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Abstract 

Chemical patents are a commonly used channel for disclosing novel compounds and reactions, and hence represent 
important resources for chemical and pharmaceutical research. Key chemical data in patents is often presented in 
tables. Both the number and the size of tables can be very large in patent documents. In addition, various types of 
information can be presented in tables in patents, including spectroscopic and physical data, or pharmacological use 
and effects of chemicals. Since images of Markush structures and merged cells are commonly used in these tables, 
their structure also shows substantial variation. This heterogeneity in content and structure of tables in chemical 
patents makes relevant information difficult to find. We therefore propose a new text mining task of automatically 
categorising tables in chemical patents based on their contents. Categorisation of tables based on the nature of their 
content can help to identify tables containing key information, improving the accessibility of information in patents 
that is highly relevant for new inventions. For developing and evaluating methods for the table classification task, we 
developed a new dataset, called ChemTables, which consists of 788 chemical patent tables with labels of their con-
tent type. We introduce this data set in detail. We further establish strong baselines for the table classification task in 
chemical patents by applying state-of-the-art neural network models developed for natural language processing, 
including TabNet, ResNet and Table-BERT on ChemTables. The best performing model, Table-BERT, achieves a perfor-
mance of 88.66 micro-averaged F1 score on the table classification task. The ChemTables dataset is publicly available at 
https://​doi.​org/​10.​17632/​g7tjh​7tbrj.3, subject to the CC BY NC 3.0 license. Code/models evaluated in this work are in a 
Github repository https://​github.​com/​zenanz/​ChemT​ables.

Keywords:  Neural networks, Table classification, Chemical patents

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
A large number of chemical compounds are first pub-
lished in patents. It takes on average one to three years 
for compounds disclosed in patents to appear in sci-
entific literature [1], and only a small fraction of these 
compounds ever appear at all in publications. Therefore, 
chemical patents are an important resource for the devel-
opment of information management tools to support 

chemical research. Information in patents is crucial for 
novelty or fact checking and understanding compound 
prior art [2]. 

Chemical patents typically present novel compounds, 
either specifying the chemical structure of compounds in 
the form of an image or through their systematic chemi-
cal name in the text, for which state of the art name-to-
structure tools such as OPSIN [3] and MarvinSketch [4] 
can be used to reliably generate the structure. However, 
to back up the invention’s claims, patents also contain 
additional information related to these compounds—
characterising them further, such as physical or spec-
troscopic data (Fig.  1a), information related to their 
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preparation (Fig.  1b), or by exemplifying their claimed 
use through further information or numerical data. In 
addition to natural language text descriptions, such 
information is also presented in the form of tables and 
lists presenting the data in a compact and highly organ-
ized way. In fact, numerical data of very high interest to 
researchers, such as novel pharmacological results, are 
typically presented in this structured form [5].

In this context, manual excerption (or extraction) of 
key knowledge of compounds and their reactions from 
tables in chemical patents has been undertaken for large 
commercial chemical knowledge databases such as Else-
vier’s Reaxys® database1, providing reliable and compre-
hensive data within the domain of chemical literature and 
patents. The information provided by these commercial 
resources is of high-quality, but they are very expensive 
and time-consuming to build. As the number of new 
patent applications has been drastically increasing [6], 
it is infeasible for researchers and commercial chemical 

database providers to extract all of the relevant informa-
tion manually from patent documents.

To reduce the time and effort needed for information 
extraction from chemical literature and patents, several 
rule-based text mining approaches have been developed. 
ChemDataExtractor [7] is an open-source toolkit for 
information extraction in chemical literature. The table 
parser module of ChemDataExtractor is able to identify 
components of tables (e.g. caption, header, footnote, data 
and units) with a tailored pre-processing pipeline and 
rule-based grammars. LeadMine [8] is a commercial tool 
that also supports information extraction from tables 
using rule-based methods. However, these tools have not 
been rigorously evaluated in terms of accuracy, efficiency 
and generalizablity on chemical patent data due to the 
lack of publicly available datasets like ChemTables.

Recent advances in machine learning-based Natu-
ral Language Processing techniques have also been 
adapted to the chemical domain, covering a wide range 
of information extraction tasks, including named entity 
recognition and relation extraction [9–14]. Most of 
these methods focus on processing plain text by lev-
eraging state of the art Natural Language Processing 
(NLP) approaches, and tabular data is usually ignored 

Menstruum name Solubility (mg/ml)

Ropivacaine free 
base

Ropivacaine 
methansulfonate

Ropivacaine 
hydrochloride

anhydrous ethanol 155 320 95
benzyl alcohol 225 550 140

glyceryl monoacetate 18 50 30
benzyl benzoate 70 2 2.5

ethyl lactate 80 198 16.5
Soybean oil 9.6 2.5 2
Sesame oil 11.7 1.7 2

a

b

Fig. 1  Example of tables in chemical patents that are of high interest to researchers. a Example of table which contains solubility data of 
compounds (EP2949316A1 Table 2). b Example of table which shows reaction related data. (US09194041B2 Table 2)

1  Reaxys® Copyright ©2020 Elsevier Limited except certain content provided 
by third parties. Reaxys is a trademark of Elsevier Limited. https://​www.​
reaxys.​com

https://www.reaxys.com
https://www.reaxys.com
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or discarded. This leads to significant loss in the amount 
of compound-related information that can be extracted 
from patents. A key reason for ignoring tabular data is 
the lack of existing publicly available chemical patent cor-
pora with gold standard annotations on tables.

In this paper, we therefore present a novel dataset—
the ChemTables corpus—consisting of tables extracted 
from chemical patents augmented with gold standard 
annotations of semantic types reflecting the key content 
of each table. This dataset enables further research in 
information extraction from chemical tables. We make 
this dataset publicly available [15].

It is challenging to develop text mining approaches 
for the extraction of information from tabular data in 

chemical patents. Firstly, the number of tables and the 
average size of tables in chemical patents are much larger 
than in other contexts such as the web. For example, in 
the Web Data Commons Web Table Corpus 20122 [16] 
which consists of tables crawled from the web, the aver-
age number of rows is 12.41, respectively, whereas in our 
ChemTables dataset, the average number of rows is 
38.77, 3 times more than in web tables. Thus, although 
a wide range of methods and datasets for text mining in 
web tables have been proposed, the performance of these 
methods might be compromised when applied to tables 
in chemical patents.

