were per-
formed on cavities computed with the VolSite module 
[21] in IChem v5.2.9 [49]. Entire cavities (“cavity_all” 
output) were calculated for TNF-α structures whereas 
only cavity points closer than 4.0 Å from any fragmented 
ligand center (“cavity_4” output) were considered for 
sc-PDB subpockets. VolSite cavity points were directly 
used for point cloud registration starting with determi-
nation of colored fast point feature histograms (c-FPFH) 
as previously described [17]. Finally, the respective set of 
c-FPFH descriptors for the two cavities were compared to 
each other using a RANSAC algorithm [19, 20] followed 
by refinement with default parameters [17]. Alignments 
results were scored with the default ProCare scoring 
function [17] which evaluates with a Tversky metric the 
proportion of aligned points of the same pharmacoph-
oric features. In agreement with our previous study [17] 
where the similarity threshold of 0.47 (p-value of 0.05) 
was statistically determined, pockets scoring above 0.47 
were considered similar.

FuzCav
FuzCav [36], an alignment-free method, was used to 
compare the binding site ‘SITE’ (mol2 format) entries of 

https://www.rcsb.org
https://www.rcsb.org
https://www.rcsb.org
http://bioinfo-pharma.u-strasbg.fr/scPDB
https://www.ebi.ac.uk/chembl
https://www.ebi.ac.uk/chembl
http://www.rdkit.org
http://bioinfo-pharma.u-strasbg.fr/scPDB
http://bioinfo-pharma.u-strasbg.fr/scPDB
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TNF-α dataset to the binding sites of HIV-1 RT sc-PDB 
dataset. Each binding site was tagged to compute a 4,833 
bit-string that count all possible pharmacophoric triplets 
based on the atomic coordinates of Cα atoms lining the 
binding cavity. The pairwise comparisons of the finger-
prints were evaluated with the default similarity score, 
with a threshold set at a value of 0.16 to distinguish simi-
lar from dissimilar binding sites.

G‑LoSA
G-LoSA [38] v.2.2 is an alignment tool that was used 
with the binding sites ‘SITE’ pdb files. G-LoSA computes 
a set of inter-structural Cα pair distances to derive a 
graph, which will later be subjected to maximum clique 
search. The default G-LoSA score (GA-score) was used to 
evaluate the alignments. A threshold value of 0.59, rec-
ommended by the authors [38] and corresponding to a 
p-value of 0.05, was used to distinguish similar from dis-
similar binding sites.

KRIPO
PDB ligands structural information were downloaded 
from Ligand Expo (http://​ligand-​expo.​rcsb.​org/) and 
prepared according to the KRIPO procedure (https://​
github.​com/​3D-e-​Chem/​kripo). Then KRIPO [15] v.1.0.1 
was used with the list of prepared PDB structures for the 
pharmacophore fuzzy fingerprints calculations, using 
default parameters (fragmentation procedure activated). 
The pairwise similarities of the fingerprints were esti-
mated with kripodb (v.3.0.0) using the modified Tani-
moto coefficient as similarity metric. A threshold value of 
0.50 was used to distinguish similar from dissimilar bind-
ing sites.

ProBiS
In a first place, the surface information (srf files) was 
computed for each prepared PDB structures with the 
default parameters referenced in the manual (3.0  Å to 
the ligand). ProBiS [39] requires a list of ligand HET code 
and residue number for each PDB entries. That list was 
provided to ensure that the ligands/sites considered are 
the same as in the binding site datasets used for other 
methods. Then, the alignment and comparison of the srf 
files were executed with default parameters, except for 
the Z-score that was set to a high negative value (− 9999) 
as suggested by the authors to enforce the output of all 
results. Similarity between two binding sites was evalu-
ated by the alignment score and Z- score. A threshold 
Z-score value of 2.0 was used to distinguish significant 
from irrelevant binding site alignments.

SiteAlign
For each entry, the list of natural amino acids in the 
‘SITE’ mol2 files were provided as input. SiteAlign [37] 
v.4.0 describes a binding site by a polyhedron of 80 dis-
cretized triangles annotated with eight possible phar-
macophoric features projected from cavity-lining C-α 
atoms. This results in a fingerprint of 640 integers. The 
pairwise comparisons imply aligning the correspond-
ing polyhedron and computing the d1 and d2 distances 
of the fingerprints. The distance thresholds of d1 = 0.6 
and d2 = 0.2 were applied respectively, to discriminate 
similar from dissimilar binding sites.

Shaper
Shaper [21] v.1.0 uses the same input files (VolSite cavi-
ties in mol2 file format) as ProCare. Shaper is an align-
ment method based on the OpenEye ShapeTK toolkit 
(OpenEye Toolkits 2020.2.0, OpenEye Scientific Soft-
ware, Santa Fe, USA) to maximize the overlap of shape 
and pharmacophoric features of the two compared cav-
ities, thanks to a smooth Gaussian function. The align-
ments were realized with default settings and scored 
with a Tversky metric putting more weight on the refer-
ence cavity (RefTve). A threshold RefTve value of 0.44 
(p-value = 0.005) was used to distinguish similar from 
dissimilar binding sites.