Furthermore, as shown in Fig. 2, tables containing dif-
ferent types of information are often structured differ-
ently and not all tables contain valuable data relevant 

Ex. Structure Purification, Physical properties

3

 

Recrystallization from 2-propanol
1H-NMR and 19F-NMR (CDCl3) δ [ppm]: 1.10 (t, 3H), 
1.87-1.98 (m, 2H), 3.39 (t, 2H), 3.98 (s, 2H), 6.05 (tt, 
1 H), 7.33-7.43 (m, 3H), 7.54-7.62 (m, 2H), 7.84 (d, 
1 H), 7.88 (d, 1H), -137.40 (d, 2F), - 129.74 (s, 2F), 
-123.80 (s, 2F), -121.43 (s, 2F), -120.55 (s, 2F), 
-109.83 (s, 2F), tentatively assigned as E-
configuration
White solid, mp: 66-68°C

4

 

Recrystallization from 2-propanol
1H-NMR and 19F-NMR (CDCl3). δ [ppm]: 0.89 (t, 3H), 
1.20-1.50 (m, 10H), 1.83-1.96 (m, 2H), 3.40 (t, 2H), 
3.98 (s, 2H), 6.05 (tt, 1H), 7.33-7.48 (m, 3H), 
7.53-7.63 (m, 2H), 7.88 (d, 1H), 7.88 (d, 1H), - 137.47 
(d, 2F), -129.75 (s, 2F), -123.81 (s, 2F), -121.45 (s, 
2F), -120.02 (s, 2F), - 109.81 (s, 2F), tentatively 
assigned as E-configuration
White solid, mp: 78-79°C

a

b

Fig. 2  Examples of showing the heterogeneity of tables in chemical patent documents. a Example of a self-contained table describing 
spectroscopic data of compounds. Columns in this table are organized by data format (i.e. images, texts) (EP1769286B1 Table 1). b Example of a 
pharmacological table containing only pointers to contents in the body of the patent documents. Columns in this table are organized by data type 
(i.e. different activity range) (EP2049474B1 Table 2)

2  http://​webda​tacom​mons.​org/​webta​bles/.

http://webdatacommons.org/webtables/
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to key chemical compounds described in the patents. 
Therefore, it may be most effective to develop different 
approaches for extracting information from tables that 
are specific to the semantic type of the table. This means 
that table classification and identification of tables con-
taining valuable data are fundamental steps to enabling 
high quality information extraction from tabular data 
within chemical patents.

In addition to introducing the ChemTables data set, 
we provide here an empirical comparison of several 
strong baseline approaches to table classification using 
this corpus, including conventional machine learning 
models based on the Naïve Bayes (NB) and Support Vec-
tor Machine (SVM) algorithms, as well as neural mod-
els TabNet [17], ResNet [18] and Table-BERT [19]. The 
experimental results show that all neural methods out-
perform the conventional machine learning baselines. 
Among the three neural models, Table-BERT produces 
the best classification performance which we ascribe 
to the power of pre-trained language models. We also 
examine potential issues specific to classifying chemical 
patent tables, and finally identify directions for further 
improvements in the classification performance.

Related work
In this section, we summarise previous efforts to apply 
machine learning methods to tabular data, including 
table layout classification (section  Layout classification 
of web tables), table question answering (section Layout 
classification of web tables) and table fact verification 
(section  Table fact verification) and discuss how meth-
ods developed for these tasks can guide our approach to 
semantic classification task for chemical patent tables.

Layout classification of web tables
Tables can be extracted from HTML format web pages 
by extracting content from elements surrounded by a 
<tables> tag. These tables are structured with different 
layouts, such as vertical lists or matrices. A layout clas-
sification task can be defined, which aims to automati-
cally identify the layout category of given web table (e.g. 
horizontal relational, vertical relational, matrix). We can 
determine the position of table headers and data cells 
more accurately if the layout of table is known. This task 
is fundamental for downstream table processing tasks. 
For example, in relation extraction, the column/row 
headers are often the most informative clue for identify-
ing relations between two data cells in the same column/
row. This task is challenging as web tables from diverse 
sources can have a huge vocabulary, making heuris-
tic methods infeasible. Rule-based table classification 

methods based on selected keywords/tags often provide 
high recall but lack precision [20].

Here, we review several methods and datasets related 
to this task; these methods are directly relevant for our 
problem of classifying tables and several will be used as 
baseline methods in our experiments.

TabNet [17] is a supervised learning model for web 
table layout classification, and one of the earliest attempts 
to apply neural networks for image processing to the task 
of understanding table structure. It uses a Long Short 
Term Memory (LSTM) [21] network method to encode 
the sequence of tokens (words) within each table cell with 
embedding vectors. The encoded table is then treated as 
an image and fed into a Residual Network [18] to derive a 
latent representation of the table. A linear transformation 
followed by a soft-max function is applied on the latent 
representation for generating a probability distribution 
over all classes.

This model and the baselines it compares to are evalu-
ated on a web table dataset, built by extracting tables 
from the top 500 web pages containing the highest num-
bers of tables in a subset of the April 2016 Common 
Crawl corpus [22].

Tables in this dataset are categorized based on the logi-
cal structure of the table, such as Vertical Relational and 
Horizontal Relational.

The experimental results show that TabNet outper-
forms baseline models which are based on Random For-
est with handcrafted features [20, 23, 24], and on the 
other hand on the bidirectional HAN—Hierarchical 
Attention Network [25] neural model. This work also 
shows that an ensemble of 5 TabNets also outperforms 
an ensemble of 5 HANs and bidirectional HAN. This 
work shows that adapting models designed for image 
classification to tables in which cells are encoded as vec-
tors of uniform size can outperform non-neural models 
with hand-crafted features engineered specifically for the 
table layout classification task.

TabVec Unsupervised methods have also been devel-
oped for table layout classification. TabVec [26] learns the 
semantic of tables using a vector space model based on 
random indexing [27]. Four different types of contexts 
are used for learning word vectors, including the text 
within each table cell, text in column/row headers, text 
in adjacent cells and the text surrounding the table. Based 
on the idea that each cell in the table represents the same 
concept, the cell vector is then calculated by taking the 
median of word vectors of all tokens in the content. 
Instead of proposing a specific label set for annotated 
tables, only a general concept of table types is defined. In 
this work, a table type is defined as the way how different 
concepts are organized in a table. Hence, a table type can 
be measured by calculating semantic consistency across 
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rows, columns and the entire table. The semantic consist-
ency is grounded by taking the deviation from mean and 
deviation from median at both row/column and table lev-
els. The derived deviation vectors are then concatenated 
to form the final table vector representing the semantics 
of the table.

Since no label set is provided in this task, a K-Means 
clustering is applied on the vector representations of 
tables in the dataset. The label of each cluster is manually 
assigned by users, which eventually results in a label set 
similar to [17]. The proposed TabVec method is evaluated 
on 3 web datasets crawled from the domains of human 
trafficking advertisements, fire arms trading, and micro-
cap stock market. In addition, a random sample of the 
July 2015 Common Crawl corpus is also used for com-
parison with other methods which focus only on generic 
domains. The experimental results show that the pro-
posed TabVec method significantly outperforms TabNet 
on all 4 datasets, indicating that contextual information 
can be particularly helpful for learning table semantics. 
Table2Vec [28] uses a similar idea as TabVec, except that 
the embeddings are trained using the Word2Vec skip-
gram model [29], and used for row/column population 
and a table retrieval task instead of classification.

To classify the content of tables in chemical patents, 
we focus on interpreting their content and semantics, 
instead of relying on purely structural information. 
Therefore, methods developed for (web) table layout 
classification need to be adapted to cater for this more 
semantically-informed classification task. They also need 
to be specifically evaluated over chemical patents.

Table question answering
Question answering (QA) is the task of extracting 
answers to user questions from large document sets. It is 
a hard task and under active research in the NLP com-
munity as it requires a deep understanding both user 
questions and the documents where their answers may 
lie. Research in this area mainly focuses on answering 
questions based on unstructured text only. However, in 
many documents, the information necessary to answer 
user questions is described in tables. Thus, to build a 
well-rounded question answering system, the ability to 
extract answers from content within tables is needed. In 
the table question answering task, the goal is to answer a 
given question using data within a table.

Compositional Semantic Parsing [30] presented the 
WikiTableQuestion dataset, consisting of 22,033 natu-
ral question-answer pairs over 2108 tables extracted from 
Wikipedia pages. In this work, a novel method based on 
semantic parsing for table QA is proposed. The tables are 
first converted to knowledge graphs in which table cells 
are entity nodes; table rows are row nodes; table columns 

are directed edges from the row nodes to entity nodes of 
that column. Based on the knowledge graph converted 
from table, the questions are parsed to a set of logical 
forms. The logical forms of questions can be executed 
on the table knowledge graph as queries to retrieve the 
answer.

The authors proposed a novel semantic parsing method 
Floating Parser to address the difficulty of table-based 
parsing, such as the mismatch between words and utter-
ance/predicates. This parser uses a relaxed lexical rule for 
anchoring predicates in logical forms to tokens by replac-
ing the fixed span in chart parsing by a floating cell which 
only restricts the category and size of logical form.

The logical forms derived from tables and questions 
are fed into a log-linear model which optimizes the prob-
ability of the selected logical form retrieving the correct 
answer after execution on the table knowledge graph. 
Features used in this model include word n-grams in both 
question and table, the headword of the question (e.g. 
what, who, how many, etc) and the type of the answers 
(e.g. NUM, DATE, ENTITY) retrieved by using the logi-
cal form-table pair.

Haug et al. [31] proposed a CNN-based neural method 
for table QA task. In this approach, logical forms are first 
extracted using the same method as [30]. Then the logi-
cal forms are naturalized to a plain textual representation 
by applying a novel algorithm which recursively traverses 
the �− DCS logical form derived from the previous step.

The GloVe vectors of tokens in the naturalized logical 
forms are feed into 2 jointly trained CNNs for obtaining 
sentence-level embeddings. The final answers are then 
selected based on the neural similarity between the sen-
tence embeddings of the logical form and the question. 
This work also evaluated several ways to calculate the 
similarity of sentence embeddings on this task, includ-
ing dot-product, Bi-Linear (BILIN), and fully connected 
Feed-Forward networks (FC) applied on the concatena-
tion of 2-sentence embeddings. The experimental results 
show that using the weighted average of BILIN and FC 
similarity and an ensemble of 15 models results in a per-
formance exceeding [30] 1.6% in absolute accuracy. This 
work shows that neural models using semantic informa-
tion from pre-trained embeddings with natural language 
input can produce better performance than a model 
based on logical forms and hand-crafted features.

Krishnamurthy et  al [32] proposed a neural encoder-
decoder architecture for semantic parsing in tables. In 
addition to the word embeddings of each token in the 
question, an entity linking embedding is also introduced 
in this model. To construct the entity linking embed-
dings, similarity between pairs of entity mentions in 
the knowledge graph and tokens in question is meas-
ured. The entity linking score consists of two parts, the 
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similarity between word vectors of entity and token in 
questions and the output of a linear classifier built on 
hand-crafted features such as exact/lemma match, edit 
distance and NER tags. The entity linking score across all 
entities of the same type is then fed into a softmax func-
tion. Based on the resulting probability distributions, the 
weighted sum of embedding vectors of all entities forms 
the final entity linking embedding. To avoid the problem 
of ignored type constraints imposed by previous neural 
semantic parsers, strong type constraints are applied by 
only allowing the decoder to generate results in a gram-
mar that guarantees well-formed logical forms.

The experimental results show a significant improve-
ment based on previous state-of-the-art results [30, 31]. 
An absolute improvement of 7.2% in accuracy is observed 
comparing the CNN-based approach proposed by [31], 
showing that generating logical forms using a neural 
parser can produce logical forms more accurately than 
chart parser optimized for semantic parsing in tables.

In summary, most table QA methods take the same 
strategy as knowledge base QA in which tables play the 
role of a knowledge base. In these methods, tables and 
questions are first converted into logical forms by seman-
tic parsing, and then the answer is extracted by query-
ing the table. Since pre-defined logical forms and rules 
are required to perform table semantic parsing, such 
constraints might cause unexpected loss of information 
during the conversion process. In table classification, our 
objective is to obtain an accurate semantic representation 
of the table. Since there is no need for pairing questions 
with table contents, semantic parsing may not be the 
ideal way to extract semantic information from tabular 
data as there is some loss of information.

Table fact verification
Similar to table QA, table fact verification also takes as 
input a table and statement pair. However, instead of 
extracting answers from the table, table text entailment 
models seek to determine whether a statement is true 
based on the data presented in a table.

Table-BERT [19] captures contextualized table seman-
tics by applying BERT [33] on the concatenation of lin-
earized tables and the statement to be verified. In this 
work, two different approaches to linearization are pro-
posed. The first approach, serialization, simply concat-
enates content of all table cells with [SEP] (a special token 
which separates different sentences in BERT’s input). 
Under this setting, the position count of each token 
is reset to 0 at the beginning of each cell. The second 
approach, naturalization, uses a template filling method 
in which the content of each cell is enriched by adding 
the column and row headers.

The concatenation of linearized tables and the state-
ment is then fed into a pre-trained BERT for extracting 
semantic representations. The same method for extract-
ing sentence-level semantic representation in BERT is 
used for this task. The derived representation of tables 
will be fed into a linear layer with a binary classification 
objective to make a prediction on whether the table sup-
ports the given statement.

The experimental results show that Table-BERT per-
forms significantly better than strong baselines, including 
a weakly-supervised latent program analysis approach 
(similar to [34]), showing that semantic information 
captured by pre-trained language models can improve 
upon semantic parsing. Moreover, pre-trained language 
model-based approaches also require less effort in adapt-
ing semantic parsers designed for other tasks to tabu-
lar data. Among different settings of Table-BERT, the 
naturalization approach outperforms the serialization 
approach by a large margin since more context can be 
incorporated for each table cell.

Table-BERT is capable of encoding the combination of 
tabular data and the statement into vectors that can be 
used as features for classification tasks, which means that 
Table-BERT can be used as a semantic encoder for tables, 
and especially if we use flattened tabular data as input. In 
the table verification task, the semantic representations 
of both table and the statement need to be obtained to 
identify whether the table entails the statement. Since 
our table classification task also requires semantic rep-
resentations of tables, it is worth investigating whether 
Table-BERT can be adapted to table semantic classifica-
tion task using only tables as input.

Bridging quantities between tables and texts
The goal of this task is to identify co-references between 
quantities mentioned in tables and in the main body of 
documents. Besides direct mentions (i.e. values in a table 
are identical to those mentioned in body text), aggre-
gations of values also need to be identified in this task. 
Hence, the first step of this task is to extract all pairs of 
quantity mentions in tables and texts. Then pairs which 
co-refer can be identified through a binary classification 
task. This task requires modeling of table content within 
cells as well as consideration of the broader document 
content outside of the tables.