Ligand similarities
Ligand 2D similarity
Morgan fingerprints on the one hand, and 166 pub-
lic MACSS keys on the other hand were computed 
on the PDB ligands (sdf format) and ChEMBL ligands 
(SMILES strings) with RDKit (Open-source chem-
informatics; http://​www.​rdkit.​org) python package 
v.2019.03.4.0 using default parameters (radius = 2  for 
the Morgan fingerprints). The Tanimoto coefficients of 
the pairwise TNF-α ligands/HIV-1 RT ligands finger-
prints comparison were reported. Cut-off values of 0.30 
(Morgan fingerprints) and 0.65 (MACCS keys) were 
used to discriminate chemically similar from dissimilar 
ligands.

Ligand 3D similarity
sc-PDB HIV-1 RT inhibitors were compared to TNF-α 
inhibitors with OpenEye ROCS v.3.2.0.4 and scored by 
decreasing Tanimoto similarity metric accounting for 
both shape and chemical features overlap (Tanimoto-
Combo). A TanimotoCombo cut-off value of 1.5 was 
used to discriminate chemically similar from dissimilar 
ligands.

http://ligand-expo.rcsb.org/
https://github.com/3D-e-Chem/kripo
https://github.com/3D-e-Chem/kripo
http://www.rdkit.org
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Docking
TNF-α X-ray structure 6OOZ was prepared as described 
above (see TNF-α structures). 6OOZ co-crystallized 
ligand on the one hand, delavirdine, efavirenz and nevi-
rapine as well as their main fragments on the other hand 
were drawn with MarvinSketch v.16.10.17 (ChemAxon 
Ltd, 1031 Budapest, Hungary) and saved into 2D sdf for-
mat. They were ionized with Filter v.2.5.1.4 (OpenEye 
Scientific Software, Santa Fe, USA) using customized 
parameters (Additional file  1: Table  S6). Then Corina 
v.3.40 (Molecular Networks GmbH, 90411 Nürnberg, 
Germany) was used to generate a starting 3D confor-
mation for each inhibitor. The prepared molecules were 
docked into the target 6OOZ with PLANTS v.1.2 [26] 
using the following configuration: the grid was set at 
13  Å from the binding site center; poses were searched 
‘speed1’ settings to generate a maximum of 10 poses per 
ligand using a clustering rmsd of 2  Å. Solutions were 
scored with the default ChemPLP scoring function [26]. 
The docking protocol was validated by computing the 
RMSD of the docked 6OOZ ligand coordinates and the 
X-ray coordinates. Results were processed and rescored 
by computing the interaction fingerprint (IFP) similar-
ity (Tanimoto metric) [48] between X-ray and docking 
poses. The IFPs were computed with IChem v.5.2.9 IFP 
module. All poses were visually inspected using Maestro 
v.2019-3 (Schrödinger, New York, NY 10036-4041).

Chemicals and biologicals
Nevirapine (catalog #S1742), efavirenz (catalog #S4685) 
and delavirdine mesylate (catalog #S6452) were pur-
chased from Selleck Chemicals (https://​www.​selle​
ckchem.​com/). Soluble human TNF-α (catalog # Z01001) 
was purchased from GenScript (http://​www.​gensc​ript.​
com).

Binding of HIV‑1 RT inhibitors to human TNF‑α (microscale 
thermophoresis)
Human TNF-α was labeled using the RED-NHS 2nd 
generation labeling kit (NanoTemper Technologies 
GmbH) using a protein concentration of 10  µM and a 
molar dye-to-protein ratio ~ 3:1. A label/protein ratio 
of 0.4 was determined using photometry at 650 and 
280  nm. Compounds efavirenz, delavirdine and nevi-
rapine were initially dissolved in DMSO to afford stock 
solutions of 10  mM. These were then diluted to initial 
concentrations of 260  μM into 20  mM  K-phosphate 
pH 7.4, 150 mM NaCl ensuring a final concentration of 
DMSO of 2.6%. These compounds were serially diluted 
2:1 in buffer 20 mM K-phosphate pH 7.4, 150 mM NaCl, 
2.6% DMSO producing ligand concentrations ranging 
from 260 µM to 594 nM (16 titration points). For MST 
measurements, each ligand dilution was mixed with 

1 volume of fluorescently-labelled TNF-α at 680  nM 
in 20  mM  K-phosphate pH 7.4, 150  mM NaCl, 0.02% 
Tween-20, which leads to a final concentration of TNF-α 
of 340 nM and final ligand concentrations at half of the 
ranges above. The final buffer is 20 mM K-phosphate pH 
7.4, 150  mM NaCl, 0.01% Tween-20 and 1.3% DMSO. 
After a 15-min incubation at room temperature in the 
dark, followed by centrifugation at 13,000g for 3  min, 
each solution was filled into Monolith NT Premium cap-
illaries (NanoTemper Technologies GmbH). Thermopho-
resis was measured at 25  °C with 40% LED power and 
20%, 40% and 80% MST power using a Monolith NT.115 
(NanoTemper Technologies GmbH). Data were analyzed 
in the NT Analysis software version 1.5.41 (NanoTemper 
Technologies GmbH).
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