ExQuisiTe [35, 36] proposed a multi-stage system for 
linking numeric mentions in tables and texts. Firstly, all 
quantity mentions are extracted from both and tables and 
texts. In this stage, aggregation of values such as total, 
difference, percentage and change ratio between values in 
the same column/row are also calculated and add to the 
collection of quantities.
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In the second stage, all possible pairs between quan-
tities are enumerated and fed into a Random Forest-
based classifier to eliminate the pairs that are not likely 
to be relational. Features used for building this classifier 
include context features, such as word and phrase over-
laps and quantity features such as relative difference 
between values, unit match and aggregation function 
match. After pruning, the remaining candidate mention-
pairs are classified based on whether the text mention is 
an aggregation value or a single-cell mention using indi-
cator words, exact matches in tables and other context 
features.

Heuristic approaches are also considered in this work. 
Value and unit mismatches are discarded after ensuring 
mention type matches. Finally, the top-k candidate pairs 
will be selected for the next stage of processing. In this 
system, the selection of value k depends on the distribu-
tion entropy of the confidence score returned by the clas-
sifier for pairs with the same text mention.

CCTR-83 [37] is a corpus specifically built for informa-
tion extraction tasks in tables. It consists of 83 tables in 
43 biomedical documents. Tables in this dataset can be 
divided into 2 groups of roughly equal sizes by their top-
ics which are human cancer and mouse genetics (43 and 
40 respectively). When constructing the dataset, simi-
lar cells are first grouped into cell groups and the terms 
which correspond to concepts in UMLS-NCI schemes 
will be annotated. The type of cell groups are decided 
based on the common parents of concepts presented 
in this group. Finally, suggested relations between cell 
groups will be generated based on matches to UMLS 
Metathesaurus and UMLS SN, which the annotator will 
decide whether to accept it as an annotation or not. In 
this dataset, tables are annotated by experts with post-
graduate degree in Biology. Thus, this dataset has a very 
high inner-annotator agreement of Kappa values of 
0.88, 0.87, 0.82 for concept, cell type and relation anno-
tations, respectively. However, owing to budgetary con-
straints, it is small in size and may not be sufficient for 
complex machine learning methods. In this dataset, it is 
possible to do classification based on semantic types by 
using topic of tables (human cancer and mouse genetics) 
as labels. However, the number of table instances is too 
small for any supervised machine learning approach.

ChemTables Corpus
In this section, we present the annotation guidelines 
and data preparation process of our ChemTables data-
set (section  Corpus definition), general statistics of 
the dataset (section  Annotation statistics), and more 
detailed dimension-level (section  Dimension-level sta-
tistics) and cell-level (Fig. 6) statistics. Finally, we present 

the standard data split we use for evaluating our table 
semantic classification methods (section   Data split for 
evaluation).

Corpus definition
To enable automatic determination of semantic type and 
relevancy of tables in chemical patents, we have con-
structed a new table dataset named ChemTables. In 
contrast to WikiTableQuestions and other datasets 
that are built from web crawls, our ChemTables corpus 
focuses exclusively on tables in chemical patents, and 
makes use of a categorization scheme directly relevant to 
chemistry.

For the purpose of identifying tables containing data 
valuable to research, the taxonomy of tables must be well 
defined so that the relevancy of tables can be assessed 
based on their label. In order to reflect the categories of 
content that are of interest for researchers, we adapted 
the categorization system for facts in patents from 
Reaxys® [38], a highly curated database of experimental 
facts derived from relevant literature including patents. 
The storage of data follows strict organising principles. 
The same organisation is used in the manual excerp-
tion process. The main purpose of patent excerption for 
Reaxys is to identify and capture significant data about 
compounds and their related reactions and facts in a reli-
able and comprehensive way. Reaxys has had positive 
reception from chemists as it can help accelerating the 
search of property information of chemical compounds 
and provides the ability to compare data from different 
sources [39, 40].

Hence, we assume that the key data types derived from 
Reaxys for the ChemTables labelling guidelines represent 
the most typical and important types of data in chemical 
patents.

Following the Reaxys Excerption Guideline, in our 
ChemTables dataset, tables in chemical patents are 
categorized based on their semantic types as listed in 
Table 1. We identified the 5 most relevant types of infor-
mation for chemical research (rows 1 to 5 in Table  1). 
Since there can be different types of data presented in 
the same table, a single table can be assigned to multi-
ple categories within the annotation scheme. However, 
if a group of data in the table cannot be categorized into 
any class in the Reaxys schema, only one of three out-
of-schema category labels (COMPOSITION, PROPERTY​, 
OTHER) will be assigned following the order of priority 
shown in the table.

Corpus construction
We first sampled 1K XML-formatted patents from the 
European Patent Office (EPO) and the United States Pat-
ent and Trademark Office (USPTO). The original files 
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were derived from the repositories of a 3rd party data-
base but the same can be obtained from USPTO/EPO 
bulk download service. These patents must have at least 
1 table to be retained. IPC classes were used for filtering; 
we selected patents from the classes C07 (Organic Chem-
istry), C09B (Dyes), A01N (Agrochemistry) and A61K 
(Drugs). If a patent has been published more than one 
time in different patent offices (known as a patent fam-
ily of related patents), we only use the earliest instance 
of this patent within the patent family. Tables are auto-
matically extracted from these patents using a toolkit 
developed internally. However, since the patents from 
EPO and USPTO in their XML format are available for 
download, this process can be replicated by extracting 
textual content from XML tags corresponding to tables 

(i.e. <tables> ) using any publicly available XML parser. 
We have made a comparable tool available3.

On average, there are more than 8 tables per patent. 
To achieve better downstream task performance, after 
extraction, we tokenize the textual content in each cell 
with a chemical tokenizer which is a component of the 
chemical named entity recognition (NER) tool OSCAR44. 
[41]. This process results in a total of 788 tables consist-
ing of 3 million tokens5. In the ChemTables dataset, we 
store all tables extracted from a patent document in dif-
ferent worksheets within a single Excel (.xlsx) file. The 
original patents in both XML format and PDF format are 
provided with the table file, which means that tables in 
this corpus can be linked back to its context in the origi-
nal patents by matching the caption. The 788 annotated 
tables are randomly sampled from the data extracted.

This table dataset was sent to 3 groups of Reaxys 
excerptors who hold at least a Master’s degree in chem-
istry. The excerptors have years of experience working on 
Reaxys excerption, thus are very familiar with relevant 
topics and concepts in the chemical patent table annota-
tion task. Two annotator groups (Annotator 1 and 2 in 

Table 1  Table categories IDs within the Reaxys scheme and examples of expected content

Label Description Examples

SPECT Spectroscopic data Mass spectrometry, IR/NMR spectroscopy

PHYS Physical data Melting point, quantum chemical calculations

IDE Identification of compounds Chemical names, structure, formula, label

RX All properties of reactions Starting materials, products, yields

PHARM Pharmacological data Pharmacological usage of chemicals

CHEM Chemical data Catalysis, electrochemical reactions

COMPOSITION Compositions of mixtures Compositions made up by multiple ingredients

PROPERTY​ Properties of chemicals The time of resistance of a photoresis

OTHER Other tables –

Table 2  Inner annotator agreement between annotator group 1, 2 and gold set in precision ( P ), recall ( R ) and Macro F1 score ( F1)

“Random” refers to randomly sampled label from the label distribution in the final gold standard dataset

Label Annotator 1 Annotator 2 Random

P R F1 P R F1 P R F1

SPEC 97.20 97.74 97.47 96.77 96.67 97.47 24.27 26.14 25.17

PHYS 79.02 89.13 83.77 88.43 89.15 88.79 9.43 3.79 5.41

IDE 88.47 94.51 91.39 94.04 85.54 89.59 16.64 18.87 17.68

RX 62.32 82.45 70.98 80.68 83.72 82.17 7.14 4.84 5.77

PHARM 80.94 93.67 86.84 87.55 91.69 89.57 14.76 17.42 15.98

COMPOSITION 85.71 85.41 85.56 79.20 79.94 79.57 6.97 8.04 7.47

PROPERTY​ 45.56 61.89 52.49 36.68 46.35 40.95 3.13 3.45 3.28

OTHER 69.92 25.05 36.88 62.21 58.37 60.23 13.43 15.32 14.31

Overall 76.14 78.73 75.67 78.20 78.93 78.54 11.97 12.23 11.88

3  https://​github.​com/​zenanz/​ChemT​ables.
4  https://​github.​com/​BlueO​belisk/​oscar4.
5  List of all patents from which at least one table has been drawn can be 
found in our GitHub repository  https://​github.​com/​zenanz/​ChemT​ables/​
blob/​master/​ChemT​ables_​Patent_​IDs.​txt.

https://github.com/zenanz/ChemTables
https://github.com/BlueObelisk/oscar4
https://github.com/zenanz/ChemTables/blob/master/ChemTables_Patent_IDs.txt
https://github.com/zenanz/ChemTables/blob/master/ChemTables_Patent_IDs.txt
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Table  2) annotated the ChemTables dataset indepen-
dently while the third annotator group worked to merge 
annotations from different annotators and make final 
decisions in case of disagreements. We then use the har-
monized set as the final gold standard dataset. We use F1 
rather than Kappa score to measure agreement, as the 
distribution of labels is highly skewed [42]. The inner-
annotator agreement (IAA) scores in terms of F1 score 
are computed by comparing the annotations of Annota-
tors 1 & 2 against the gold set.

As shown in Table  2, both annotator groups achieve 
a high > 80%F1 score on average. This confirms that the 
annotation of ChemTables dataset is of high quality. 
Among all labels, SPEC, PHYS and IDE gets 80+ F1 score 
in both annotator groups. Since spectroscopic and physi-
cal data are of greater interest to chemical researchers, it 
is not surprising that the annotation of these 3 labels has 
a higher level of consensus than the others. Among labels 
with comparatively lower IAA scores, OTHER and PROP-
ERTY​ stand out as much lower than other categories. 
These labels are only used when the table is considered 
“Out of Reaxys Scheme”. This makes it difficult to disam-
biguate these tables against tables which are within the 
“Reaxys Scheme” but may contain similar information.

Annotation statistics
In this section, we show statistics over annotations in the 
dataset. Figure  3a shows the count of annotations per 
semantic type. Among 8846 annotations, SPECT is the 
most common label as 23.1% of all tables in ChemTables 
contain spectroscopic data, while only 4% (37 instances) 
tables are annotated as PROPERTY​.

As our annotation guidelines allows one table to be 
annotated with different labels, we also show the sta-
tistics of co-occurrences between labels. As shown 
in  Fig.  3b, most overlaps occur between RX, PHYS and 
SPECT, indicating that physical, spectroscopic and reac-
tion related data are usually presented in the same table.

Dimension‑level statistics
In this section we show statistics related to table size. 
Merged cells which take up the space of multiple data 
cells are frequently used in headers that summarise the 
semantic of multiple columns/rows. During the extrac-
tion process, information about merged cells is not pre-
served. Thus, only one of the original cells which forms 
the merged cell is used to store the content of the merged 
cell and other cells are left empty. In addition, rows which 
are shorter than the longest row in the table are padded 
with empty cells to ensure all rows in the same table have 
the same length. We measure the size of tables by taking 
the product of number of rows and number of columns. 

Figure  4 shows average size of tables per semantic 
category

We also perform fine-grained table statistics on row 
and column levels. As Fig.  5a shows, the range of table 
heights in the dataset is relatively wide, from less than 
5 rows to more than 1000 rows. This is not surprising 
since patents usually contain many details, as the authors 
tend to maximize the scope of claims of their inventions. 
However, as Fig. 5a shows, only a small fraction of tables 
in the dataset (approx. 10%) have more than 100 rows, 
the height of approximately 80% of the tables in the data-
set is smaller than 35.

The width of tables in patents shows completely differ-
ent patterns than their heights. The range of numbers of 
columns is very narrow compared to that of rows, with 
the width of 99% of tables falling in the range from 1 to 
15, while the maximum number of columns is 32. This 
implies that most tables in patents grow vertically (i.e. 
column headers control the content type of each column 
while rows represent different instances).

Cell‑level statistics
In this section we provide cell level statistics focusing on 
the length of text (number of tokens) in table cells. Sta-
tistic results in Figure  6 shows that most of the cells in 
tables are generally short as 74+% of cells contain only 1 
token (usually data in a single number/word) and 98+% 
of cells contain fewer than 20 tokens.

Cells in tables with SPECT label have the longest aver-
age length (approx. 8 tokens per cell) while tables labeled 
with PHARM have the shortest average length of cells ( < 2 
tokens per cell).

Table captions usually contain some text summaris-
ing the content of the table. Therefore, the caption of 
every table in ChemTables dataset is also included at 
the first cell of the first row. If a table has no caption, we 
use “Unlabelled table n” as caption, where n is a numeri-
cal identifier. Thus, we also present cell-level statistics 
over captions, as they tend to have different properties 
compared to other cells. Indeed, the captions of 90% of 
tables in the dataset contain 2-4 tokens, indicating that 
table captions from chemical patents are much shorter 
and contain less information than table captions in sci-
entific literature. These captions are usually only table 
identifiers, such as “Table 2” or “Unlabelled Table 1”. We 
also find that the average title length is very similar across 
all table categories. Noticeably, tables with label PHARM 
have the shortest average cell length but the longest aver-
age caption length, implying that information in pharma-
cological tables is usually more complex and thus needs 
longer texts to be conveyed.
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a

b

Fig. 3  Statistics on annotations per semantic category. a Statistics on total number of annotations per semantic category. b Statistics on category 
label overlaps
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Data split for evaluation
As shown in Fig. 3b, the number of instances with multi-
ple labels is low (10%). Among all tables with more than 
one type of category annotations, 82% instances are a 
combination of SPECT and PHYS. Hence, when pre-
processing the dataset, we merge tables with both SPECT 
and PHYS labels into a new category SPECT|PHYS. For 
the remaining multi-label instances, we convert those 
into single-label instances by choosing the most frequent 
label.

We make the entire dataset publicly available to moti-
vate further study on this task6 [15].

Experimental methodology
We present our empirical study of table semantic clas-
sification over our ChemTables dataset. We first out-
line the non-neural baseline methods (section  Baseline 
models), and then introduce the neural methods (sec-
tion  Neural network-based models), starting from 
networks taking 2-dimensional tabular data as input 
(section  Cell embedder,  TabNet and   TBResNet) and 
pre-trained language models which take flattened tables 
as input (section Table-BERT). We also detail our evalua-
tion metrics in section Evaluation metrics.

Baseline models
In this work, we compare state-of-the-art neural meth-
ods on table classification with two non-neural baseline 
models Naïve Bayes (NB) and Support Vector Machine 
(SVM), which use bag-of-words features. For each table, 
texts in its cells are tokenized using the OSCAR4 [41] 
tokenizer. We then calculate the value of each bag-of-
words feature by using the TF-IDF weighting scheme. 
Similar to neural models, we also explore the effect of 
input size for baseline models. We use the results with 
optimal input size to compare with other models.

Neural network‑based models
Similar to images, tables are naturally 2-dimensional 
structured data, with table cells acting as counterparts to 
pixels in images. It thus seems possible to attempt gen-
eralizing well-developed methods in computer vision 
to the context of table processing. However, there are 
some challenges for applying computer vision methods 
to tables. One major obstacle is the difference between 
pixels and table cells. Pixels, in conventional image data-
sets, are represented in RGB encoding. Hence the size of 
the vectors representing pixels is the same. By contrast, 
text in table cells contain varying numbers of tokens. 
Thus, an embedder is needed to encode the textual con-
tent in table cells into vectors having a uniform number 
of dimensions. After embedding the table into a feature 

Fig. 4  Statistics on table size per semantic category. Table size is measured as the product of number of rows and columns. The whiskers show a 
95% confidence interval

6  ChemTables Dataset http://​doi.​org/​10.​17632/​g7tjh​7tbrj.3

http://doi.org/10.17632/g7tjh7tbrj.3
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map, an image classification model can then be used as a 
decoder to determine the semantic type of a given table. 
In this work, we evaluate the residual network based neu-
ral model TabNet [17] that has been applied to the web 
table layout classification task, a more complex variation 
of a residual network [18], and a BERT-based model [19].

In an image dataset, the size of different images is usu-
ally the same, whereas tables are often vary substantially 
in size. Hence, to be able to apply image classification 
models on tables, we need to pad or truncate all tables 
in the dataset to the same size. We will explore the 
effect of input size on table classification performance in 

a

b

Fig. 5  Statistics on size of tables in the dataset (y-axis on the right side shows percentage of instances with number of rows/columns less than 
certain range.) a Statistics on number of rows. b Statistics on number of columns
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section  Effect of input size. Since the size of more than 
80% tables in the dataset are within 32 by 32 as shown 
in Fig. 5, we only explore input size within this range.

Cell embedder
We employ a Bi-LSTM encoder with a combination of 
word w and character-level c embeddings as shown in 

a

b

Fig. 6  Statistics on length of cells within tables in the dataset. a Statistics on number of tokens in cells. b Average number of tokens in cells per 
table category (estimator shows 95% confidence interval)
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Fig.  7a. ChemPatent word embeddings are derived 
from a skip-gram model pre-trained on a chemical patent 
corpus [13]. We use fixed weights for tokens presented in 
the vocabulary of the ChemPatent word embeddings 
while using trainable weights for all out-of-vocabulary 
words that appear more than 5 times in the entire table 
training set. For character-level word embeddings, we 
employ CNN-based character-level word representations 
[43] with a kernel size of 3.

TabNet
In TabNet [17] a Bi-LSTM encoder is applied to the word 
embeddings of each token in table cells (w/o character-
level word representation). Then, instead of concatenat-
ing the hidden states from both directions of its Bi-LSTM 
encoder, TabNet adopts the word-level additive attention 
used in [25] to calculate attention weights ai,j,t for the hid-
den states hi,j,t of token t in the table cell located at the i-th 

row and j-th column, and then takes their weighted average 
sum as final cell-level representation.

Attention is then formulated as

where uw is a trainable context vector and Ww is a pro-
jection matrix which maps the hidden states to the same 
dimensionality as the context vector.

The cell-level representation ci,j is then fed as input to a 
3× 3 convolutional layer which is followed by 3 consecu-
tive residual blocks. The residual blocks are illustrated in 
Fig. 7b, where xl refers to the output of the l-th layer of a 
residual block.

TBResNet
In TabNet, although residual blocks are used for encod-
ing tables, the size and depth of the model is still not 
comparable with state-of-the-art deep residual networks 
for image classification. Hence, to investigate the effect of 
increasing model complexity on table classification per-
formance, we use a 18-layer ResNet [18] for table clas-
sification. TBResNet takes the feature map generated by 
the cell-level embedder and feeds it as input to a convolu-
tional layer, which down-samples the output to match the 
input dimension of ResNet18 [18].

Table‑BERT
Table-BERT [19] was proposed for the table fact veri-
fication task. The goal of this task is to verify whether a 
table entails a textual statement which describes facts in 
the table. In contrast to TabNet and TBResNet, BERT is 
a language model pretrained on massive un-annotated 
plain text corpora. Hence, tables must be flattened into 
sequences of sentences before being used as input to 
BERT. Table-BERT then takes a pre-trained BERT model 
as starting point and uses the concatenation of the flat-
tened table and the statement as input to fine-tune BERT 
on a binary classification objective. There are two differ-
ent methods for flattening tables proposed and evaluated 
in this work [19], namely linearization and naturalization.

Linearization The linearization approach simply takes 
the concatenation of tokens within all cells in the table to 
form a paragraph which will be used directly as the input 
to BERT. The cells are added to the paragraph following 
a top to bottom and left to right order. Each row here is 
regarded as sentence and will be separated by a ‘.’ which 
represents the end of sentence. There is no separation 
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Fig. 7  Model Architecture of TabNet. a Embedder architecture. b 
TabNet architecture
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added between content from neighboring cells in the 
same row.

Naturalization is a template filling approach. In this 
approach, row and column headers of each row are 
incorporated into each cell, which make the sentence 
structure of the flattened text more natural and provide 
extra semantic information about the data within each 
table cell. Compared to tables from Wikipedia where 
the determination of column and row header is rela-
tively trivial, the heterogeneity of chemical patent tables 
makes it difficult to accurately locate the headers (see 
section  Effect of flattening strategy for detail). Here we 
assume that the first non-repeating row in a table is the 
column headers (here, captions may be repeated in the 
first row of patent tables), and the first column as row 
headers. In this approach, the column headers and row 
headers are incorporated within each cell (e.g. “The name 
of row [row_id] is [row_header] and its [column_header] 
is [cell_value].”) instead of being added to the paragraph 
individually.

Figure 8 shows examples of the two approaches for flat-
tening tables. Comparing to the WikiTableQuestion 
corpus on which Table-BERT was first evaluated [19], 
tables in the ChemTables dataset do not have explicit 
annotations of the location of header row/columns. 
Therefore, we take the first non-empty row under the 

table caption as row headers and the first column except 
the table caption as column headers. Then, we fine-tune 
BERT on for the table-classification task.

The table fact verification task is a binary classifica-
tion task and its input a statement-table pair. Hence, to 
adapt this model to our table semantic classification task, 
we use the flattened table only as input and change the 
size of the output layer from 1 to the number of labels in 
the ChemTable dataset. Since flattened tables are usu-
ally longer than the input size limit of BERT which is 512 
sub-tokens, we explore the effect of limiting the length of 
a flattened table on classification performance, the results 
of which are presented in section Effect of input size.

Evaluation metrics
We use a stratified 60:20:20 split for training, develop-
ment and test set. We use micro-averaged F1 score across 
all classes over development set as indicator for perfor-
mance improvement. All models in this paper are trained 
for at most 50 epochs, and early stopping is applied if 
there are no micro-averaged F1 score improvements 
observed after 5 epochs. Macro and weighted average F1 
scores across all labels are also reported.

Table 1. Affinities to Heparin

Protein Kd nM (ref)

PF4 27 (44)
IL-8 <5 (43)
ATIII 11 (42)
ApoE 620 (45)

[EOS]: End of sentence

[SEP]: End of paragraph

Green: Caption, Blue: Row headers, Red: Column headers

Linearization
[CLS] Table, 1, ., Affinities, to, Heparin, [EOS] Protein, Kd, nM, (, ref, ) [EOS] PF4,
27, (, 44, ), [EOS] IL, -, 8, <, 5, (, 43, ) [EOS] ATIII, 11, (, 42, ) [EOS] ApoE, 620,
(, 45, ) [SEP]

Naturalization
[CLS] Table, 1, ., Affinities, to, Heparin, [EOS] Protein, PF4, Kd, nM, (, ref, ), is,
27, (, 44, ), [EOS] Protein, IL, -, 8, Kd, nM, (, ref, ), is, <, 5, (, 43, ) [EOS] Protein,
ATIII, Kd, nM, (, ref, ), is, 11, (, 42, ), [EOS] Protein, ApoE, Kd, nM, (, ref, ), is,
620, (, 45, ) [SEP]

Fig. 8  Illustration of different pre-processing approach used in Table-BERT
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Results
In this section, we present our main experimental results 
comparing different neural methods on table semantic 
classification with our baselines (section Main Rresults). 
We then discuss how change in input size impacts the 
performance of neural models (section  Effect of input 
size), and the effect of different pre-processing strategies 
(section  Effect of flattening strategy). We show that the 
tables in the ChemTables dataset are sufficient to train 
state-of-the-art machine learning methods. We also pro-
vide analysis on error cases and propose possible ways to 
further improve classification performance (section Error 
analysis).

Main results
Table 3 shows table classification performances for base-
line models (Naive Bayes, SVM) and neural network 
models (TabNet, TBResNet and Table-BERT). The first 9 
rows show the micro-averaged F1 score per each semantic 
type while the last row shows the overall performances in 
micro-average F1 scores.

For baseline methods, the SVM and Naive Bayes have 
very similar overall performance. SVM outperforms 
Naive Bayes on categories with more than 100 samples 
except for IDE, whereas Naive Bayes archived highest 
score among all models on under represented categories 
(i.e. PHYS, RX, COMPOSITION and PROPERTY​). Com-
paring the baseline approaches with the neural based 
methods, all neural based methods outperform SVM by 
at least 5 points in the micro-average F1 score. Among 
the 3 neural models, Table-BERT achieves the best over-
all performance, with TBResNet second.

Regarding performance broken by semantic type, 
labels with more than 50 instances in the entire dataset 
achieve greater than 70 micro-averaged F1 score, except 
the label OTHER. For the least frequent labels PHYS and 
PROPERTY​, Naive Bayes obtains micro F1 scores much 
higher than those of other models. This suggests that a 
simpler model is more advantageous in such extreme low 
resource condition.

The label OTHER shows a different pattern compared 
to the remaining labels. With 118 instances in the entire 
dataset, the best micro-average F1 performance on this 
label is 54.90, achieved by Naive Bayes. This category is 
particularly hard to identify as it can contain any type of 
information, that may not moreover be relevant to the 
core invention being protected by the patent.

When comparing the performance by table class in 
Table  3, we found that advantages in performance for 
non-neural models mainly come from under-represented 
classes which have less than 50 instances in the entire 
dataset. Whereas neural models out-perform baseline 

models when there is sufficient training data, achieving 
overall a better micro-average performance.

Effect of input size
As described in the dimension-level dataset statistics in 
“Dimension-level Statistics”, tables in our ChemTables 
dataset are of various sizes and the range of the table size 
is wide. To adapt neural models from image classification 
to this task, table instances within the same mini-batch 
need to be padded to the same size. For pre-trained lan-
guage models such as Table-BERT, a limitation on input 
sequence length also applies. Hence, it is important to 
determine the input size yielding the best overall classifi-
cation performance.

Table 4 shows the test performance of all models when 
we use no more than the first 3 rows as input (all columns 
are used in this set of experiments), to explore whether 
the semantic type of tables can be determined by caption 

a

b

Fig. 9  Effect of input length on classification performance of TabNet 
and TBResNet. a TabNet. b TBResNet
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and row headers alone. The experimental results show 
that with only the first 3 rows, classification performance 
drops at least 15 F1 score points in all 3 metrics com-
pared to the models using an optimal input size. Hence, 
although semantic information in captions and head-
ers are denser, including the body of the table can still 
help to significantly improve the understanding of table 
semantics.

TabNet and TBResNet
Figure  9 shows classification performance in micro-
averaged F1 score under different combinations of input 
height (number of rows) and width (number of col-
umns), both ranging within the set [5, 10, 15, 20, 25, 
32] of values. Figure  9a shows that for TabNet the best 
performance is achieved when using 10 rows and 5 col-
umns, while as shown in Fig. 9b for TBResNet, the opti-
mal performance is achieved when using 10 rows and 32 
columns. For models taking 2-dimensional table data as 
inputs, the classification performance does benefit from 
increasing model complexity as TBResNet outperforms 
TabNet in all 3 metrics in overall performance. From 
observing Fig. 9a, b, one can see that TBResNet is indeed 
able to learn more knowledge of table semantics from 

larger input sizes, which results in higher classification 
accuracy.

As shown in Fig.  9a, b, for TBResNet, the difference 
between the highest and lowest F1 score is larger than 
that of TabNet. We can also observe that the perfor-
mance of model drops faster than TabNet when input 
size deviates from the optimal value. This shows that as 
the model complexity increases, the performance of ths 
model is more sensitive to the change in input size, as 

Table 3  Table classification baseline results in F1 measure. “Count” denoted number of instances in the entire ChemTables dataset

Category NB SVM TabNet TBResNet Table-BERT Count

SPECT 81.36 82.76 85.71 92.59 96.30 138

PHYS 66.67 42.11 0.00 0.00 23.53 38

SPECT|PHYS 64.00 69.23 78.57 88.00 84.62 67

IDE 75.47 69.23 84.00 77.42 96.15 137

RX 73.68 43.48 35.29 28.57 73.68 49

PHARM 76.67 69.23 68.75 66.67 82.76 143

COMPOSITION 75.86 60.61 62.50 74.07 74.07 69

PROPERTY​ 54.55 37.50 25.00 0.00 30.00 35

OTHER 54.90 45.71 46.81 40.82 58.54 118

Micro Avg. 60.54 59.72 65.61 66.24 76.43 –

Table 4  Micro Avg. F1 scores of models with only table caption and row headers as inputs. “# of Rows” denotes the number of rows 
included as input for the models ( 1 = only the header row used as input)

Metric Micro F1 Macro F1 Weighted Avg. F1

# of Rows 1 2 3 1 2 3 1 2 3

NB 19.24 29.40 37.21 18.08 27.88 36.56 22.33 35.12 40.73

SVM 27.20 35.72 38.88 22.17 33.10 37.18 23.47 38.78 41.65
TabNet 40.12 49.04 50.95 32.09 43.30 42.26 37.67 46.99 49.19
ResNet 37.58 42.68 44.59 26.78 32.39 34.35 33.38 40.34 42.39

Table-BERT 34.39 40.76 48.41 25.51 34.51 42.23 30.97 38.67 46.93

Fig. 10  Effect of input length on classification performance of 
Table-BERT
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complex models generally need more data to be trained 
effectively.

Results in Table 4 shows model performance when only 
the first few rows are used for training. We can observe 
that when the size of the input table is ≤ 3 rows, Tab-
Net outperforms both TBResNet and Table-BERT. This 
confirms that the less complex model TabNet is not 
as sensitive to input size compared to TBResNet and 
Table-BERT.

Table‑BERT
The maximum length of input for Table-BERT is 512 
sub-word tokens. However, the number of words within 
a table can easily exceed this length limit. Therefore, we 
also explore the effect of input length on classification 
performance. As shown in Fig.  10, Table-BERT using 
Naturalization and Linearization strategies achieves its 
best performance in all 3 metrics when input size is lim-
ited to 448 and 512, respectively (achieving the same per-
formance value).

Effect of flattening strategy
The complexity in table structure makes it difficult to 
accurately determine the header rows and columns for 
chemical patent tables. Different from web tables, patent 
tables can be organized in much more complex hierarchi-
cal structure than web tables. For example, the table with 
id tabl0008-en in EP2918590A1 has 2 <thead> 
elements, in which the first one contains a figure that 
can’t be converted to text solely using the XML file. There 
are also 3 tables with 8 <thead> elements. Such com-
plex table headers are not trivial to resolve by simple heu-
ristics. On the other hand, some patent tables only have 
very simple headers (or even no header when the table is 
used for purely enumerating examples). In fact,   10% of 

the tables in ChemTables do not have <thead> element 
while another  20% only have the caption (e.g. “Table 5”) 
in <thead> element.

For the naturalization approach, our goal is to convert a 
table into a more human readable format, which is closer 
to BERT’s input data format. However, when the headers 
cannot be identified correctly, incorporating wrong head-
ers can introduce extra noise in the input, having a nega-
tive effect on classification performance.

As shown in Fig.  10, the Linearization approach out-
performs the Naturalization approach when input size 
is less than 448 sub-words. This is different from what 
has been observed elsewhere in more generic datasets, 
where naturalization is more accurate. However, at maxi-
mum input length, the Naturalization approach archived 
its best performance, which is the same as the optimal 
performance of the Linearization approach. This was 
expected, as the naturalization approach increased the 
length of tables by incorporating header information into 
every cell. By observing the trend of performance change, 
we find that the naturalization approach could potentially 
archive better performance if the maximum input length 
of BERT models were to be further expanded beyond 
their current limit.

Error analysis
In this section, we analyze the patterns of errors of differ-
ent models using the confusion matrix of each category. 
For most classes, we can observe that large portions (> 
50%) of confusions occur w.r.t. the label OTHER. This is 
because OTHER is only assigned when there is no other 
label within or beyond Reaxys scheme or guidelines 
matching the content of the table. Hence, the content of 
tables labelled as OTHER can contain content which over-
laps partially with that of other labels, but not sufficiently 

Fig. 11  Example of PHARM table which is predicted as OTHER by both Table-BERT and TBResNet. (US20150259353A1 TABLE 6) 
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to qualify as one of them. For label SPECT|PHYS, most 
confusions happen between with its two components 
SPECT and PHYS as tables with label SPECT|PHYS have 
data of both types, but the proportion of these two types 
of contents is not necessarily balanced.

We also find that there is a considerably large amount 
of PHARM tables being classified as OTHER. Especially 
in the case of the latter, such mismatches are due to 
the consideration (or lack thereof ) of the context in the 
annotated samples. Indeed, the information provided 
directly in the table or its attached subsets is often 
somewhat cryptic and requires additional explanations 
provided by the surrounding text paragraphs and are 
thus disregarded by Table-BERT and TBResNet. The 
label OTHER has moreover a very low inner-annotator 
agreement score, showing that human experts are also 
struggling using this label to annotate tables. Hence it 
is not surprising that most of the confusions produced 
by our model are between OTHER and the rest of the 
label set.

The table in Fig.  11 is a typical example: Whilst the 
table already lists the required species, chemical com-
pound and effect, the text in the paragraph above the 
table clearly outlines that the experiment evolves around 
pharmacokinetics.

Conclusion and future work
In this work, we have presented a new dataset ChemTa-
bles of tables extracted from chemical patents, with gold 
standard annotations on the semantic type of tables, 
which enables research on applications of deep learning 
to the task of classifying tables based on their seman-
tics. We also established strong baselines on this dataset 
with various machine learning methods, including non-
neural methods and 3 neural models: TabNet, TBResNet 
and Table-BERT. The experimental results show that 
all neural models outperform non-neural baselines in 
overall performance and categories with more than 100 
instances while non-neural baselines perform better on 
under-represented categories. Our work thus indicates 
that machine learning models trained on the ChemTa-
bles dataset can help in identifying tables of interest to 
researchers automatically, hence reducing the amount 
of human effort needed in chemical patent excerption. 
Furthermore, this dataset can also be used for table rep-
resentation learning, such as training unsupervised lan-
guage models like BERT.

The best performing model Table-BERT achieves a per-
formance of nearly 76 micro-averaged F1 score across all 
classes and shows a significant advantage on relatively 
under-represented classes in the dataset. The 2-dimen-
sional models show competitive performance given that 

they have not been pre-trained on any data other than the 
ChemTables dataset itself. The error analysis showed 
that even the best performing neural models still fail to 
tell whether the pharmacological data in tables is relevant 
or not due to the lack of information from the surround-
ing text in the model input. Therefore, to solve this prob-
lem, it is also important to develop models which learn 
from both the table and its context. Although the image 
classification models can learn local features from the 
convolutional layers, the relationships between cells (e.g. 
a row header that defines the data type of subsequent 
cells) are not captured. Hence, it may be interesting to 
combine sequential models with CNNs to mitigate this 
problem. The advantage of pre-trained language mod-
els observed in this task also motivates us to test their 
incorporation into models taking 2-dimensional data as 
inputs, such as TabNet and TBResNet, in future work.
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